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Abstract. In the present paper we first introduce the notion of
LMp

I(A) of a Banach space A, where I is an index set, and 1 ≤ p < ∞.
In the case where A is a Banach algebra and 1 ≤ p ≤ 2 we find necessary
and sufficient conditions for which LMp

I(A) has a bounded approximate
identity. We also find the second dual of LMp

I(A) for an arbitrary in-
dex set I. In the case where 1 ≤ p ≤ 2 and LMp

I(A) has a bounded
approximate identity we prove that LMp

I(A)∗∗ is unital if and only if
A∗∗ is unital.
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Introduction The properties of �1-Munn algebras is investigated by G. H.
Esslamzadeh (for example, see [1]). The aim of the present paper is to in-

troduce and investigate the properties of �p-Munn algebras. The organization
of this paper is as follows. The preliminaries and notations are given in sec-

tion 1. In section 2 we introduce and investigate the structure of LMp
I(A),

where A is a Banach space, I is an index set, and 1 ≤ p < ∞. The Banach
space LMp

I(A) is the vector space of all I × I-matrices A over A such that

‖A‖p =
(∑

i,j∈I ‖Aij‖p
) 1

p
< ∞. We find necessary and sufficient conditions

for which LMp
I(A) is a Banach algebra. We prove that if A is a Banach

algebra such that A2 �= 0, then LMp
I(A) is a Banach algebra if and only if

1 ≤ p ≤ 2. We also prove that for 1 ≤ p ≤ 2, the Banach algebra LMp
I(A)

has a bounded approximate identity if and only if I is finite and A has a

bounded approximate identity. Finally, in section 3 for an arbitrary index set
I, we study the second dual of LMp

I(A) over a unital Banach algebra A. In

the case where 1 ≤ p ≤ 2 and LMp
I(A) has a bounded approximate identity

we prove that LMp
I(A)∗∗ is unital if and only if A∗∗ is unital.
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1 Preliminaries Let A be an algebra, a norm ‖ . ‖ on A is said to be
submultiplicative if

‖ab‖ ≤ ‖a‖‖b‖ (a, b ∈ A).

In this case the pair (A, ‖ . ‖) is called a normed algebra. A complete normed

algebra is called a Banach algebra. The radical of A is the subset rad(A) of

A given by
rad(A) = ∩{ker(φ)| φ ∈ ΣA},

where ΣA is the class of all irreducible representations of A. A is called semi-
simple if rad(A)={0}.

If A admits a unit eA (i.e. aeA = eAa = a, for all a ∈ A) and ‖eA‖ = 1
we say that A is a unital Banach algebra.

Let (A, ‖ . ‖) be a normed algebra. A left (respectively, right ) approximate
identity for A is a net (eα) in A such that limα eαa = a (limα aeα = a,

respectively) for each a ∈ A. An approximate identity for A is a net (eα)
which is both a left and a right approximate identity. An approximate identity

is bounded by M , whenever M > 0 and supα ‖eα‖ ≤M .
Let A be an arbitrary Banach algebra. The first and second Arens multi-

plications on A∗∗ that we denote by ∆ and . respectively, are defined by the

following relations:

〈f∆a, b〉 = 〈f, ab〉, 〈a.f, b〉 = 〈f, ba〉,
〈m∆f, a〉 = 〈m, f∆a〉, 〈f.m, b〉 = 〈m, b.f〉,
〈m∆n, f〉 = 〈m,n∆f〉, 〈m.n, f〉 = 〈n, f.m〉,

where a, b ∈ A, f ∈ A∗ and m,n ∈ A∗∗.

2 The structure of the Banach space LMp
I(A) (1 ≤ p < ∞) over a

Banach algebra A
Definition 2.1. Let A be a Banach space, 1 ≤ p <∞, and I be an arbitrary

index set, let LMp
I(A) be the vector space of all I× I-matrices A over A such

that

‖A‖p =
(∑

i,j∈I

‖Aij‖p
) 1

p
<∞.

Then it is easy to check that LMp
I(A) with scaler multiplication, matrix

addition, and the norm ‖ . ‖p is a Banach space.

The space LM1
I(A) over a unital Banach algebra A is called �1-Munn

algebra (see [1]).

In the rest of the paper we suppose that A is a Banach algebra.
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Theorem 2.2. Let 1 ≤ p ≤ 2. The Banach space LMp
I(A) with matrix

multiplication and the norm ‖ . ‖p is a Banach algebra.

Proof. Let A,B ∈ LMp
I(A), and i, j ∈ I. Since 1 ≤ p ≤ 2, so for q with

1
p
+ 1

q
= 1, q ≥ 2 ≥ p. Hence �p(I) ⊆ �q(I) and ‖f‖q ≤ ‖f‖p (f ∈ �p(I)). Now,

we have (∑
k∈I

‖Aik‖‖Bkj‖
)p

= ‖(‖Aik‖)k(‖Bkj‖)k‖p
1

≤ ‖(‖Aik‖)k‖p
p‖(‖Bkj‖)k‖p

q

≤ ‖(‖Aik‖)k‖p
p‖(‖Bkj‖)k‖p

p

=

(∑
k∈I

‖Aik‖p

)(∑
l∈I

‖Blj‖p

)
.

Therefore

‖AB‖p
p =

∑
i,j∈I

∥∥∥∥∥∑
k∈I

AikBkj

∥∥∥∥∥
p

≤
∑
i,j∈I

(∑
k∈I

‖Aik‖‖Bkj‖
)p

≤
∑
i,j∈I

(∑
k∈I

‖Aik‖p

)(∑
l∈I

‖Blj‖p

)

=

(∑
i,k∈I

‖Aik‖p

)(∑
j,l∈I

‖Blj‖p

)
= ‖A‖p

p‖B‖p
p.

Hence ‖AB‖p ≤ ‖A‖p‖B‖p. It shows that ‖ . ‖p is an algebra norm. Hence

LMp
I(A) is a Banach algebra.

Proposition 2.3. Let I be an infinite set and A be a Banach algebra such
that A2 �= 0. Then for each 2 < p <∞, LMp

I(A) is not an algebra.

Proof. Since A2 �= 0, so there exist a, b ∈ A such that ab �= 0. Let {in}n∈�
be an infinite subset of distinct elements of I. Define the I × I-matrix A over

A by Ai1in = 1√
n
a (n ∈ N) and Aij = 0 for other i, j ∈ I. Also define the

I × I-matrix B over A by Bini1 = 1√
n
b (n ∈ N) and Bij = 0 for other i, j ∈ I.

It is easy to see that A,B ∈ LMp
I(A). But AB is not even well defined, since

(AB)i1i1 =
∑
n∈�

Ai1inBini1 =

(∑
n∈�

1

n

)
ab.
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Theorem 2.4. Let A be a Banach algebra and 1 ≤ p ≤ 2.
(i) If LMp

I(A) has a bounded approximate identity, then A has a bounded

approximate identity and the index set I is finite.
(ii) If A has a bounded approximate identity and the index set I finite, then

LMp
I(A) has a bounded approximate identity.

Proof. (i) Let {Eα| α ∈ Λ} be a bounded approximate identity for LMp
I(A)

bounded by M > 0. For i, j ∈ I, and a ∈ A, let εija be an I × I matrix over

A that has a as its (i, j)-th entry and 0 elsewhere. For i, j ∈ I, and a ∈ A

0 = lim
α

‖Eα.aεij − aεij‖p
p = lim

α

∥∥∥∑
k,l∈I

(Eα)klεklaεij − aεij

∥∥∥p

p

= lim
α

∥∥∥∑
k∈I

(Eα)kiaεkj − aεij

∥∥∥p

p

= lim
α

∥∥∥ ∑
k∈I,k �=i

(Eα)kiaεkj + (Eα)iiaεij − aεij

∥∥∥p

p

= lim
α

( ∑
k∈I,k �=i

‖(Eα)kia‖p + ‖(Eα)iia− a‖p

)
≥ lim sup

α
‖(Eα)iia− a‖p.

Thus limα ‖(Eα)iia − a‖ = 0. If we let eα
i = (Eα)ii, then for every a ∈

A, limα ‖eα
i a − a‖ = limα ‖(Eα)iia − a‖ = 0. Similarly one can prove that

limα ‖aeα
i − a‖ = 0. Moreover,

‖eα
i ‖ = ‖(Eα)ii‖ ≤ ‖(Eα)‖p ≤ M.

Therefore {eα
i | α ∈ Λ} is a bounded approximate identity for A.

Let a ∈ A such that ‖a‖ = 1. Suppose on the contrary that I is infinite.
Let (Eα)α be an approximate identity for LMp

I(A). For every finite subset F

of I, define AF by (AF )ii = a if i ∈ F , (AF )ii = 0 if i ∈ I − F and (AF )ij = 0
if i �= j then

(Card F )
1
p =

(∑
i∈F

‖a‖p
) 1

p

= ‖AF‖p

= lim
α

‖AFEα‖p

= lim
α

( ∑
i∈F,j∈I

‖a(Eα)ij‖p
) 1

p
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≤ lim inf
α

( ∑
i∈F,j∈I

‖a‖p‖(Eα)ij‖p
) 1

p

= lim inf
α

( ∑
i∈F,j∈I

‖(Eα)ij‖p
) 1

p

≤ lim inf
α

‖Eα‖p.

Therefore limα ‖Eα‖p = ∞. Thus the Banach algebra LMp
I(A) does not have

a bounded approximate identity. This is a contradiction. Therefore the index

set I is finite.
(ii) Let |I| = n and {eα| α ∈ Λ} be a bounded approximate identity for

A, bounded by K > 0. Define {Eα| α ∈ Λ} in LMp
I(A) by (Eα)ii = eα, and

(Eα)ij = 0, if i �= j for i, j ∈ I. Now, for every A ∈ LMp
I(A)

lim
α

‖AEα − A‖p
p = lim

α

∑
i,j∈I

‖(AEα)ij −Aij‖p

= lim
α

∑
i,j∈I

∥∥∥∑
k∈I

Aik(Eα)kj −Aij

∥∥∥p

= lim
α

∑
i,j∈I

‖Aijeα − Aij‖p

= 0.

By a similar method one can prove that limα ‖EαA − A‖p = 0, for every
A ∈ LMp

I(A). Moreover,

‖Eα‖p
p =

∑
i,j∈I

‖(Eα)ij‖p =
∑
i∈I

‖(Eα)ii‖p ≤ n.Mp,

and so ‖Eα‖p ≤ n
1
pM . Therefore {Eα| α ∈ Λ} is a bounded approximate

identity for LMp
I(A).

Corollary 2.5. Let A be a Banach algebra with unit eA, and 1 ≤ p ≤ 2. The
following conditions are equivalent:

(i) If LMp
I(A) has a bounded approximate identity.

(ii) I is finite.

Remark 2.6. If I is finite, then LMp
I(A) is semisimple if and only if A is

semisimple (see for example [3] section IX.2 exercise 13).

3 Duals of LMp
I(A) for 1 ≤ p ≤ 2 .

Let X be an arbitrary Banach space and A be a Banach algebra and I be

an arbitrary index set. It is well known that �p(I,X)∗ = �q(I,X∗) whenver

1 ≤ p <∞ and 1
p

+ 1
q

= 1.
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Theorem 3.1. Let I be an arbitrary index set and 1 ≤ p ≤ 2. Then LMp
I(A)∗∗

is topologically algebra isomorphic to LMp
I(A∗∗) when both of A∗∗ and LMp

I(A)∗∗

are equipped with the first [second] Arens product.

Proof. If we define ψ : LMp
I(A)∗ → �p(I×I,A∗) by 〈ψ(F )(i, j), a〉 = 〈F, aεij〉,

where aεij is an I × I matrix on A which has a as (i, j)- th entry and 0

elsewhere. We will denote ψ(F ) by F̃ . It is now obvious what we mean

by �p(I × I,A∗∗) and its elements. We can identify the two Banach spaces
LMp

I(A)∗∗ and LMp
I(A∗∗). Therefore we need only to show that the linear

isomorphism ψ : LMp
I(A)∗∗ → LMp

I(A∗∗) is multiplicative. Throughout we
will use the fact that the restriction of the Arens product of A∗∗ to A agrees

with the multiplication of A. Let A,X ∈ LMp
I(A), F ∈ LMp

I(A)∗ and
M,N ∈ LMp

I(A)∗∗, then we have

〈(F̃∆A)ij , Xij〉 = 〈F∆A,Xijεij〉
= 〈F,A(Xijεij)〉
=

∑
k

〈F,AkiXijεkj〉

=
∑

k

〈F̃kj, AkiXij〉

=
∑

k

〈F̃kj∆Aki, Xij〉.

Thus

(F̃∆A)ij =
∑

k

F̃kj∆Aik.

Now applying this relation to M̃∆F we have

〈(M̃∆F )ij , Aij〉 = 〈M∆F,Aijεij〉
= 〈M,F∆(Aijεij)〉
=

∑
k

〈M̃jk, F̃ik∆Aij〉

=
∑

k

〈M̃jk∆F̃ik, Aij〉.

So

(M̃∆F )ij =
∑

k

M̃jk∆F̃ik.
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Using this relation to Ñ∆M we obtain

〈(Ñ∆M)ij , F̃ij〉 = 〈N∆M, F̃ijεij〉
= 〈N,M∆(F̃ijεij)〉
=

∑
k

〈Ñik, M̃kj∆F̃ij〉

= 〈
∑

k

Ñik∆M̃kj , F̃ij〉.

Thus

(Ñ∆M)ij =
∑

k

Ñik∆M̃kj .

It is now easy to see that ψ(N∆M) = ψ(N)∆ψ(M). Similarly we can
prove that ψ(N.M) = ψ(N).ψ(M).

Theorem 3.2. Let 1 ≤ p ≤ 2 and A be a Banach algebra such that LMp
I(A)

has a bounded approximate identity. Then LMp
I(A)∗∗ is unital if and only if

A∗∗ is unital.

Proof. We first note that since LMp
I(A) has a bounded approximate identity,

from Theorem 2.4 it follows that I is finite. So without loss of generality we
may assume that p = 2. Then from the following identities,

LM2
I(A)∗ = �2(I × I,A∗)

LM2
I(A)∗LM2

I(A) = �2(I × I,A∗A)

LM2
I(A)LM2

I(A)∗ == �2(I × I,AA∗),

we conclude that A∗ factors on one side if and only if LMp
I(A)∗ factors on

the same side. Now the result follows from Proposition 2.2 of [4].
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