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Abstract. In the topological sum of pairwise disjoint topological spaces, we inves-
tigate topological properties of the following generalized closed sets: preclosed sets,
semi-closed sets, α-closed sets, g-closed sets, sg-closed sets, gs-closed sets, gp-closed
sets. Moreover, we have a characterization of some generalized compact topological
sum. The results are proved by using a unified concept in the sense of [23] [13] [22]
(eg., [17]) (cf. Section 2 and Section 3 below); we have generalized versions of main
results.

1 Introduction and main results Throughout this paper, let {(Xi, τi)|i ∈ Ω} be a
family of topological spaces satisfying Xi ∩Xj = ∅ for any different i, j ∈ Ω (i.e., it is called
a family of pairwise disjoint topological spaces). Let X := ∪i∈ΩXi and a family τ of subsets
on X as follows: τ := {U : U ⊂ X, U ∩ Xi ∈ τi for every i ∈ Ω}. Sometimes, in this
paper, τ is denoted by

⊕
i∈Ω τi and X is denoted by

⊕
i∈Ω Xi. Then, it is well known that

a pair (X, τ) is a topological space. This space is called the topological sum of topological
spaces {(Xi, τi)|i ∈ Ω} and it is denoted by

⊕
i∈Ω(Xi, τi) or

⊕
i∈Ω Xi (eg., [27, p.66] [14,

p.74, 2.2] [16, p.5, p.44]; in [14, p.74, 2.2], this space (X, τ) is called the sum of spaces

{(Xi, τi)|i ∈ Ω}).
The purpose of the present paper is to investigate some generalized closures and kernels

in the topological sum (cf. Theorem 1.2, Theorem 1.3) and more on generalized closed sets
in the topological sum (cf. Lemma 1.5, Theorem 1.6, Theorem 3.5). The main results are
proved, in Sections 2 and 3, by a generalized point of views in the light of [13, Sections
4 and 5] [23, Section 2] [22] (eg., [17, Chapters 4, 6, 7]). We first recall the following
definitions and properties on a topological space and Definition 1.1 below on some kernels
of a subset of a topological space. For a subset A of a topological space (Y, σ), the closure
of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset S

of a topological spaces (Y, σ) is called semi-open [18] (resp. preopen [24], α-open [28]) if
S ⊂ Cl(Int(S)) (resp. S ⊂ Int(Cl(S)), S ⊂ Int(Cl(Int(S))) ) holds. Moreover, a subset F

is said to be semi-closed (resp. preclosed, α-closed) if the complement Y \ F is semi-open
(resp. preopen, α-open). The family of all semi-open sets (resp. preopen sets, α-open sets)
of (Y, σ) is denoted by SO(Y, σ) (resp. PO(Y, σ), σα (or α(Y, σ))). It is well known that
SO(Y, σ) ∩ PO(Y, σ) = σα [29, Lemma 3.1] holds and the family σα is a topology of Y [28]
(eg., [31]) and σ ⊂ σα holds for any topological space (Y, σ). The families SO(Y, σ) and
PO(Y, σ) are not topologies of Y in general. The arbitrary union of semi-open sets (resp.
preopen sets) is semi-open (resp. preopen). The intersection of all semi-closed sets (resp.
preclosed sets, α-closed sets) containing a set A of (Y, σ) is called the semi-closure (resp.
preclosure, α-closure) of the set A and denoted by sCl(A) (resp. pCl(A), αCl(A)). It is
well known that a subset F is semi-closed (resp. preclosed, α-closed ) in (Y, σ) if and only
if sCl(F ) = F (resp. pCl(F ) = F,αCl(F ) = F ) holds in (Y, σ).
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Definition 1.1 Let (Y, σ) be a topological space and A a subset of (Y, σ).

(i) (eg., [26] [21]) Ker(A) :=
⋂
{V |A ⊂ V and V ∈ σ }.

(ii) [12] [6] sKer(A) :=
⋂
{V |A ⊂ V and V ∈ SO(Y, σ) }.

(iii) [7] pKer(A) :=
⋂
{V |A ⊂ V and V ∈ PO(Y, σ) }.

In [21] (resp. [6], [7]), Ker(A) (resp. sKer(A), pKer(A)) is denoted by AΛ (resp. AΛs ,
AΛp).

For a subset A of
⊕

i∈Ω(Xi, τi), it is well known that Cl(A) =
⋃

i∈Ω Cl(A ∩ Xi) and
Int(A) =

⋃
i∈Ω Int(A ∩ Xi).

Theorem 1.2 For a subset A of
⊕

i∈Ω(Xi, τi), the following properties hold:

(i) sCl(A) =
⋃

i∈Ω sCl(A ∩ Xi); (ii) pCl(A) =
⋃

i∈Ω pCl(A ∩ Xi),

(iii) αCl(A) =
⋃

i∈Ω αCl(A ∩ Xi).

Theorem 1.3 For a subset A of
⊕

i∈Ω(Xi, τi), the following properties hold:

(i) Ker(A) =
⋃

i∈Ω Ker(A ∩ Xi); (ii) sKer(A) =
⋃

i∈Ω sKer(A ∩ Xi),

(iii) pKer(A) =
⋃

i∈Ω pKer(A ∩ Xi); (iv) αKer(A) =
⋃

i∈Ω αKer(A ∩ Xi).

After preparing some generalizations (cf. Lemma 2.1, Lemma 2.4, Theorem 2.5, Theo-
rem 2.6), the proofs of Theorem 1.2 and Theorem 1.3 are given in the end of Section 2.

We need the following definitions and characterizations on some generalized closed sets
in a topological space.

Definition 1.4 Let (Y, σ) be a topological space and A a subset of (Y, σ).
(i) The set A is said to be g-closed [19] (resp. gs-closed [2],gp-closed [30]) in (Y, σ), if

Cl(A) ⊂ U (resp. sCl(A) ⊂ U, pCl(A) ⊂ U) whenever A ⊂ U and U is open in (Y, σ).

(ii) The set A is said to be sg-closed [3], if sCl(A) ⊂ U whenever A ⊂ U and U is
semi-open in (Y, σ).

Complements of g-closed (resp. gs-closed, gp-closed, sg-closed) sets are called g-open

(resp. gs-open, gp-open, sg-open).

It is well known that, for a subset A of a topological space (Y, σ),
(1a) A is g-closed in (Y, σ) if and only if Cl(A) ⊂ Ker(A),

(1b) [12, Lemma 1.1 (i)] A is sg-closed in (Y, σ) if and only if sCl(A) ⊂ sKer(A).

Lemma 1.5 Let (Y, σ) be a topological space and A a subset of (Y, σ). Then, we have the

following properties:

(i) A is gs-closed in (Y, σ) if and only if sCl(A) ⊂ Ker(A),

(ii) A is gp-closed in (Y, σ) if and only if pCl(A) ⊂ Ker(A).

Theorem 1.6 Let A be a subset of
⊕

i∈Ω(Xi, τi). Then the following properties hold:

(i) A is g-closed in
⊕

i∈Ω(Xi, τi) if and only if A ∩ Xi is g-closed in (Xi, τi) for every

i ∈ Ω,

(ii) A is gs-closed in
⊕

i∈Ω(Xi, τi) if and only if A∩Xi is gs-closed in (Xi, τi) for every

i ∈ Ω,

(iii) A is gp-closed in
⊕

i∈Ω(Xi, τi) if and only if A∩Xi is gp-closed in (Xi, τi) for every

i ∈ Ω,

(iv) A is sg-closed in
⊕

i∈Ω(Xi, τi) if and only if A∩Xi is sg-closed in (Xi, τi) for every

i ∈ Ω.
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The proofs of Lemma 1.5 and Theorem 1.6 are stated in Section 3 after preparing gen-
eralizations (cf. Lemma 3.2, Theorem 3.3). As corollary, we have a characterization of a
gs-compact [9, Definition 5.3] (resp. gp-compact [1, Definition 7], go-compact [4, Definition
6], sg-compact [5] [9] [10]) topological sum (cf. Theorem 3.5, Definition 3.4 and Proof of
Theorem 1.7).

Theorem 1.7 Let {(Xi, τi)|i ∈ Ω} be a family of pairwise disjoint non-empty topological

spaces. For the topological sum (X, τ) :=
⊕

i∈Ω(Xi, τi), we have the following properties:

(X, τ) is gs-compact (resp. gp-compact, go-compact, sg-compact ([11, Proposition 2.11]))
if and only if each topological space (Xi, τi) is gs-compact (resp. gp-compact, g-compact, sg-

compact) and Ω is finite, where i ∈ Ω.

Throughout this paper, all topological spaces lack any separation axioms unless explicitely
stated.

2 Generalizations and proofs of Theorems 1.2 and 1.3 Let P (Y ) be the power set
of a nonempty set Y and EY a non-empty subfamily of the power set P (Y ) of Y satisfying
a property that ∅ ∈ EY and Y ∈ EY (say (A)EY

) . Sometimes, EY is abbreviated by E . We
will use the following notation (2a), (2b), (2b’) due to [23],[13],[22] (eg., [17]): for a subset
B of Y and a family EY satisfying (A)EY

,
(2a) EY -Cl(B) :=

⋂
{F |B ⊂ F and Y \ F ∈ EY },

(2b) EY -Ker(B) :=
⋂
{U |B ⊂ U and U ∈ EY },

(2b’) EY -Int(B) :=
⋃
{U |U ⊂ B and U ∈ EY }.

(2c) For a non-empty subfamily EY , let Ec
Y := {F |Y \ F ∈ EY }. Then, (Ec

Y )c
Y = EY

holds. Note that the proof is obtained without assuming the property (A)EY
.

Lemma 2.1 Let (Y, σ) be a topological space and EY be a subfamily of P (Y ) satisfying

property (A)EY
, i.e., ∅ ∈ EY and Y ∈ EY .

Then, the following properties hold:

(i) ∅ ∈ Ec
Y and Y ∈ Ec

Y .

(ii) EY -Ker(B) = Ec
Y -Cl(B) and EY -Cl(B) = Ec

Y -Ker(B) for a subset B of Y ,

(iii) (eg., [22, Lemma 2.2], [32, Lemma 3.1]) Y \ (EY -Cl(B)) = EY -Int(Y \ B) for a

subset B of Y ,

(iv) (cf.[32, Lemma 3.2], [15, Lemma 2.7]) The following properties are equivalent:

(1)
⋃
{Ak|k ∈ K} ∈ EY holds, whenever Ak ∈ EY for each k ∈ K, where K is any index

set. Namely, EY is closed under an arbitrary union, (sometimes, we say that EY satisfies

property (B)EY
, cf. Definition 2.3 below );

(2)
⋂
{Fi|i ∈ K} ∈ Ec

Y holds, whenever Fi ∈ Ec
Y for each i ∈ K, where K is any index

set. Namely, Ec
Y is closed under an arbitrary intersection;

(3) If EY -Cl(F ) = F for a subset F of Y , then Y \ F ∈ EY .

Proof. (i) Its proof is obvious from definitions. (ii) The first part is proved by using
a property that U ∈ EY if and only if Y \ U ∈ Ec

Y , where U ⊂ Y , and (2a) (2b) above.
For the second part, E-Cl(B) = (Ec)c-Cl(B) = Ec-Ker(B) by the first one and (i); hence
E-Cl(B) = Ec-Ker(B) holds. (iv) The equivalence of (1) and (3) was proved firstly by
[32, Lemma 3.2]; the below proof is an alternative one by using the concept of kernels of
subsets.

(1)⇒(2) Let Fi, i ∈ K, be subsets of Y such that Fi ∈ Ec
Y for every i ∈ K. Then,

Y \ Fi ∈ EY and so, by (1),
⋃
{Y \ Fi|i ∈ K} ∈ EY . Thus, we have that

⋂
{Fi|i ∈ K} =

Y \
⋃
{Y \Fi|i ∈ K} ∈ Ec

Y and so
⋂
{Fi|i ∈ K} ∈ Ec

Y . (2)⇒(3) Assume that EY -Cl(F ) = F .
We recall that EY -Cl(F ) is the intersection of all subsets G of Y such that F ⊂ G and
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Y \G ∈ EY , i.e., G ∈ Ec
Y . Thus, by (2) and the assumption, it is shown that F ∈ Ec

Y and so
Y \ F ∈ EY . (3)⇒(1) Let Ui, i ∈ K, be subsets of Y such that Ui ∈ EY for every i ∈ K.
Let V :=

⋃
{Ui|i ∈ K}. Let x ∈ EY -Cl(Y \ V ); by (ii) above, x ∈ Ec

Y -Ker(Y \ V ). Then,
we have that Y \Ui ∈ Ec

Y , Y \V ⊂ Y \Ui for every i ∈ K and so x ∈ Y \Ui for every i ∈ K.
Thus we have that x ∈

⋂
{Y \ Ui|i ∈ K} = Y \

⋃
{Ui|i ∈ K} = Y \ V . Therefore, we obtain

that EY -Cl(Y \ V ) ⊂ Y \ V and so Y \ V = EY -Cl(Y \ V ). By (3), Y \ (Y \ V ) ∈ EY and
so V ∈ EY . 2

Remark 2.2 Let EY be a subfamily of P (Y ). Then, EY is called:
(1) a generalized topology (in the sense of Lougojan [20]) if ∅ ∈ EY , Y ∈ EY and EY is

closed under an arbitrary union,
(2) a supratopology [25] if Y ∈ EY and EY is closed under an arbitrary union,
(3) a generalized topology (in the sense of Császár [8]) if ∅ ∈ EY and EY is closed under

an arbitrary union,
(4) a minimal structure [32] on Y if ∅ ∈ EY and Y ∈ EY (in [32], EY is denoted by mY ).

Throughout this section, let (X, τ) :=
⊕

i∈Ω(Xi, τi) be the topological sum of pairwise
disjoint topological spaces {(Xi, τi)|i ∈ Ω}. Let X :=

⊕
i∈Ω Xi and τ :=

⊕
i∈Ω τi.

Definition 2.3 Let Ei be a non-empty subfamily of P (Xi) for each i ∈ Ω and E a non-
empty subfamily of P (X) := P (

⊕
i∈Ω Xi). The following properties on subfamilies E and

Ei(i ∈ Ω), which are stated below, are called properties (A)E , (A)Ei
, (B)E , (B)Ei

and (S)E,Ei
,

respectively:
(A)E : ∅ ∈ E and X ∈ E ;
(A)Ei

: ∅ ∈ Ei and Xi ∈ Ei for every i ∈ Ω;
(B)E : the union of any family of subsets belonging to E belongs to E , i.e.,

⋃
{Ak|k ∈

K} ∈ E whenever Ak ∈ E for each k ∈ K, where K is any index set;
(B)Ei

: the union of any family of subsets belonging to Ei belongs to Ei; i.e.,
⋃
{Bk|k ∈

Ki} ∈ Ei whenever Bk ∈ Ei for each k ∈ Ki, where Ki is any index set;
(S)E,Ei

: for any subset B of
⊕

i∈Ω(Xi, τi), B ∈ E if and only if B ∩ Xi ∈ Ei for every
i ∈ Ω.

Throughout the present paper, we use the above abbreviated notation.

In particular, for the topologies τi(i ∈ Ω) and the sum topology τ :=
⊕

i∈Ω τi, it is obvious
that (A)τ , (A)τi

, (B)τ , (B)τi
and (S)τ,τi

(i ∈ Ω) hold. Indeed, (S)τ,τi
is obtained by the

definition of the topological sum.
We need the following lemma.

Lemma 2.4 Let E and Ec be two non-empty subfamilies of P (X) and Ei and Ec
i two non-

empty subfamilies of P (Xi) for each i ∈ Ω. Then, the following properties hold (cf. Defini-

tion 2.3):
(i) (A)E (resp. (A)Ei

) holds if and only if (A)Ec(resp. (A)Ec
i
) holds.

(ii) (S)E,Ei
holds if and only if (S)Ec,Ec

i
holds.

Proof. (i) The proof of Necessity is obvious. Sufficiency is proved using the property of
Necessity and (2c) above. (ii) (Necessity) Let E be a subset of X :=

⊕
i∈Ω Xi. Assume

that E ∈ Ec. Then, X \ E ∈ E and, by the assumption of Necessity for the set X \ E, it is
shown that (X \ E) ∩ Xi ∈ Ei for every i ∈ Ω. Thus we have that E ∩ Xi ∈ Ec

i for every
i ∈ Ω, because Xi \ (Xi ∩E) = (X \E) ∩Xi ∈ Ei holds for every i ∈ Ω. Namely, if E ∈ Ec,
then E ∩Xi ∈ Ec

i for every i ∈ Ω. Conversely, suppose that E ⊂
⊕

i∈Ω Xi and E ∩Xi ∈ Ec
i

for every i ∈ Ω. Then, we have that Xi ∩ (X \E) = Xi \ (E ∩Xi) ∈ Ei for every i ∈ Ω. By



Generalized Closed Sets in Topological Sum 289

the assumption of Necessity for the set E of
⊕

i∈Ω Xi, it is shown that X \ E ∈ E and so
E ∈ Ec. Namely, if E ∩Xi ∈ Ec

i for every i ∈ Ω, then E ∈ Ec. We have that (S)Ec,Ec
i

holds.
(Sufficiency) Suppose that (S)Ec,Ec

i
holds. Using Necessity above for the subfamilies Ec

and Ec
i , (S)(Ec)c,(Ec

i
)c holds. By (2c) above, it is shown that (S)E,Ei

holds. 2

Theorem 2.5 Let X :=
⊕

i∈Ω Xi and τ :=
⊕

i∈Ω τi. Let Ei(i ∈ Ω) and E be subfamilies

of P (Xi) and P (X), respectively, satisfying the properties (A)E , (A)Ei
(cf. Definition 2.3).

We denote the following properties by (1), (2), (3) and (4), respectively:

(1) (S)E,Ei
holds (cf. Definition 2.3);

(2) (B)E and (B)Ei
hold for every i ∈ Ω (cf. Definition 2.3, Lemma 2.1(iv));

(3) E-Cl(A) =
⋃

i∈Ω Ei-Cl(A ∩ Xi) holds for any subset A of X;

(4) E-Ker(A) =
⋃

i∈Ω Ei-Ker(A ∩ Xi) holds for any subset A of X.

Then, we have the following implications:

(i) (1) ⇒ (3),
(ii) (2) and (3) ⇒ (1),

(iii) (1) ⇒ (4).

Proof. (i) We first show that
⋃

i∈Ω Ei-Cl(A ∩ Xi) ⊂ E-Cl(A). Let x be a point of X such
that x 6∈ E-Cl(A). There exists a subset F of X such that X \F ∈ E , x 6∈ F and A ⊂ F . By
using the assumption (1), it is noted that Xi \ (F ∩Xi) = (X \F )∩Xi ∈ Ei for every i ∈ Ω.
Then, for every i ∈ Ω, Xi \ (F ∩ Xi) ∈ Ei, x 6∈ F ∩ Xi and (Xi \ (F ∩ Xi)) ∩ (A ∩ Xi) = ∅.
Thus, for every i ∈ Ω, there exist subsets F ∩ Xi such that x 6∈ F ∩ Xi, A ∩ Xi ⊂ F ∩ Xi

and Xi \ (F ∩ Xi) ∈ Ei. Namely, we have that x 6∈ ∪i∈ΩEi-Cl(A ∩ Xi).
Conversely, we assume that x 6∈

⋃
i∈Ω Ei-Cl(A ∩ Xi) and x ∈ Xj for some j ∈ Ω. There

exists a subset Fj of Xj such that x 6∈ Fj , Xj \ Fj ∈ Ej and A ∩ Xj ⊂ Fj . Put Fi := Xi for
every i ∈ Ω with i 6= j and F :=

⋃
i∈Ω Fi. Then, A ⊂ F and (X \ F ) ∩ Xi = Xj \ Fj or ∅

according to i = j or i 6= j and so (X \ F ) ∩Xi ∈ Ei for every i ∈ Ω. Using the assumption
(1):(S)E,Ei

for the set (X \F )∩Xi, we have X \F ∈ E . Thus, we have that x 6∈ F,X \F ∈ E
and A ⊂ F and so x 6∈ E-Cl(A). Therefore, we show that E-Cl(A) ⊂

⋃
i∈Ω Ei-Cl(A ∩ Xi).

(ii) Let B a subset of X such that B ∈ E . Then, X \ B ∈ Ec and so Ec-Ker(X \ B) =
X\B. By Lemma 2.1(i)(ii) and (2c) above for Y := X , it is shown that E-Cl(X\B) = X\B.
Using the assumption (3), we have that, for an element j ∈ Ω, Xj∩(X \B) = Xj

⋂
(
⋃

i∈Ω Ei-
Cl((X \B)∩Xi)) and so Xj \ (B ∩Xj) = Ej-Cl(Xj \ (B ∩Xj)). Hence, by (B)Ei

for every
i ∈ Ω (cf. Lemma 2.1(iv) (1)⇔(3)), it is shown that B ∩ Xi = Xi \ (Xi \ (B ∩ Xi)) ∈ Ei.
Namely, we have that if B ∈ E then B ∩ Xi ∈ Ei for every i ∈ Ω.

Conversely, suppose that for a subset B of
⊕

i∈Ω Xi, B ∩ Xi ∈ Ei holds for every i ∈
Ω. Then, using (3) we have that E-Cl(X \ B) =

⋃
i∈Ω Ei-Cl(Xi ∩ (X \ B)) =

⋃
i∈Ω Ei-

Cl(Xi \(B∩Xi)) =
⋃

i∈Ω(Xi \(B∩Xi)) = X \B and so E-Cl(X \B) = X \B. Hence, using
(B)E (cf. Lemma 2.1(iv) (1)⇔(3) for Y = X and EY = E), we have that B = X\(X\B) ∈ E .
Namely, we prove that if B ∩ Xi ∈ Ei holds for every i ∈ Ω, then B ∈ E .

(iii) It follows from assumptions and Lemma 2.4 that (A)Ec , (A)Ec
i

and (S)Ec,Ec
i

hold.
By using (i) above for the set A and the subfamilies Ec, Ec

i , it is obtained that Ec-Cl(A) =⋃
i∈Ω Ec

i -Cl(A ∩ Xi). Therefore, using Lemma 2.1(ii), we have that E-Ker(A) =
⋃

i∈Ω Ei-
Ker(A ∩ Xi). 2

In the end of this section, we give the proofs of main results, i.e., Theorems 1.2 and 1.3,
by generalized points of views in the light of [13, Sections 4 and 5] [23, Section 2] [22] (eg.,
[17]). We need the following theorem (Theorem 2.6 below) : let (X, τ) :=

⊕
i∈Ω(Xi, τi) be

the topological sum of the pairwise disjoint topological spaces {(Xi, τi)|i ∈ Ω}. We denote
X :=

⊕
i∈Ω Xi and τ :=

⊕
i∈Ω τi. We recall the following well known properties in (X, τ):
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(2d) (S)τ,τi
holds, i.e., for a subset U of (X, τ), U ∈ τ if and only if U ∩Xi ∈ τi for every

i ∈ Ω (by definition of the topology τ);
(2e) for a subset A of (X, τ), Cl(A) =

⋃
i∈Ω Cl(A ∩ Xi) holds;

(2f) for a subset A of (X, τ), Int(A) =
⋃

i∈Ω Int(A ∩ Xi) holds.

Theorem 2.6 For an ordered pair (E, Ei) of E and Ei, where i ∈ Ω,

let (E, Ei) = (SO(X, τ), SO(Xi, τi)), (PO(X, τ), PO(Xi, τi)) or (τα, (τi)
α). Then, for each

(E, Ei) above (i ∈ Ω), the following property (S)E,Ei
holds:

(S)E,Ei
: for any subset U of (X, τ) :=

⊕
i∈Ω(Xi, τi), U ∈ E if and only if U ∩ Xi ∈ Ei

for every i ∈ Ω.

Proof. We need the following properties (∗1), (∗2) and (∗3): for a subset A of (X, τ) :=⊕
i∈Ω(Xi, τi),
(∗1) Cl(Int(A)) =

⋃
j∈Ω Cl(Int(A ∩ Xj)) holds;

(∗2) Int(Cl(A)) =
⋃

j∈Ω Int(Cl(A ∩ Xj)) holds;
(∗3) Int(Cl(Int(A))) =

⋃
j∈Ω Int(Cl(Int(A ∩ Xj))) holds.

Indeed, by (2e) and (2f) above, it is shown that Cl(Int(A)) =Cl(
⋃

i∈Ω Int (A∩ Xi)) =⋃
j∈Ω(Cl(Xj

⋂
(
⋃

i∈Ω Int(A∩Xi)))) =
⋃

j∈Ω(Cl(Int(A∩Xj))), Int(Cl(A)) =Int(
⋃

i∈Ω Cl(A∩
Xi))=

⋃
j∈Ω(Int(Xj

⋂
(
⋃

i∈Ω Cl (A∩Xi)))) =
⋃

j∈Ω (Int(Cl(A∩Xj))) and Int(Cl(Int(A)))
=

⋃
j∈Ω Int(Cl(Int(A))∩Xj )=

⋃
j∈Ω Int( Cl(Int(A ∩ Xj))) hold (cf. (∗1)).

Case 1. E = SO(X, τ), Ei = SO(Xi, τi), where i ∈ Ω: We prove that U ∈ SO(X, τ) if
and only if U ∩ Xi ∈ SO(Xi, τi) for every i ∈ Ω.

Indeed, we suppose that U ∈ SO(X, τ). It follows from the assumption and (∗1) that⋃
j∈Ω Cl(Int(U ∩ Xj)) ⊃ U holds in (X, τ). Then, for an element i ∈ Ω, we have that

Xi

⋂
(
⋃

j∈Ω Cl(Int(U ∩ Xj))) ⊃ Xi ∩ U holds in (Xi, τi). Thus, we show that Cl(Int(U ∩
Xi)) ⊃ Xi ∩ U holds in (Xi, τi). Namely, U ∩ Xi is semi-open in (Xi, τi) for every i ∈ Ω.
Conversely, suppose that U ∩Xi ∈ SO(Xi, τi) for every i ∈ Ω. By using (∗1), Cl(Int(U)) =⋃

j∈Ω Cl(Int(U ∩Xj)) ⊃
⋃

j∈Ω U ∩Xj = U hold. Hence, this conclude that U ∈ SO(X, τ).
Case 2. E = PO(X, τ), Ei = PO(Xi, τi), where i ∈ Ω: We prove that U ∈ PO(X, τ) if

and only if U ∩ Xi ∈ PO(Xi, τi) for every i ∈ Ω.
Indeed, suppose that U ∈ PO(X, τ). It follows from the assumption and (∗2) that U ⊂⋃

j∈Ω Int(Cl(U ∩Xj)) holds in (X, τ). Then, we have that Xi∩U ⊂ Xi

⋂
(
⋃

j∈Ω Int(Cl(U ∩
Xj))) = Int(Cl(U ∩ Xi)) holds in (Xi, τi), where i ∈ Ω. Thus, we show that U ∩ Xi is
preopen in (Xi, τi) for every i ∈ Ω. Conversely, suppose that U ∩Xi ∈ PO(Xi, τi) for every
i ∈ Ω. By using (∗2), Int(Cl(U)) =

⋃
j∈Ω Int(Cl(U ∩ Xj)) ⊃

⋃
j∈Ω U ∩ Xj = U hold.

Hence, this conclude that U ∈ PO(X, τ).
Case 3. E = τα, Ei = (τi)

α, where i ∈ Ω: We prove that U ∈ τα if and only if
U ∩ Xi ∈ (τi)

α for every i ∈ Ω.
Indeed, suppose that U ∈ τα. Using (∗3), we have that U ⊂

⋃
j∈Ω Int (Cl(Int(U∩Xj)))

holds in (X, τ). Then, we have that Xi ∩ U ⊂ Xi

⋂
(
⋃

j∈Ω Int (Cl(Int((U ∩ Xj))))=
Int(Cl(Int(U ∩ Xi))) holds in (Xi, τi), where i ∈ Ω. Namely, U ∩ Xi is α-open in (Xi, τi)
for every i ∈ Ω. Conversely, suppose that U ∩ Xi ∈ (τi)

α for every i ∈ Ω. By using (∗3),
Int(Cl(Int(U))) =

⋃
j∈Ω Int(Cl(Int(U ∩ Xj))) ⊃

⋃
j∈Ω U ∩ Xj = U hold. Hence, this

conclude that U ∈ τα. 2

Proof of Theorem 1.2 and Theorem 1.3 (ii)(iii)(iv). We recall the following
notation: X :=

⊕
i∈Ω Xi and τ :=

⊕
i∈Ω τi. In Theorem 2.5, assume that Ei = SO(Xi, τi)

(resp. PO(Xi, τi), (τi)
α) for every i ∈ Ω and E = SO(X, τ) (resp. PO(X, τ), τα). We

note that (A)E and (A)Ei
hold for the families E , Ei(i ∈ Ω) above; for a subset A of X ,

SO(X, τ)-Cl(A) = sCl(A) (resp. PO(X, τ)-Cl(A) = pCl(A), τα-Cl(A) = αCl(X)). Then,
using Theorem 2.6, we have property (S)E,Ei

for an odered pair of the families (E, Ei) =
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(SO(X, τ), SO(Xi, τi)) (resp. (PO(X, τ), PO(Xi, τi)), (τ
α, (τi)

α)). Using Theorem 2.5 (i),
we have that Theorem 1.2 (i) (resp. (ii), (iii)). Moreover, using Theorem 2.5 (iii), we have
that Theorem 1.3 (ii) (resp. (iii), (iv)). 2

Proof of Theorem 1.3 (i). In Theorem 2.5, let Ei = τi for every i ∈ Ω and E =
τ . Since the property (S)τ,τi

is valid (cf. (2d) above), Theorem 1.3 (i) is obtained (cf.
Theorem 2.5(iii)). 2

3 Generalizations and proofs of Lemma 1.5, Theorems 1.6 and 1.7 In [23, Defi-
nition 2.10], the notion of (EY , E ′

Y )-g.closed sets is defined in general.

Definition 3.1 [23, Definition 2.10] Let EY and E ′
Y be two families of subsets of a topo-

logical space (Y, σ) satisfying the properties (A)E and (A)E′ , respectively, i.e., ∅, Y ∈ EY

and ∅, Y ∈ E
′

Y . For an ordered pair (EY , E ′
Y ), a subset A of (Y, σ) is said to be (EY , E ′

Y )-
g.closed in (Y, σ), if E ′

Y -Cl(A) ⊂ U whenever A ⊂ U and U ∈ EY . The complement of a
(EY , E ′

Y )-g.closed set is said to be (EY , E ′
Y )-g.open in (Y, σ).

Lemma 3.2 Let EY and E
′

Y be two families of subsets of a topological space (Y, σ) satisfying

the properties (A)E and (A)E′ , respectively, i.e., ∅, Y ∈ EY and ∅, Y ∈ E
′

Y . For a subset A

of (Y, σ), the following properties are equivalent:

(1) A is (EY , E ′
Y )-g.closed in (Y, σ);

(2) E ′
Y -Cl(A) ⊂ EY -Ker(A) holds;

(3) {U |A ⊂ U, U ∈ EY } ⊂ {V |E ′
Y -Cl(A) ⊂ V } holds.

Proof. (1)⇒(2) Let x 6∈ EY -Ker(A). There exists a subset U ∈ EY such that A ⊂ U and
x 6∈ U . Thus, by (1), E ′

Y -Cl(A) ⊂ U and x 6∈ E ′
Y -Cl(A). Hence, we prove that (2), i.e.,

E ′
Y -Cl(A) ⊂ EY -Ker(A). (2)⇒(3) We set K := {V |E ′

Y -Cl(A) ⊂ V } and J := {U |A ⊂
U, U ∈ EY }. We claim that J ⊂ K holds. Let W ∈ J , i.e., W ∈ EY and A ⊂ W . Namely,
EY -Ker(A) ⊂ W . By (2), E ′

Y -Cl(A) ⊂ W , i.e., W ∈ K. This conclude that J ⊂ K holds.
(3)⇒(1) Let W be a subset such that A ⊂ W and W ∈ EY , i.e., W ∈ J (cf. notations
in the proof of (2)⇒(3) above). By (3), W ∈ K. Namely, E ′

Y -Cl(A) ⊂ W and hence A is
(EY , E ′

Y )-g.closed in (Y, σ). 2

Let (X, τ) :=
⊕

i∈Ω(Xi, τi) be the topological sum and, for each i ∈ Ω, Ei and E ′
i

non-empty subfamilies of P (Xi) and two non-empty subfamilies E and E ′ of P (X), where
X :=

⊕
i∈Ω Xi and τ :=

⊕
i∈Ω τi.

Theorem 3.3 Suppose that families Ei, E ′
i(i ∈ Ω), E and E ′ satisfy the properties (A)E , (A)Ei

,

(A)E′ , (A)E′

i
, (S)E,Ei

and (S)E′,E′

i
. For a subset A of the topological sum (X, τ) :=

⊕
i∈Ω(Xi, τi),

the following properties hold:

(i) A = E-Cl(A) holds in (X, τ) if and only if A ∩ Xi = Ei-Cl(A ∩ Xi) for every i ∈ Ω.

(ii) A is (E, E ′)-g.closed in (X, τ) if and only if A∩Xi is (Ei, E ′
i)-g.closed in (Xi, τi) for

every i ∈ Ω.

(iii) A is (E, E ′)-g.open in (X, τ) if and only if A ∩ Xi is (Ei, E
′
i)-g.open in (Xi, τi) for

every i ∈ Ω.

Proof. (i) (Necessity) By Theorem 2.5 (i), it is shown that A ∩ Xi = E-Cl(A) ∩ Xi = Ei-
Cl(A ∩ Xi) holds for every i ∈ Ω, because {(Xi, τi)|i ∈ Ω} is a family of pairwise disjoint
topological spaces. (Sufficiency) By Theorem 2.5 (i), it is also obtained that E-Cl(A) =
∪i∈ΩEi-Cl(A ∩ Xi) = ∪i∈ΩA ∩ Xi = A ∩ (∪i∈ΩXi) = A ∩ X = A and hence A = E-Cl(A).
(ii) (Necessity) Since A is an (E, E ′)-g.closed set, E ′-Cl(A) ⊂ E-Ker(A) by Lemma 3.2.
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Using Theorem 2.5 (i)(iii), we have that E ′
j-Cl(A ∩Xj) = (∪i∈ΩE ′

i-Cl(A ∩Xi)) ∩ Xj = (E ′-
Cl(A))∩Xj ⊂ (E-Ker(A))∩Xj = (∪i∈ΩEi-Ker(A∩Xi))∩Xj = Ej-Ker(A∩Xj). Therefore,
by Lemma 3.2, A ∩ Xj is (Ej , E ′

j)-g.closed for each j ∈ Ω. (Sufficiency) It follows from

assumptions that E
′

i -Cl(A ∩ Xi) ⊂ Ei-Ker(A ∩ Xi) holds for every i ∈ Ω. Then, using

Theorem 2.5 (i) (iii), we have E
′

-Cl(A) = ∪i∈ΩE ′
i-Cl(A ∩ Xi) ⊂ ∪i∈ΩEi-Ker(A ∩ Xi) = E-

Ker(A). Therefore, by Lemma 3.2, A is (E, E
′

)-g.closed. (iii) We note that, for a subset
B of X, (X \ B) ∩ Xi = Xi \ (B ∩ Xi) holds in (Xi, τi) for every i ∈ Ω. Then, the set A is
(E, E ′)-g.open if and only if (X \A)∩Xi is (Ei, E ′

i)-g.closed for every i ∈ Ω (cf. (ii) above); it
holds if and only if Xi \ (A∩Xi) is (Ei, E ′

i)-g.closed in (Xi, τi), i.e., A∩Xi is (Ei, E ′
i)-g.open

in (Xi, τi). Therefore, we have the required equivalence. 2

Proof of Lemma 1.5 (i) (resp. (ii)). In Lemma 3.2, assume that E = σ and E ′ =
SO(Y, σ) (resp. PO(Y, σ)). Then, a subset A of Y is gs-closed (resp. gp-closed) in (Y, σ) if
and only if A is (σ, SO(Y, σ))-g.closed (resp. (σ,PO(Y, σ))-g.closed) in (Y, σ). By Lemma 3.2
for E = σ and E ′ = SO(Y, σ) (resp. PO(Y, σ)), Lemma 1.5 (i) (resp. (ii)) is obtained. 2

Proof of Theorem 1.6 (i) (resp. (ii), (iii)). In Theorem 3.3 (ii), assume that E = τ

and Ei = τi (resp. SO(Xi, τi), PO(Xi, τi)) for every i ∈ Ω. Using Theorem 3.3 (ii) for E = τ

and Ei = τi (resp. SO(Xi, τi), PO(Xi, τi)), we obtain Theorem 1.6 (i) (resp. (ii), (iii)).
Proof of Theorem 1.6 (iv). In Theorem 3.3 (ii), assume that E = SO(X, τ) and

Ei = SO(Xi, τi) for every i ∈ Ω. Then, we obtain Theorem 1.6 (iv). 2

In the end of this section, we investigate a characterization of a kind of a compact
topological sum of topological spaces.

Definition 3.4 Let EY and E ′
Y be two families of subsets of a non-empty topological space

(Y, σ) satisfying properties (A)E and (A)E′ , respectively, i.e., ∅, Y ∈ EY and ∅, Y ∈ E ′
Y .

A topological space (Y, σ) is said to be (EY , E ′
Y )-g-compact if every cover {Vj |j ∈ ∇} of

Y by (EY , E ′
Y )-g-open sets of (Y, σ), there exists a finite subset ∇0 of ∇ such that Y =⋃

{Vj |j ∈ ∇0}. The family {Vj |j ∈ ∇} is an (EY , E ′
Y )-g.open cover of Y and the subfamily

{Vj |j ∈ ∇0} is called a finite subcover of ∇. We recall that ∅ and Y are (EY , E ′
Y )-g.open in

(Y, σ).

Let (X, τ) :=
⊕

i∈Ω(Xi, τi) be the topological sum of pairwise disjoint non-empty topological
spaces {(Xi, τi)|i ∈ Ω}. We denote X :=

⊕
i∈Ω Xi =

⋃
{Xi|i ∈ Ω} and τ :=

⊕
i∈Ω τi.

Theorem 3.5 Let Ei and E ′
i(i ∈ Ω) (resp. E and E ′) be families of subsets of a non-

empty topological space (Xi, τi)(i ∈ Ω) (resp. X :=
⊕

i∈Ω(Xi, τi)). Suppose that Ei and

E ′
i(i ∈ Ω), E and E ′ satisfy the properties (A)E , (A)Ei

, (A)
E
′ , (A)

E
′

i

, (S)E,Ei
and (S)

E
′
,E

′

i

.

Then the following properties are equivalent:

(1) The topological sum (X, τ) =:
⊕

i∈Ω(Xi, τi) is (E, E ′)-g-compact, where Xi 6= ∅ for

every i ∈ Ω;

(2) Each (Xi, τi) is (Ei, E ′
i)-g-compact, where i ∈ Ω, and Ω is finite.

Proof. (1)⇒(2) By definition, it is shown that Xi is (E, E ′)-g.open in (X, τ). Then, a family
V := {Xi|i ∈ Ω} is an (E, E ′)-g.open cover of (X, τ). The cover V has a finite subcover and

so Ω is finite. To prove the first part of (2), for each i ∈ Ω, let U (i) := {U
(i)
j |j ∈ ∇(i)}

be an (Ei, E
′
i)-g.open cover of (Xi, τi). Namely, Xi =

⋃
{U

(i)
j |j ∈ ∇(i)}. We put Vj(i) :=

U
(i)
j ∪ (

⋃
{Xk|k ∈ Ω, k 6= i}), where j ∈ ∇(i), and V ′

(i) := {Vj(i)|j ∈ ∇(i)}. Then, V ′

(i) is an

(E, E ′)-g.open cover of (X, τ). It follows from (1) that there exists a finite subset ∇
(i)
0 of ∇(i)
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such that X =
⋃
{Vj(i)|j ∈ ∇

(i)
0 }. Namely, V ′

(i) has a finite subcover, say {Vj(i)|j ∈ ∇
(i)
0 }.

Then, X =
⋃
{Vj(i)|j ∈ ∇

(i)
0 } = (

⋃
{U

(i)
j |j ∈ ∇

(i)
0 }) ∪ (

⋃
{Xk|k ∈ Ω, k 6= i}) and so

Xi = X ∩ Xi= ((
⋃
{U

(i)
j |j ∈ ∇

(i)
0 }) ∪ (

⋃
{Xk|k ∈ Ω, k 6= i})) ∩ Xi=

⋃
{U

(i)
j |j ∈ ∇

(i)
0 }.

Therefore, (Xi, τi) is (Ei, E ′
i)-g-compact for every i ∈ Ω. (2)⇒(1) Let U := {Uj|j ∈ ∇}

be an (E, E ′)-g.open cover of (X, τ). Then, by Theorem 3.3 (iii), for each i ∈ Ω,U (i) :=

{Uj ∩ Xi|j ∈ ∇} is an (Ei, E ′
i)-g.open cover of (Xi, τi). There exists a finite subset ∇

(i)
0 of

∇ such that Xi =
⋃
{Uj ∩ Xi|j ∈ ∇

(i)
0 }. Thus we have X = ∪i∈Ω(

⋃
{Uj ∩ Xi|j ∈ ∇

(i)
0 }) ⊂

⋃
i∈Ω(

⋃
{Uj|j ∈ ∇

(i)
0 }) =

⋃
{Uj|j ∈

⋃
i∈Ω ∇

(i)
0 }. The set

⋃
i∈Ω ∇

(i)
0 is a finite subset of ∇,

because Ω is finite. Therefore, (X, τ) is (E, E ′)-g-compact. 2

Using Theorem 3.5, we have the proof of Theorem 1.7.
Proof of Theorem 1.7. In general, for an ordered pair of two families (EY , E ′

Y ) =
(τ, SO(Y, σ)) (resp. (σ,PO(Y, σ)), (σ, σ), (SO(Y, σ), SO(Y, σ))), an (EY , E ′

Y )-g.compact topo-
logical space (Y, σ) is called a gs-compact (resp. gp-compact, go-compact, sg-compact)
space. Then, by Theorem 3.5, Theorem 1.7 is obtained. 2
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