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Abstract. For Gauss-Markov processes the asymptotic behaviors of the first pas-
sage time probability density functions through certain time-varying boundaries are
determined. Computational results for Wiener, Ornstein-Uhlenbeck and Brownian
bridge processes show that for certain large boundaries and for large times excellent
asymptotic approximations hold for such densities.

1 Introduction and mathematical background First-passage time (FPT) probabil-
ity density functions (pdf’s) through generally time-dependent boundaries play a relevant
role in a variety of problems in biology, physics and engineering (see, for instance, [16] and
related references). Since closed form results for diffusion and Gauss-Markov processes are
scarce, efforts have been made to devise numerical algorithms and simulation techniques
for their evaluation (cf. [1]–[4],[8], [9], [11], [15], [17], [19]) and for the analysis of their
asymptotic behaviors as boundaries or time grow large (cf. [5], [6], [7], [12]–[14], [18]).

The present contribution, focusing on Gauss-Markov processes, is the natural extension
of previous investigations on the asymptotic behavior of FPT pdf’s in the presence of
single asymptotically constant boundaries or of single asymptotically periodic boundaries
carried out for one-dimensional diffusion processes admitting steady state densities ([7],
[13], [14], [18]) and for a class of stationary Gaussian processes ([5], [6]). Some preliminary
investigations for Gauss-Markov processes [12] have shown that for the estimated FPT
pdf’s through certain large boundaries for large times excellent asymptotic approximations
hold. The validity of such unexpected computational results is confirmed in this paper by
theoretical considerations.

We shall briefly recall some basic notation of Gauss-Markov processes that will be used
throughout this paper.

Let {Z(t), t ∈ T }, where T is a continuous parameter set, be a real continuous Gauss-
Markov process. It can be represented as:

Z(t) = m(t) + h2(t) W
[
r(t)

]
,(1.1)

where

(i) {W (t), t ≥ 0} denotes the standard Wiener process such that P{W (0) = 0} = 1,
E[W (t)] = 0 and E[W (s)W (t)] = min(s, t);

(ii) m(t) := E[Z(t)] is continuous in T ;

(iii) the covariance c(s, t) := E{[Z(s) − m(s)] [Z(t) − m(t)]} is continuous in T × T , with
c(s, t) = h1(s)h2(t) (s < t);
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(iv) {Z(t)} is nonsingular except possibly at the end points of T , i.e. if T = [a, b], {Z(t)}
has a nonsingular normal distribution except possibly at t = a or t = b, where Z(t)
could be equal to m(t) with probability one.

(v) r(t) = h1(t)/h2(t) is a monotonically increasing function and h1(t)h2(t) > 0 because of
the assumed nonsingularity of the process on the interior of T .

The transition pdf fZ(x, t|y, τ) of a Gauss-Markov process is a normal density characterized
by mean and variance:

E[Z(t) | Z(τ) = y] = m(t) +
h2(t)

h2(τ)

[
y − m(τ)

]
,

(1.2)

V ar[Z(t) | Z(τ) = y] = h2(t)
[
h1(t) −

h2(t)

h2(τ)
h1(τ)

]
,

where t, τ ∈ T, τ < t. It satisfies the Fokker-Planck equation and the associated initial
condition

∂f(x, t|y, τ)

∂t
= − ∂

∂x
[A1(x, t) f(x, t|y, τ)] +

1

2

∂2

∂x2
[A2(t) f(x, t|y, τ)],

(1.3)

lim
τ↑t

f(x, t|y, τ) = δ(x − y),

with A1(x, t) and A2(t) given by

A1(x, t) = m′(t) + [x − m(t)]
h′

2(t)

h2(t)
, A2(t) = h2

2(t) r′(t),(1.4)

the prime denoting derivative with respect to the argument.
Let {X(t), t ≥ 0} be the non-stationary Ornstein-Uhlenbeck (OU) process with zero

mean and covariance function E[X(s)X(t)] = σ2
(
eβ s − e−β s

)
e−β t/(2 β) with s < t and

β > 0. Then (cf., for instance, [10]),

X(t) = e−β t W
[ σ2

2 β

(
e2 β t − 1

)]
(t ≥ 0).(1.5)

The infinitesimal moments (1.4) of the non-stationary OU process X(t) are given by

A1(x) = −β x, A2 = σ2 (x ∈ R, β > 0, σ > 0).

Due to (1.1) and (1.5), any Gauss-Markov process can be represented in terms of a non-
stationary OU process as follows:

Z(t) = m(t) + k(t) X
[
ϕ(t)

]
(t ∈ T ),(1.6)

where we have set:

k(t) = h2(t)

√
1 +

2 β

σ2
r(t), ϕ(t) =

1

2 β
ln

(
1 +

2 β

σ2
r(t)

)
.(1.7)

Note that, by virtue of (v), from (1.7) ϕ(t) : T → [0, +∞) is a continuous and monotonically
increasing function and k(t) is a continuous non-vanishing function in the interior of T .
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We shall now focus our attention on the random variable

Tz = inf
t≥τ

{
t : Z(t) > S(t)

}
, Z(τ) = z < S(τ), τ, t ∈ T,(1.8)

that represents the FPT of Z(t) from Z(τ) = z to the supposed continuous boundary S(t).
Making use of (1.1), the FPT pdf g

Z
of Z(t) can be obtained from the FPT pdf g

W
of the

Wiener process W (t) as:

g
Z

[S(t), t | z, τ ] :=
∂

∂t
P

(
Tz < t

)
=

dr(t)

dt
g

W

{
S(t) − m(t)

h2(t)
, r(t)

∣∣∣
z − m(τ)

h2(τ)
, r(τ)

}
(1.9)

for z < S(τ). By virtue of (1.6), gZ can be also expressed in terms of the FPT pdf g
X

of
the non-stationary OU process X(t) as follows:

g
Z

[S(t), t | z, τ ] =
dϕ(t)

dt
g

X

[S(t) − m(t)

k(t)
, ϕ(t)

∣∣∣
z − m(τ)

k(τ)
, ϕ(τ)

]
, z < S(τ).(1.10)

As proved in [4], if S(t),m(t), h1(t), h2(t) are C1(T ) functions, the FPT pdf of the
Gauss-Markov process Z(t) satisfies the following nonsingular second-kind Volterra integral
equation

g
Z

[S(t), t | z, τ ] = −2 ΨZ[S(t), t | z, τ ] + 2

∫ t

τ

g
Z

[S(ζ), ζ | z, τ ] ΨZ [S(t), t | S(ζ), ζ] dζ

[z < S(τ)],(1.11)

where

ΨZ [S(t), t | z, ϑ] =

{
S′(t) − m′(t)

2
− S(t) − m(t)

2

h′
1(t)h2(ϑ) − h′

2(t)h1(ϑ)

h1(t)h2(ϑ) − h2(t)h1(ϑ)

−z − m(ϑ)

2

h′
2(t)h1(t) − h2(t)h′

1(t)

h1(t)h2(ϑ) − h2(t)h1(ϑ)

}
f

Z
[S(t), t | z, ϑ].(1.12)

In Section 2 we shall focus on the asymptotics of the FPT pdf for the non-stationary
OU process X(ϑ) through a continuous and bounded boundary η(ϑ) that is asymptotically
constant or asymptotically periodic. In Section 3, making use of the transformation (1.6), we
shall show that the asymptotic results of the FPT pdf for the non-stationary OU process
through the boundary η(ϑ) can be used in order to obtain quantitative information on
the FPT pdf of a Gauss-Markov process Z(t) through the transformed boundary S(t) =
m(t) + k(t) η[ϕ(t)]. In Section 4, by making use of the non-singular integral equation
(1.11), a numerical algorithm with variable step-size will be proposed. Finally, extensive
computations will be performed for special Gauss-Markov processes with the aim to pinpoint
the goodness of the asymptotic behaviors of FPT densities.

2 Non-stationary OU process In this section we study the asymptotic behavior of the
FPT pdf g

X
[η(ϑ), ϑ | y, ϑ0] for the non-stationary OU process X(ϑ) through a continuous

and bounded boundary η(ϑ). From (1.11) and (1.12) it follows that g
X

is solution of the
Volterra integral equation

g
X

[η(ϑ), ϑ | y, ϑ0]=−2 ΨX[η(ϑ), ϑ | y, ϑ0]+2

∫ ϑ

ϑ0

g
X

[η(ζ), ζ | y, ϑ0] ΨX [η(ϑ), ϑ | η(ζ), ζ] dζ

[y < η(ϑ0)],(2.1)
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where

ΨX [η(ϑ), ϑ|y, ϑ0] =
1

2

{dη(ϑ)

dϑ
− β

η(ϑ) [1 + e−2 β (ϑ−ϑ0)] − 2 y e−β (ϑ−ϑ0)

1 − e−2 β (ϑ−ϑ0)

}
fX [η(ϑ), ϑ|y, ϑ0]

(ϑ > ϑ0 ≥ 0),(2.2)

the transition pdf of X(ϑ) being given by

fX(x, ϑ | y, ϑ0) =

√
β

π σ2
(
1 − e−2 β (ϑ−ϑ0)

) exp

{
−β

[
x − y e−β (ϑ−ϑ0)

]2

σ2
(
1 − e−2 β (ϑ−ϑ0)

)
}

(x, y ∈ R, ϑ > ϑ0 ≥ 0).(2.3)

Denote by

G
X

[η(ϑ), ϑ | y, ϑ0] :=

∫ ϑ

ϑ0

g
X

[η(u), u | y, ϑ0] du, y < η(ϑ0),(2.4)

the FPT distribution function of X(ϑ). Since the first passage through a constant boundary
for a non-stationary OU process is a sure event, it follows that also the first passage of X(ϑ)
through a continuous and bounded boundary η(ϑ) is a sure event, i.e.

∫ +∞

ϑ0

g
X

[η(u), u | y, ϑ0] du = 1, y < η(ϑ0).(2.5)

Resorting to the results obtained in [7] for a class of one-dimensional diffusion processes,
we now focus our analysis on the non-stationary OU process by considering separately two
cases: (i) η(ϑ) is an asymptotically constant boundary and (ii) η(ϑ) is an asymptotically
periodic boundary.

2.1 Asymptotically constant boundary We consider the FPT problem for the non-
stationary OU process through the asymptotically constant boundary

η(ϑ) = S + ̺(ϑ), [S ∈ R, ϑ ≥ 0],(2.6)

where ̺(ϑ) ∈ C1[0, +∞) is a bounded function independent of S and such that

lim
ϑ→+∞

̺(ϑ) = 0 and lim
ϑ→+∞

˙̺(ϑ) = 0.(2.7)

The function ΨX [η(ϑ), ϑ | y, ϑ0], given in (2.2), approaches a constant value as ϑ increases.
Indeed, taking the limit ϑ → +∞ in (2.2) and making use of (2.6) and (2.7), for all ϑ0, ϑ
(ϑ > ϑ0 ≥ 0) there holds:

R(S) := −2 lim
ϑ→+∞

ΨX [η(ϑ), ϑ | y, ϑ0] = β S

√
β

π σ2
exp

{
−β S2

σ2

}
, y < η(ϑ0).(2.8)

We note that R(S) > 0 for all S > 0 and

lim
S→+∞

R(S) = 0.(2.9)

Proposition 2.1 For the non-stationary OU process X(ϑ), let η(ϑ) = S + ̺(ϑ) be an
asymptotically constant boundary, with S ∈ R and with ̺(ϑ) ∈ C1[0, +∞) a bounded func-
tion independent of S such that (2.7) hold. Then,

lim
S→+∞

1

R(S)
g

X

[
η
( ϑ

R(S)
+ ϑ0

)
,

ϑ

R(S)
+ ϑ0

∣∣∣ y, ϑ0

]
= e−ϑ, y < η(ϑ0),(2.10)

for ϑ > 0 and ϑ0 ≥ 0, with R(S) defined in (2.8).
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Proof. Changing ϑ in ϑ + ϑ0 in (2.1), for the non-stationary OU process X(t) one has

g
X

[η(ϑ + ϑ0), ϑ + ϑ0 | y, ϑ0] = −2 ΨX [η(ϑ + ϑ0), ϑ + ϑ0 | y, ϑ0]

+2

∫ ϑ+ϑ0

ϑ0

g
X

[η(ζ), ζ | y, ϑ0] ΨX [η(ϑ + ϑ0), ϑ + ϑ0 | η(ζ), ζ] dζ, y < η(ϑ0).(2.11)

If R(S) > 0, changing ϑ in ϑ/R(S) and making use of the change of variable ζ = u/R(S)+ϑ0

in (2.11), for ϑ0 ≥ 0 and ϑ > 0 we obtain:

1

R(S)
g

X

[
η
( ϑ

R(S)
+ϑ0

)
,

ϑ

R(S)
+ϑ0

∣∣∣y, ϑ0

]
=− 2

R(S)
ΨX

[
η
( ϑ

R(S)
+ϑ0

)
,

ϑ

R(S)
+ϑ0

∣∣∣y, ϑ0

]

+

∫ ϑ

0

{
1

R(S)
g

X

[
η
( u

R(S)
+ ϑ0

)
,

u

R(S)
+ ϑ0

∣∣∣y, ϑ0

]}

×
{

2

R(S)
ΨX

[
η
( ϑ

R(S)
+ ϑ0

)
,

ϑ

R(S)
+ ϑ0

∣∣∣η
( u

R(S)
+ ϑ0

)
,

u

R(S)
+ ϑ0

]}
du,(2.12)

with y < η(ϑ0). By virtue of (2.2), making use of (2.8) and (2.9), one has

lim
S→+∞

2

R(S)
ΨX

[
η
( ϑ

R(S)
+ϑ0

)
,

ϑ

R(S)
+ϑ0

∣∣∣y, ϑ0

]
= −1,

for ϑ0 ≥ 0, ϑ > 0, and

lim
S→+∞

2

R(S)
ΨX

[
η
( ϑ

R(S)
+ ϑ0

)
,

ϑ

R(S)
+ ϑ0

∣∣∣η
( u

R(S)
+ ϑ0

)
,

u

R(S)
+ ϑ0

]
= −1

for ϑ0 ≥ 0, 0 < u < ϑ. Hence, taking the limit as S → +∞ in (2.12), one finally obtains
(2.10).

Corollary 2.1 Under the assumptions of Proposition 2.1, for S → +∞ and for large times
one has:

g
X

[
η(ϑ), ϑ | y, ϑ0

]
≃ R(S) e−R(S) (ϑ−ϑ0), y < η(ϑ0),(2.13)

with 0 ≤ ϑ0 < ϑ < +∞, where R(S) is given in (2.8).

Proof. By virtue of (2.10), for S → +∞ one obtains:

g
X

[
η
( ϑ

R(S)
+ ϑ0

)
,

ϑ

R(S)
+ ϑ0

∣∣∣ y, ϑ0

]
≃ R(S) e−ϑ,

so that by changing ϑ/R(S) + ϑ0 in ϑ one is immediately led to (2.13).

Corollary 2.1 expresses the asymptotic exponential trend of the FPT density of the
non-stationary OU process as the asymptotically constant boundary moves away from the
starting point.

The right-hand side of (2.13) has the following functional form:

γ
X

(ϑ | ϑ0) = λ e−λ (ϑ−ϑ0) (0 ≤ ϑ0 < ϑ < +∞),(2.14)
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with λ > 0. We now denote by g̃
X

[
η(ϑk), ϑk | y, ϑ0

]
the estimated FPT pdf and by

G̃
X

[η(ϑk), ϑk | y, ϑ0] the estimated FPT distribution function at times ϑk = ϑ0 + k p
(k = 1, 2, . . . , N), where p > 0 is the time discretization step. We then use the method of
least squares to fit the computed FPT distribution function G̃

X
[η(ϑk), ϑk | y, ϑ0] with the

exponential distribution function:

Γ
X

(ϑ | ϑ0) :=

∫ ϑ

ϑ0

γ
X

(u | ϑ0) du = 1 − e−λ (ϑ−ϑ0) (0 ≤ ϑ0 < ϑ < +∞).(2.15)

To this aim, we evaluate the minimum with respect to λ of the function:

N∑

k=1

{
ln

[
1 − Γ

X
(ϑk | ϑ0)

]
− ln

[
1 − G̃

X

(
η(ϑk), ϑk | y, ϑ0

)]}2

=

N∑

k=1

{
λ (ϑk − ϑ0) + ln

[
1 − G̃

X

(
η(ϑk), ϑk | y, ϑ0

)]}2

,

which is equivalent to solving the equation

N∑

k=1

(ϑk − ϑ0) ln
{
1 − G̃

X

[
η(ϑk), ϑk | y, ϑ0

]}
+ λ

N∑

k=1

(ϑk − ϑ0)
2 = 0,

with respect to λ. Hence, the least squares estimate of λ can be determined as (cf., for
instance, [5]):

λ̂ = −
∑N

k=1

(
ϑk − ϑ0

)
ln

{
1 − G̃X [η(ϑk), ϑk | y, ϑ0]

}

∑N
k=1

(
ϑk − ϑ0

)2

= −
6

∑N
k=1 k ln

{
1 − G̃X [η(ϑ0 + k p), ϑ0 + k p | y, ϑ0]

}

N (N + 1) (2 N + 1) p
,(2.16)

with ϑk = ϑ0 + k p (k = 1, 2, . . . , N), where p > 0 is the time discretization step.

Table 1 shows, for some choices of the constant boundary η(ϑ) = S, the values of λ̂,
obtained by means of (2.16) with integration step 10−2, the values of R(S), obtained via

(2.8), and the relative error er(S) = {R(S) − λ̂}/R(S) for the non-stationary OU process
with β = 1 and σ2 = 2 originating in y = 0 at time ϑ0 = 0. We note that for S ≥ 2.7 the
relative error er(S) decreases as the boundary increases.

Figure 1 shows the evaluated FPT density g̃
X

(ϑ) = g̃ X (S, ϑ|0, 0) with S = 2.5 and the
exponential density γX(ϑ | 0) = λ exp(−λ ϑ), with λ estimated by means of (2.16), for the
non-stationary OU process with β = 1 and σ2 = 2. Use has been made of the numerical
algorithm proposed in [4] with integration step 10−2. The goodness of the exponential
approximation increases as the boundary is progressively moved away from the starting
point of the process.

2.2 Asymptotically periodic boundary We shall now focus on the FPT problem of
non-stationary OU process for an asymptotically periodic boundary (2.6), with S ∈ R and
where ̺(ϑ) ∈ C1[0, +∞) is a bounded function independent of S such that

lim
k→+∞

̺(ϑ + k Q) = V (ϑ) and lim
k→+∞

˙̺(ϑ + k Q) = V̇ (ϑ),(2.17)
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S bλ R(S) er(S) S bλ R(S) er(S)

2.1 0.081498 0.092366 0.11766 3.1 0.0088390 0.010127 0.12718
2.2 0.067961 0.078044 0.12920 3.2 0.0066986 0.0076291 0.12197
2.3 0.056229 0.065152 0.13696 3.3 0.0050220 0.0056845 0.11654
2.4 0.046139 0.053747 0.14155 3.4 0.0037241 0.0041895 0.11109
2.5 0.037532 0.043821 0.14352 3.5 0.0027314 0.0030544 0.10575
2.6 0.030239 0.035316 0.14376 3.6 0.0019814 0.0022028 0.10051
2.7 0.024125 0.028137 0.14259 3.7 0.0014215 0.0015717 0.09557
2.8 0.019060 0.022163 0.14001 3.8 0.0010086 0.0011094 0.09086
2.9 0.014907 0.017262 0.13643 3.9 0.00070783 0.00077476 0.08639
3.0 0.011539 0.013296 0.13215 4.0 0.00049129 0.00053532 0.08225

Table 1: For the non-stationary OU process X(ϑ) with β = 1 and σ2 = 2 originating in y = 0

at time ϑ0 = 0, the values of bλ and R(S) are shown for various choices of the constant boundary

η(ϑ) = S.
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Figure 1: For the non-stationary OU process with β = 1 and σ2 = 2, g̃
X

(ϑ) = g̃
X

[η(ϑ), ϑ|0, 0]
(solid line) is compared with the exponential density γX(ϑ | 0) = λ exp(−λ ϑ) (dotted line), with

λ estimated as bλ = 0.037532 for η(ϑ) = 2.5 and as bλ = 0.011539 for η(ϑ) = 3.

where V (ϑ) is a periodic function of period Q > 0 satisfying

∫ Q

0

V (u) du = 0.(2.18)

Changing ϑ in ϑ + k Q in (2.2) and taking the limit as k → +∞, by virtue of (2.6), (2.17)
and (2.18), one obtains

R[V (ϑ)] := −2 lim
k→+∞

ΨX [η(ϑ + k Q), ϑ + k Q | y, ϑ0]

=

√
β

π σ2

{
β [S + V (ϑ)] − V̇ (ϑ)

}
exp

{
−β

[
S + V (ϑ)

]2

σ2

}
(2.19)

for all y ∈ R and for all ϑ0, ϑ (ϑ > ϑ0 ≥ 0). For all ϑ > 0 the function R[V (ϑ)] defined in
(2.19) is periodic with period Q. Furthermore, there exists an S∗ ∈ R such that R[V (ϑ)] > 0
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for all S > S∗ and

lim
S→+∞

R[V (ϑ)] = 0.(2.20)

Lemma 2.1 For all S > S∗ let

α = α(S) :=
1

Q

∫ Q

0

R[V (ϑ)] dϑ,(2.21)

with R[V (ϑ)] defined in (2.19). Then, there exists a non-negative monotonically increasing
function χ(ϑ) which is a solution of

∫ χ(ϑ)

0

R[V (u)] du = α ϑ, ∀ϑ ≥ 0(2.22)

such that

χ(0) = 0, lim
ϑ→+∞

χ(ϑ) = +∞, χ(ϑ + k Q) = χ(ϑ) + k Q (k = 0, 1, . . . ).(2.23)

Proof. Since R[V (ϑ)] > 0 for all S > S∗, from (2.21) it follows α > 0, and from (2.22)
one has χ(0) = 0 and χ(ϑ) > 0 for all ϑ > 0. Let h(ϑ) be any primitive function of R[V (ϑ)].
From (2.22) we have h[χ(ϑ)] = h(0) + α ϑ. Since R[V (ϑ)] > 0, ∀ϑ > 0, χ(ϑ) possesses an
inverse, and hence χ(ϑ) = h−1[h(0) + α ϑ]. Furthermore, since α > 0, from (2.22) one has:

dχ(ϑ)

dϑ
=

α

R
{
V [χ(ϑ)]

} > 0,(2.24)

for all S > S∗. Therefore, χ(ϑ) is a monotonically increasing function for all ϑ > 0.
Furthermore, since R[V (ϑ)] is a positive function for S > S∗, the second of (2.23) holds.
We now remark that from (2.21) and (2.22) one has:

∫ χ(ϑ+k Q)

χ(ϑ)

R[V (u)] du =

∫ χ(ϑ+k Q)

0

R[V (u)] du −
∫ χ(ϑ)

0

R[V (u)] du = α k Q

= k

∫ Q

0

R[V (u)] du =

∫ k Q

0

R[V (u)] du,(2.25)

where the last equality follows since R[V (ϑ)] is a periodic function with period Q. Relation
(2.25) finally implies the last of (2.23).

Lemma 2.2 For all S > S∗ and for all ϑ > 0 one has:

(i) χ
(ϑ

α

)
> 0,

(ii)
d

dϑ
χ
(ϑ

α

)
=

1

R
{
V

[
χ
(ϑ

α

)]} ,

(iii) lim
S→+∞

χ
(ϑ

α

)
= +∞,

(iv) lim
S→+∞

[
χ
(ϑ

α

)
− χ

(ϑ0

α

)]
= +∞ (0 < ϑ0 < ϑ).
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Proof. Since χ(ϑ) is a non-negative function for all S > S∗ and α > 0, condition (i)
follows from Lemma 2.1, whereas from (2.24) one immediately obtains (ii). Making use of
(2.20), from (2.21) we have:

lim
S→+∞

α =
1

Q
lim

S→+∞

∫ Q

0

R[V (ϑ)] dϑ = 0,(2.26)

that, due to the second of (2.23), implies (iii). Finally, making use of the Lagrange mean-
value theorem one has:

χ
(ϑ

α

)
− χ

(ϑ0

α

)
=

ϑ − ϑ0

α
χ̇
( ζ

α

)
=

ϑ − ϑ0

R
{
V

[
χ
( ζ

α

)]} (0 < ϑ0 ≤ ζ ≤ ϑ),(2.27)

where the last identity follows from (ii). We note that, due to (2.20), there holds:

lim
S→+∞

R
{
V

[
χ
(ϑ

α

)]}
= lim

ϑ→+∞
R[V (ϑ)] = 0,

so that (iv) follows after taking the limit as S → +∞ in (2.27).

Proposition 2.2 For the non-stationary OU process X(ϑ), let η(ϑ) = S + ̺(ϑ) be an
asymptotically periodic boundary, with S ∈ R and with ̺(ϑ) ∈ C1[0, +∞) a bounded function
independent of S such that (2.17) and (2.18) hold. Then, for ϑ > 0 and ϑ0 ≥ 0 one has

lim
S→+∞

[ d

dϑ
χ
(ϑ

α

)]
g

X

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ y, ϑ0

]
= e−ϑ, y < η(ϑ0),(2.28)

with α defined in (2.21) and χ(ϑ) in (2.22).

Proof. If S > S∗, changing ϑ in χ(ϑ/α) and ζ = χ(u/α) + ϑ0 in (2.11) for ϑ0 ≥ 0 and
ϑ > 0 we obtain:

[ d

dϑ
χ
(ϑ

α

)]
g

X

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ y, ϑ0

]

= −2
[ d

dϑ
χ
(ϑ

α

)]
Ψ

X

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ y, ϑ0

]

+2
[ d

dϑ
χ
(ϑ

α

)] ∫ ϑ

0

{[ d

dϑ
χ
(ϑ

α

)]
g

X

[
η
(
χ
(u

α

)
+ ϑ0

)
, χ

(u

α

)
+ ϑ0

∣∣∣ y, ϑ0

]}

×ΨX

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ η
(
χ
(u

α

)
+ ϑ0

)
, χ

(u

α

)
+ ϑ0

]
du,(2.29)

with y < η(ϑ0). By virtue of (2.2), making use of (2.19), (2.20), Lemma 2.1 and Lemma 2.2,
one has

lim
S→+∞

2
[ d

dϑ
χ
(ϑ

α

)]
Ψ

X

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ y, ϑ0

]
= −1,

for ϑ0 ≥ 0, ϑ > 0, and

lim
S→+∞

2
[ d

dϑ
χ
(ϑ

α

)]
ΨX

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ η
(
χ
(u

α

)
+ ϑ0

)
, χ

(u

α

)
+ ϑ0

]
= −1

for ϑ0 ≥ 0, 0 < u < ϑ, so that taking the limit as S → +∞ in (2.29), one finally obtains
(2.28).
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Corollary 2.2 Under the assumptions of Proposition 2.2, for large times as S → +∞ one
has:

g
X

[
η(ϑ), ϑ | y, ϑ0

]
≃ R[V (ϑ − ϑ0)] exp

{
−

∫ ϑ

ϑ0

R[V (u − ϑ0)] du
}
, y < η(ϑ0),(2.30)

with 0 ≤ ϑ0 < ϑ < +∞ and R[V (ϑ)] given in (2.19). Furthermore, (2.30) can be also
written as:

g
X

[
η(ϑ), ϑ | y, ϑ0

]
≃ ξ

X
(ϑ − ϑ0) e−α (ϑ−ϑ0), y < η(ϑ0),(2.31)

where ξ
X

(ϑ) is a periodic function of period Q given by

ξ
X

(ϑ) = R[V (ϑ)] exp
{

α ϑ −
∫ ϑ

0

R[V (u)] du
}
,(2.32)

with α defined in (2.21).

Proof. By virtue of (2.28), recalling (2.22) and(ii) of Lemma 2.2, as S → +∞ one obtains:

g
X

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ y, ϑ0

]
≃

[ d

dϑ
χ
(ϑ

α

)]−1

e−ϑ

= R
{
V

[
χ
(ϑ

α

)]}
exp

{
−

∫ χ(ϑ/α)

0

R[V (u)] du

}
, y < η(ϑ0),(2.33)

with 0 ≤ ϑ0 < ϑ < +∞. Hence, changing χ(ϑ/α) + ϑ0 into ϑ in (2.33), one is led to (2.30).
Furthermore, since R[V (ϑ)] is a periodic function of period Q, due to (2.21) and (2.22), one
has:

ξ
X

(ϑ + k Q) = R[V (ϑ + k Q)] exp
{

α (ϑ + k Q) −
∫ ϑ+k Q

0

R[V (u)] du
}

= R[V (ϑ)] exp
{
α ϑ + k

∫ Q

0

R[V (u)] du −
∫ ϑ+k Q

0

R[V (u)] du
}

= R[V (ϑ)] exp
{
α ϑ + k

∫ ϑ+k Q

k Q

R[V (u)] du
}

= ξ
X

(ϑ).

so that ξ
X

(ϑ) is a periodic function of period Q. Hence, (2.31) and (2.32) immediately
follow from (2.30).

Corollary 2.2 shows that FPT pdf exhibits a non-homogeneous exponential behavior
when the asymptotically periodic boundary moves away from the starting point of the
non-stationary OU process.

The right-hand side of (2.31) has the following functional form:

γ
X

(ϑ | ϑ0) = R∗(ϑ − ϑ0) exp

{
−

∫ ϑ

ϑ0

R∗(u − ϑ0) du

}
, (0 ≤ ϑ0 < ϑ < +∞),(2.34)

where R∗(ϑ) is a periodic function of period Q. Note that (2.34) can also be re-written as

γ
X

(ϑ | ϑ0) = ξ∗
X

(ϑ − ϑ0) e−α∗(ϑ−ϑ0) (0 ≤ ϑ0 < ϑ < +∞),(2.35)
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where

α∗ =
1

Q

∫ Q

0

R∗(u) du(2.36)

and

ξ∗
X

(ϑ) = R∗(ϑ) exp

{
α∗ ϑ −

∫ ϑ

ϑ0

R∗(u − ϑ0) du

}
.(2.37)

By virtue of (2.34), it follows that the non-homogeneous exponential distribution is

Γ
X

(ϑ | ϑ0) :=

∫ ϑ

ϑ0

γ
X

(u | ϑ0) du = 1 − exp

{
−

∫ ϑ

ϑ0

R∗(u − ϑ0) du

}
,(2.38)

with 0 ≤ ϑ0 < ϑ < +∞. Note that for ϑ = ϑ0 + k Q (k = 1, 2, . . . ) one has:

ΓX(ϑ0 + k Q | ϑ0) = 1 − exp

{
−

∫ ϑ0+k Q

ϑ0

R∗(u − ϑ0) du

}
= 1 − exp

{
−

∫ k Q

0

R∗(u) du

}

= 1 − exp

{
−k

∫ Q

0

R∗(u) du

}
= 1 − e−α∗k Q

with α∗ defined in (2.36). Hence, recalling (2.16), the least squares estimate of α∗ is:

α̂ = −
6

∑M
k=1 k ln

{
1 − G̃X [η(ϑ0 + k Q), ϑ0 + k Q | y, ϑ0]

}

M (M + 1) (2 M + 1) Q
,(2.39)

where the period Q > 0 is the time discretization step and where G̃X is the computed
FPT distribution function. With such a value of α̂, the function ξ

X
(ϑ − ϑ0) can be finally

evaluated via (2.31) as:

ξ̃
X

(ϑ − ϑ0) = ebα (ϑ−ϑ0) g̃
X

[
η(ϑ), ϑ | y, ϑ0

]
,(2.40)

where g̃
X

is the computed FPT pdf. Massive computations have shown that the func-
tion (2.40) exhibits a periodic behavior having the same period Q of V (ϑ). Hence, the
computed FPT pdf g̃

X
is susceptible of a non-homogeneous exponential approximation for

asymptotically periodic boundaries, as far as these are not too close to the initial position of
the non-stationary OU process. This is clearly indicated in Figure 2 in which the function
g̃

X
(ϑ) = g̃ X [η(ϑ), ϑ|0, 0] is plotted for a non-stationary OU process with β = 1, σ2 = 2

and periodic boundary η(ϑ) = 3 + 0.2 sin(2π ϑ/5). We have used the numerical algorithm
proposed in [4] with the integration step taken as 10−2. The FPT pdf g̃

X
(ϑ) exhibits

damped oscillations having the same period Q = 5 as the boundary. The function ξ̃
X

(ϑ) is
finally obtained via (2.40), with the value α̂ = 0.01229 estimated via (2.39). This function
is actually periodic to a very high degree of accuracy.

In Figure 3 is instead considered the boundary η(ϑ) = 3 + 0.1 sin(2π ϑ/0.2). On the
left the FPT pdf g̃

X
(ϑ) = g̃ X [η(ϑ), ϑ|0, 0] (solid line) is compared with the exponential

density α exp(−α ϑ) (dotted line) with α estimated as α̂ = 0.011950, whereas on the right
the function ξ̃

X
(ϑ) is plotted.
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Figure 2: Non-stationary OU process with β = 1 and σ2 = 2 and boundary η(ϑ) = 3 +
0.2 sin(2π ϑ/5). On the left the FPT pdf g̃

X
(ϑ) = g̃

X
[η(ϑ), ϑ|0, 0] (solid line) is compared with

the exponential density α exp(−α ϑ) (dotted line), with α estimated as bα = 0.012337. On the right
the function ξ̃

X
(ϑ) computed via (2.40) is plotted.

3 Asymptotic behavior of Gauss-Markov processes In this section we prove that
our results on the asymptotic behavior of the FPT pdf for the non-stationary OU process
X(ϑ) through a continuous bounded boundary η(ϑ), asymptotically constant or asymptot-
ically periodic, can be used in order to obtain quantitative information on the FPT pdf of
a Gauss-Markov process Z(t) through the transformed boundary

S(t) = m(t) + k(t) η
[
ϕ(t)

]
(t ∈ T ),(3.1)

with k(t) and ϕ(t) defined in (1.7). By virtue of (3.1), from (1.10) one obtains:

g
Z

[S(t), t | z, τ ] =
dϕ(t)

dt
g

X

{
η
[
ϕ(t)

]
, ϕ(t)

∣∣∣
z − m(τ)

k(τ)
, ϕ(τ)

}
, z < S(τ)(3.2)

for τ < t, τ, t ∈ T . Denoting by G
Z

[
S(t), t | z, τ

]
the FPT distribution function of the

Gauss-Markov process Z(t), from (3.1) and (3.2) one has

G
Z

[
S(t), t | z, τ

]
:=

∫ t

τ

g
Z

[
S(u), u | z, τ

]
du

=

∫ t

τ

dϕ(ζ)

dζ
g

X

{
η
[
ϕ(ζ)

]
, ϕ(ζ)

∣∣∣
z − m(τ)

k(τ)
, ϕ(τ)

}
dζ

=

∫ ϕ(t)

ϕ(τ)

g
X

{
η(u), u

∣∣∣
z − m(τ)

k(τ)
, ϕ(τ)

}
du = G

X

{
η
[
ϕ(t)

]
, ϕ(t)

∣∣∣
z − m(τ)

k(τ)
, ϕ(τ)

}
,(3.3)

where G
X

[
η(ϑ), ϑ | y, ϑ0

]
, defined in (2.4), is the FPT distribution function of the non-

stationary OU process X(ϑ). If η(ϑ) (ϑ ≥ 0) is a continuous and bounded boundary for
X(ϑ) and if ϕ(t) : T → [0, +∞) is such that

lim
t→sup T

ϕ(t) = +∞,(3.4)
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Figure 3: Same as in Figure 2 with η(ϑ) = 3 + 0.1 sin(2π ϑ/0.2) and bα = 0.011950. Integration
step is 5 · 10−3.

by virtue of (2.5) one has:

∫ sup T

τ

g
Z

[S(t), t | z, τ ] dt =

∫ +∞

ϕ(τ)

g
X

{
η(u), u

∣∣∣
z − m(τ)

k(τ)
, ϕ(τ)

}
du = 1,(3.5)

so that the first passage of the Gauss-Markov process Z(t) through the boundary (3.1) is a
sure event.

Theorem 3.1 Let η(ϑ) = S + ̺(ϑ) be an asymptotically constant boundary, with S ∈ R

and ̺(ϑ) ∈ C1[0, +∞) a bounded function independent of S such that (2.7) hold, and let
Z(t) be a Gauss-Markov process, with m(t), h1(t), h2(t) ∈ C1(T ) independent of S. Denote
by S(t) = m(t)+k(t) η

[
ϕ(t)

]
(t ∈ T, S ∈ R) a boundary, with k(t) and ϕ(t) defined in (1.7).

Then, under the assumption (3.4), for ϑ0 ≥ 0 and ϑ > 0 one has:

lim
S→+∞

d

dϑ
ϕ−1

( ϑ

R(S)
+ ϑ0

)
g

Z

{
S

[
ϕ−1

( ϑ

R(S)
+ ϑ0

)]
, ϕ−1

( ϑ

R(S)
+ ϑ0

)∣∣∣z, ϕ−1(ϑ0)

}

= e−ϑ, z < S
[
ϕ−1(ϑ0)

]
.(3.6)

Proof. Setting ϕ(t) = ϑ/R(S)+ϑ0 and ϕ(τ) = ϑ0 in (3.2), for ϑ0 ≥ 0 and ϑ > 0 one has:

[ d

dϑ
ϕ−1

( ϑ

R(S)
+ ϑ0

)]
g

Z

{
S

[
ϕ−1

( ϑ

R(S)
+ ϑ0

)]
, ϕ−1

( ϑ

R(S)
+ ϑ0

)∣∣∣z, ϕ−1(ϑ0)

}

=
1

R(S)
g

X

[
η
( ϑ

R(S)
+ ϑ0

)
,

ϑ

R(S)
+ ϑ0

∣∣∣ y, ϑ0

]
, y < η(ϑ0),(3.7)

where we have set:

y =
z − m

[
ϕ−1(ϑ0)

]

k
[
ϕ−1(ϑ0)

] ·(3.8)

Taking the limit as S → +∞ in (3.7) and making use of (2.10), Eq. (3.6) immediately
follows.
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Corollary 3.1 Under the assumption of Theorem 3.1, for S → +∞ there holds:

g
Z

[
S(t), t | z, τ

]
≃ R(S)

dϕ(t)

dt
e−R(S) [ϕ(t)−ϕ(τ )], z < S(τ),(3.9)

with τ < t, τ, t ∈ T and R(S) given in (2.8).

Proof. By virtue of (3.6), for S → +∞ one obtains:

g
Z

{
S

[
ϕ−1

( ϑ

R(S)
+ ϑ0

)]
, ϕ−1

( ϑ

R(S)
+ ϑ0

)∣∣∣z, ϕ−1(ϑ0)

}
≃

[ d

dϑ
ϕ−1

( ϑ

R(S)
+ ϑ0

)]−1

e−ϑ.

Hence, setting t = ϕ−1
[
ϑ/R(S) + ϑ0

]
and τ = ϕ−1(ϑ0), one is immediately led to (3.9).

Corollary 3.1 expresses the asymptotic trend of the FPT density of the Gauss-Markov
process Z(t) through the boundary S(t) = m(t) + k(t) η

[
ϕ(t)

]
, where η(ϑ) = S + ̺(ϑ) is an

asymptotically constant boundary for the non-stationary OU process X(ϑ).
The right-hand side of (3.9) has the following functional form:

γ
Z

(t | τ) = λ
dϕ(t)

dt
e−λ [ϕ(t)−ϕ(τ )] (τ, t ∈ T, τ < t).(3.10)

Recalling (2.16), the least squares estimate of λ can be obtained as:

λ̂ = −

∑N
k=1

(
ϑk − ϑ0

)
ln

{
1 − G̃X

[
η(ϑk), ϑk

∣∣∣
z−m

[
ϕ−1(ϑ0)

]

k
[
ϕ−1(ϑ0)

] , ϑ0

]}

∑N
k=1

(
ϑk − ϑ0

)2

= −
6

∑N
k=1 k ln

{
1 − G̃X

[
η(ϑ0 + k p), ϑ0 + k p

∣∣∣
z−m

[
ϕ−1(ϑ0)

]

k
[
ϕ−1(ϑ0)

] , ϑ0

]}

N (N + 1) (2 N + 1) p
.(3.11)

with ϑk = ϑ0 +k p (k = 1, 2, . . . , N), where p > 0 is the time discretization step, and where
G̃X is the computed FPT distribution function of the non-stationary OU process.

Theorem 3.2 Let η(ϑ) = S +̺(ϑ) be an asymptotically periodic boundary, with S ∈ R and
̺(ϑ) ∈ C1[0, +∞) a bounded function independent of S such that (2.17) and (2.18) hold,
and let Z(t) be a Gauss-Markov process, with m(t), h1(t), h2(t) ∈ C1(T ) independent of S.
Denote by S(t) = m(t) + k(t) η

[
ϕ(t)

]
(t ∈ T, S ∈ R) a boundary, with k(t) and ϕ(t) given

in (1.7). Then, under the assumption (3.4), for ϑ0 ≥ 0 and ϑ > 0 one has:

lim
S→+∞

{
d

dϑ
ϕ−1

[
χ
(ϑ

α

)
+ ϑ0

]}
g

Z

{
S

[
ϕ−1

(
χ
(ϑ

α

)
+ ϑ0

)]
, ϕ−1

(
χ
(ϑ

α

)
+ ϑ0

)∣∣∣z, ϕ−1(ϑ0)

}

= e−ϑ, z < S
[
ϕ−1(ϑ0)

]
.(3.12)

Proof. Setting ϕ(t) = χ(ϑ/α) + ϑ0 and ϕ(τ) = ϑ0 in (3.2), for ϑ0 ≥ 0 and ϑ > 0 one
obtains:

{
d

dϑ
ϕ−1

[
χ
(ϑ

α

)
+ ϑ0

]}
g

Z

{
S

[
ϕ−1

(
χ
(ϑ

α

)
+ ϑ0

)]
, ϕ−1

(
χ
(ϑ

α

)
+ ϑ0

)∣∣∣z, ϕ−1(ϑ0)

}

=

[
d

dϑ
χ
(ϑ

α

)]
g

X

[
η
(
χ
(ϑ

α

)
+ ϑ0

)
, χ

(ϑ

α

)
+ ϑ0

∣∣∣ y, ϑ0

]
, y < η(ϑ0)(3.13)

where y is given in (3.8). Taking the limit as S → +∞ in (3.13) and making use of (2.28),
Eq. (3.12) immediately follows.
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Corollary 3.2 Under the assumption of Theorem 3.2, for S → +∞ there holds:

g
Z

[
S(t), t | z, τ

]
≃ R

{
V [ϕ(t) − ϕ(τ)]

} dϕ(t)

dt
exp

{
−

∫ ϕ(t)

ϕ(τ)

R
{
V

[
u − ϕ(τ)

]}
du

}
,

z < S(τ),(3.14)

with τ < t, τ, t ∈ T and R[V (ϑ)] given in (2.19). Furthermore, (3.14) can be also written
as:

g
Z

[
S(t), t | z, τ

]
≃ dϕ(t)

dt
ξ

X

[
ϕ(t) − ϕ(τ)

]
e−α [ϕ(t)−ϕ(τ )], z < S(τ),(3.15)

with α given in (2.21) and where ξ
X

(ϑ), defined in (2.32), is a periodic function of period
Q.

Proof. By virtue of (3.12), recalling (2.33), for S → +∞ one has:

g
Z

{
S

[
ϕ−1

(
χ
(ϑ

α

)
+ϑ0

)]
, ϕ−1

(
χ
(ϑ

α

)
+ϑ0

)∣∣∣z, ϕ−1(ϑ0)

}
≃

{
d

dϑ
ϕ−1

[
χ
(ϑ

α

)
+ϑ0

]}−1

e−ϑ

=

{
d

dχ(ϑ/α)
ϕ−1

[
χ
(ϑ

α

)
+ϑ0

]}−1 [dχ(ϑ/α)

dϑ

]−1

exp

{
−

∫ χ(ϑ/α)

0

R[V (u)] du

}

z < S
[
ϕ−1(ϑ0)

]
.(3.16)

with 0 ≤ ϑ0 < ϑ < +∞. Hence, setting t = ϕ−1
{
χ
(
ϑ/α

)
+ ϑ0

}
and τ = ϕ−1(ϑ0) in

(3.16), one obtains (3.14). Finally, by virtue of Corollary 2.2, (3.15) immediately follows
from (3.14).

Corollary 3.2 expresses the asymptotic trend of the FPT density of the Gauss-Markov
process Z(t) through the boundary S(t) = m(t) + k(t) η

[
ϕ(t)

]
, where η(ϑ) is an asymptot-

ically periodic boundary for the non-stationary OU process X(ϑ).
The right-hand side of (3.14) has the following functional form:

γ
Z

(t | τ) = R∗
[
ϕ(t) − ϕ(τ)

] dϕ(t)

dt
exp

{
−

∫ ϕ(t)

ϕ(τ)

R∗[u − ϕ(τ)] du

}
,(3.17)

with τ < t, τ, t ∈ T and where R∗(ϑ) is a periodic function of period Q. We note that
(3.17) can also be written as

γ
Z

(t | τ) = ξ∗
X

[
ϕ(t) − ϕ(τ)

] dϕ(t)

dt
e−α∗ [ϕ(t)−ϕ(τ )] (τ < t, τ, t ∈ T ),(3.18)

where α∗ is defined in (2.36) and ξ∗
X

(ϑ) is given in (2.37). Recalling (2.39), the least squares
estimate of α∗ is:

α̂ = −
6

∑M
k=1 k ln

{
1 − G̃X [η(ϑ0 + k Q), ϑ0 + k Q

∣∣∣
z−m

[
ϕ−1(ϑ0)

]

k
[
ϕ−1(ϑ0)

] , ϑ0

]}

M (M + 1) (2 M + 1) Q
,(3.19)

where the period Q > 0 is the time discretization step and where G̃X is the computed
FPT distribution function of the non-stationary OU process. With such a value of α̂, the
function ξ

X
[ϕ(t) − ϕ(τ)] can be finally evaluated via (3.15) as:

ξ̃
X

[ϕ(t) − ϕ(τ)] =
[dϕ(t)

dt

]−1

ebα [ϕ(t)−ϕ(τ )] g̃
Z

[
S(t), t | z, τ

]
(3.20)

where g̃
Z

is the computed FPT pdf.
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4 Estimations of FPT pdf’s for Gauss-Markov processes A computationally sim-
ple, speedy and accurate method based on the repeated Simpson rule has been proposed in
[4] to construct FPT pdf of Gauss-Markov processes Z(t) through time-dependent bound-
aries. Following [4] and denoting by g̃

Z
[S(tk), tk | z, τ ] the numerical evaluation of the FPT

pdf g
Z

[S(tk), tk | z, τ ] at times tk = τ + k p (k = 1, 2, . . . , N), where p > 0 is the time
discretization step, one has:

g̃
Z

[
S(t1), t1 | z, τ

]
= −2 Ψ

Z

[
S(t1), t1 | z, τ

]

(4.1)

g̃
Z

[
S(tk), tk | z, τ

]
= −2Ψ

Z

[
S(tk), tk | z, τ

]

+2 p

k−1∑

j=1

wk,j g̃
Z

[
S(tj), tj | z, τ

]
Ψ

Z

[
S(tk), tk | S(tj), tj

]
(k = 2, 3, . . . ),

with τ < tk (tk, τ ∈ T ) and where the weights wk,j are specified as follows:

w2n,2j−1 =
4

3
(j = 1, 2, . . . , n; n = 1, 2, . . . )

w2n,2j =
2

3
(j = 1, 2, . . . , n − 1; n = 2, 3, . . . )

w2n+1,2j−1 =
4

3
(j = 1, 2, . . . , n − 1; n = 2, 3, . . . )(4.2)

w2n+1,2j =
2

3
(j = 1, 2, . . . , n − 2; n = 3, 4, . . . )

w2n+1,2(n−1) =
17

24
(n = 2, 3, . . . )

w2n+1,2n−1 = w2n+1,2n =
9

8
(n = 1, 2, . . . ).

An alternative numerical procedure to obtain the FPT pdf g
Z

[S(t), t | z, τ ] for the Gauss-

Markov process Z(t) through the boundary S(t) = m(t) + k(t) η
[
ϕ(t)

]
is based on (3.2).

Indeed, g
Z

can be computed as:

g̃
Z

[S(tk), tk | z, τ ] =
dϕ(t)

dt

∣∣∣
t=tk

g̃
X

{
η
[
ϕ(tk)

]
, ϕ(tk)

∣∣∣
z − m(τ)

k(τ)
, ϕ(τ)

}
, z < S(τ)(4.3)

for τ < tk = t0 + k p (τ, tk ∈ T ), where g̃
X

denotes the numerical evaluation of the FPT
pdf g

X
for the non-stationary OU process X(t).

In order to compute (4.3), we have designed a numerical algorithm with variable step-size
to evaluate the FPT pdf g

X

{
η
[
ϕ(t)

]
, ϕ(t) | y, ϕ(τ)

}
for the non-stationary OU process X(t)

through the boundary η
[
ϕ(t)

]
. Let ϕ(t) : T → [0, +∞) be a continuous and monotonically

increasing function. Setting ϑ = ϕ(t) and ϑ0 = ϕ(τ) in (2.1) one has:

g
X

{
η[ϕ(t)], ϕ(t) | y, ϕ(τ)

}
= −2 ΨX

{
η[ϕ(t)], ϕ(t) | y, ϕ(τ)

}

+2

∫ ϕ(t)

ϕ(τ)

g
X

{
η(ζ), ζ | y, ϕ(τ)

}
ΨX

{
η[ϕ(t)], ϕ(t) | η(ζ), ζ

}
dζ, y < η[ϕ(τ)],

where ΨX [η(t), t|y, τ ] is given in (2.2), or equivalently:

g
X

{
η[ϕ(t)], ϕ(t) | y, ϕ(τ)

}
= −2 ΨX

{
η[ϕ(t)], ϕ(t) | y, ϕ(τ)

}

+2

∫ t

τ

g
X

{
η[ϕ(u)], ϕ(u) | y, ϕ(τ)

} dϕ(u)

du
ΨX

{
η[ϕ(t)], ϕ(t) | η[ϕ(u)], ϕ(u)

}
du,(4.4)
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with y < η[ϕ(τ)]. Hence, for tk = τ + k p (k = 1, 2, . . . ), where p > 0 is the time
discretization step, one is led to the following iterative algorithm:

g̃
X

{
η[ϕ(t1)], ϕ(t1) | y, ϕ(τ)

}
= −2 ΨX

{
η[ϕ(t1)], ϕ(t1) | y, ϕ(τ)

}
,

(4.5)

g̃
X

{
η[ϕ(tk)], ϕ(tk) | y, ϕ(τ)

}
= −2 ΨX

{
η[ϕ(tk)], ϕ(tk) | y, ϕ(τ)

}

+2 p

k−1∑

j=1

wk,j
dϕ(u)

du

∣∣∣
u=tj

g̃
X

{
η[ϕ(tj)], ϕ(tj) | y, ϕ(τ)

}

×ΨX

{
η[ϕ(tk)], ϕ(tk) | η[ϕ(tj)], ϕ(tj)

}
(k = 2, 3, . . . ),

where ΨX is given in (2.2) and where the weights wk,j are defined in (4.2).
The goodness of asymptotic approximations (3.9) and (3.14) has been confirmed by

the numerical computations. Indeed, making use of (4.3) and (4.5), we shall show that
the asymptotic results on the FPT pdf for the non-stationary OU process X(t) through a
constant or a periodic boundary η(ϑ) can be implemented in order to obtain information on
the FPT pdf for particular Gauss-Markov processes in the presence of special time-varying
boundaries S(t) = m(t) + k(t) η[ϕ(t)].

4.1 Wiener process Let Z(t) be the Wiener process in the time domain T = [0, +∞),
such that

Z(t) = µ t + W (ω2 t) (µ ∈ R, ω > 0).(4.6)

Recalling (1.1) one has:

m(t) = µ t, h1(t) = ω2 t, h2(t) = 1, r(t) = ω2 t.

Then, Z(t) can be represented in terms of a non-stationary OU process X(t) by means of
(1.6) with

k(t) =

√
1 +

2 β

σ2
ω2 t, ϕ(t) =

1

2 β
ln

(
1 +

2 β

σ2
ω2 t

)
(t ≥ 0).(4.7)

Case a) Setting β = 1 and σ2 = 2 in (4.7) and η(ϑ) = S in (3.1) one obtains:

S(t) = µ t + S
√

1 + ω2 t (t ≥ 0),(4.8)

so that, recalling (3.9), the FPT pdf of the Wiener process (4.6) through the boundary (4.8)
for large S and large times exhibits the following asymptotic behavior:

g
Z

[
µ t + S

√
1 + ω2 t, t | z, τ

]
≃ R(S)ω2

2

(
1 + ω2 τ

)R(S)/2

(
1 + ω2 t

)1+R(S)/2
(0 ≤ τ < t < +∞),(4.9)

with R(S) given in (2.8). The right-hand side of (4.9) has the following functional form:

γ
Z

(t | τ) =
λω2

2

(
1 + ω2 τ

)λ/2

(
1 + ω2 t

)1+λ/2
,(4.10)

with 0 ≤ τ < t < +∞.
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Figure 4: For the Wiener process with µ = 0 and ω2 = 0.5, g̃
Z

(t) = g̃
Z

(S
√

1 + 0.5 t, t | 0, 0)
(solid line) is compared with the asymptotic density γ

Z
(t | 0) (dotted line) given in (4.10) for the

same choices of λ and S as in Fig.1.

For the Wiener process with µ = 0 and ω2 = 0.5, Fig. 4 shows the evaluated FPT
density g̃ Z (t) = g̃ Z (S

√
1 + 0.5 t, t | 0, 0) with S = 2.5 and S = 3 and the asymptotic

density γZ(t | 0), given in (4.10), with λ estimated by means of (3.11). The integration step
in (4.3) and (4.5) has been taken as 0.1.
Case b) Setting β = 1 and σ2 = 2 in (4.7) and η(ϑ) = S + B cos(2πϑ/Q) + C sin(2πϑ/Q)
in (3.1), for t ≥ 0 one has:

S(t) = µ t +
√

1 + ω2 t
{
S + B cos

[ π

Q
ln

(
1 + ω2 t

)]
+ C sin

[ π

Q
ln

(
1 + ω2 t

)]}
,(4.11)

so that, recalling (3.15), the FPT pdf of the Wiener process through the boundary (4.11)
for large S and large times exhibits the following asymptotic behavior:

g
Z

[
S(t), t | z, τ

]
≃ ω2

2

(
1 + ω2 τ

)α/2

(
1 + ω2 t

)1+α/2
ξ

X

[
1

2
ln

( 1 + ω2 t

1 + ω2 τ

)]
,(4.12)

for 0 ≤ τ < t < +∞, with α given in (2.21) and where ξ
X

(ϑ), defined in (2.32), is a periodic
function of period Q.

For the Wiener process with µ = 0 and ω2 = 0.5, Fig. 5 shows the evaluated FPT
density g̃ Z (t) = g̃ Z [S(t), t | 0, 0) with S(t) =

√
1 + 0.5 t {3 + 0.1 sin[π ln(1 + 0.5 t)/0.2]}

and the estimated function ξ̃
X

(ϑ) with α̂ = 0.011950. Integration step in (4.3) and (4.5) is

10−2.

4.2 Stationary OU process Let Z(t) be the stationary OU process in the time domain
T = R, such that (cf., for instance, [10]):

Z(t) = e−β t W
( σ2

2 β
e2 β t

)
(t ∈ R).(4.13)

Recalling (1.1) one has:

m(t) = 0, h1(t) =
σ2

2 β
eβ t, h2(t) = e−β t, r(t) =

σ2

2 β
e2 β t.
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Figure 5: Wiener process with µ = 0, ω2 = 0.5 and boundary S(t) =
√

1 + 0.5 t {3+0.1 sin[π ln(1+
0.5 t)/0.2]}. On the left the FPT pdf g̃

Z
(t) = g̃

Z
[S(t), t | 0, 0] (solid line) is compared with the

density 0.5α (1+0.5 t)−1−α/2/2 (dotted line), with α estimated by means of (3.19) as bα = 0.011950.
On the right the function ξ̃

X
(ϑ), computed via (3.20), is plotted for ϑ = ln(1 + 0.5 t)/2.

The process Z(t) can be represented in terms of a non-stationary OU process X(t) by means
of (1.6) with

k(t) =
√

1 + e−2 β t, ϕ(t) =
1

2 β
ln

(
1 + e2 β t

)
(t ∈ R).(4.14)

Case a) Setting η(ϑ) = S in (3.1) one obtains:

S(t) = S
√

1 + e−2 β t (t ∈ R),(4.15)

so that, recalling (3.9), the FPT pdf of the stationary OU process (4.13) through the
boundary (4.15) for large S and large times exhibits the following asymptotic behavior:

g
Z

[
S

√
1 + e−2 β t, t | z, τ

]
≃ R(S) e2 β t

(
1 + e2 β τ

)R(S)/(2 β)

(
1 + e2 β t

)1+R(S)/(2 β)
,(4.16)

for −∞ < τ < t < +∞, with R(S) given in (2.8). The right-hand side of (4.16) has the
following functional form:

γ
Z

(t | τ) =
λ e2 β t

(
1 + e2 β τ

)λ/(2 β)

(
1 + e2 β t

)1+λ/(2 β)
(−∞ < τ < t < +∞).(4.17)

Fig. 6 shows g̃ Z (t) = g̃ Z (S
√

1 + e−2 t, t | 0, 0) for the stationary OU process (β = 1,
σ2 = 2) with S = 2.5 and S = 3 and the asymptotic density γ

Z
(t | 0) given in (4.17) with

λ estimated by means of (3.11). The integration step in (4.3) and (4.5) has been taken as
10−2.
Case b) Setting η(ϑ) = S + B cos(2πϑ/Q) + C sin(2πϑ/Q) in (3.1), for t ∈ R one has:

S(t) =
√

1 + e−2β t
{

S + B cos
[ π

β Q
ln(1 + e2β t)

]}
+ C sin

[ π

β Q
ln(1 + e2β t)

]}
,(4.18)
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Figure 6: The FPT pdf g̃
Z

(t) = g̃
Z

(S
√

1 + e−2 t, t | 0, 0) (solid line) for the stationary OU process
(β = 1, σ2 = 2) is compared with the asymptotic density γ

Z
(t | 0) (dotted line) given in (4.17)

for the same choices of λ and S as in Fig.1.

so that, recalling (3.15), the FPT pdf of the stationary OU process through the boundary
(4.18) exhibits for large S and large times the following asymptotic behavior:

g
Z

[
S(t), t | z, τ

]
≃ e2 β t

(
1 + e2 β τ

)α/(2 β)

(
1 + e2 β t

)1+α/(2 β)
ξ

X

[
1

2 β
ln

( 1 + e2 β t

1 + e2 β τ

)]
,(4.19)

for −∞ < τ < t < +∞, with α given in (2.21) and where ξ
X

(ϑ), defined in (2.32), is a
periodic function of period Q.

For the stationary OU process with β = 1 and σ2 = 2, Fig. 7 shows the evaluated FPT
density g̃ Z (t) = g̃ Z [S(t), t | 0, 0) with S(t) =

√
1 + e−2 t {3 + 0.2 sin[π ln(1 + e2 t)/5]} and

the estimated function ξ̃
X

(ϑ) with α̂ = 0.012337. Integration step in (4.3) and (4.5) is

10−2.

4.3 Brownian bridge We now consider the Brownian bridge with time domain T =
[0, 1), defined as:

Z(t) = (1 − t)W
( t

1 − t

)
.(4.20)

In this case, by virtue of (1.1), one has:

m(t) = 0, h1(t) = t, h2(t) = 1 − t, r(t) =
t

1 − t
·

The Brownian bridge can be represented in terms of a non-stationary OU process X(t) via
(1.6) with

k(t) = (1 − t)

√
1 +

2 β

σ2

t

1 − t
, ϕ(t) =

1

2 β
ln

(
1 +

2 β

σ2

t

1 − t

)
(0 ≤ t < 1).(4.21)

Case a) Setting β = 1 and σ2 = 2 in (4.21) and η(ϑ) = S in (3.1) one obtains:

S(t) = S
√

1 − t (0 ≤ t < 1),(4.22)
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Figure 7: Stationary OU process with β = 1 and σ2 = 2 and boundary S(t) =
√

1 + e−2 t {3 +
0.2 sin[π ln(1+e2 t)/5]}. On the left the FPT pdf g̃

Z
(t) = g̃

Z
[S(t), t | 0, 0] (solid line) is compared

with the density α e2 t 2α/2(1 + e2 t)−1−α/2 (dotted line), with α estimated as bα = 0.012337. On
the right the function ξ̃

X
(ϑ), computed via (3.20), is plotted for ϑ = [ln(1 + e2 t) − ln 2]/2.

so that, recalling (3.9), the FPT pdf of the Brownian bridge (4.20) through the boundary
(4.22) for large S and large times exhibits the following asymptotic behavior:

g
Z

[
S
√

1 − t, t | z, τ
]
≃ R(S)

2

(1 − t)−1+R(S)/2

(1 − τ)R(S)/2
(0 ≤ τ < t < 1),(4.23)

with R(S) given in (2.8). The right-hand side of (4.23) has the following functional form:

γ
Z

(t | τ) =
λ

2

(1 − t)−1+λ/2

(1 − τ)λ/2
(0 ≤ τ < t < 1).(4.24)

Fig. 8 shows the evaluated FPT density g̃ Z (t) = g̃ Z (S
√

1 − t, t | 0, 0) for the Brownian
bridge with S = 2.5 and S = 3 and the density γ

Z
(t | 0) given in (4.24) with λ estimated

by means of (3.11). The integration step in (4.3) and (4.5) has been taken as 10−3.
Case b) Setting β = 1 and σ2 = 2 in (4.21) and η(ϑ) = S + B cos(2πϑ/Q) + C sin(2πϑ/Q)
in (3.1), for t ∈ [0, 1) one has:

S(t) =
√

1 − t
{
S + B cos

[ π

Q
ln(1 − t)

]
+ C sin

[ π

Q
ln(1 − t)

]}
(0 ≤ t < 1),(4.25)

so that, recalling (3.15), the FPT pdf of the Brownian bridge through the boundary (4.25)
for large S and large times exhibits the following asymptotic behavior:

g
Z

[
S(t), t | z, τ

]
≃ 1

2

(1 − t)−1+α/2

(1 − τ)α/2
ξ

X

[
1

2
ln

(1 − τ

1 − t

)]
(0 ≤ τ < t < 1),(4.26)

with α given in (2.21) and where ξ
X

(ϑ), defined in (2.32), is a periodic function of period
Q.

For the Brownian bridge, Fig. 5 shows the evaluated FPT density g̃ Z (t) = g̃ Z [S(t), t |
0, 0) with S(t) =

√
1 − t {3 +0.2 sin[π ln(1− t)/5]} and the estimated function ξ̃

X
(ϑ) with

α̂ = 0.011950. Integration step in (4.3) and (4.5) is 10−4.
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Figure 8: For the Brownian bridge g̃
Z

(t) = g̃
Z

(S
√

1 − t, t | 0, 0) (solid line) is compared with the
asymptotic density γ

Z
(t | 0) (dotted line) given in (4.24) for the same choices of λ and S as in

Fig.1.

4.4 A transformation of the non-stationary OU process Let Z(t) be the following
Gauss-Markov process with time domain T = [0, 1), defined as:

Z(t) = (1 − t)X
( t

1 − t

)
.(4.27)

Recalling (1.6) one has

k(t) = 1 − t, ϕ(t) =
t

1 − t
(0 ≤ t < 1),(4.28)

so that Z(t) is characterized by

m(t) = 0, h1(t) =
σ2

2 β
(1 − t)

[
exp

{ β t

1 − t

}
− exp

{
− β t

1 − t

}]
,

h2(t) = (1 − t) exp
{
− β t

1 − t

}
, r(t) =

σ2

2 β

[
exp

{
− 2 β t

1 − t

}
− 1

]
.

The infinitesimal moments of Z(t) are A1(x, t) = −x (1 + β − t)/(1 − t)2 and A2(t) = σ2

(0 ≤ t < 1), so that as β → 0 and σ2 = 1, Z(t) becomes the Brownian bridge (4.20).
Case a) Setting β = 1 and σ2 = 2 in (4.28) and η(ϑ) = S in (3.1) one obtains:

S(t) = S (1 − t) (0 ≤ t < 1),(4.29)

so that, recalling (3.9), the FPT pdf of the process (4.27) through the boundary (4.29)
exhibits for large S and large times the following asymptotic behavior:

g
Z

[
S (1 − t), t | z, τ

]
≃ R(S)

(1 − t)2
exp

{
−R(S)

[ t

1 − t
− τ

1 − τ

]}
(0 ≤ τ < t < 1),(4.30)

with R(S) given in (2.8). The right-hand side of (4.30) has the following functional form:

γ
Z

(t | τ) =
λ

(1 − t)2
exp

{
−λ

[ t

1 − t
− τ

1 − τ

]}
(0 ≤ τ < t < 1).(4.31)
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Figure 9: Brownian bridge and boundary S(t) =
√

1 − t {3 + 0.1 sin[π ln(1− t)/0.2]}. On the left
the FPT pdf g̃

Z
(t) = g̃

Z
[S(t), t | 0, 0] (solid line) is compared with the density α (1 − t)−1+α/2/2

(dotted line), with α estimated as bα = 0.011950. On the right the function ξ̃
X

(ϑ), computed via
(3.20), is plotted for ϑ = − ln(1 − t)/2.

Fig. 10 shows the evaluated FPT density g̃ Z (t) = g̃ Z [S (1 − t), t | 0, 0] for the process
(4.27) with S = 2.5 and S = 3 and the asymptotic density γ

Z
(t | 0) given in (4.31) for

β = 1 and σ2 = 2. The integration step in (4.3) and (4.5) has been taken as 10−4.
Case b) Setting β = 1 and σ2 = 2 in (4.28) and η(ϑ) = S + B cos(2πϑ/Q) + C sin(2πϑ/Q)
in (3.1), for t ∈ [0, 1) one has:

S(t) = (1 − t)
{
S + B cos

[2 π

Q

t

1 − t

]
+ C sin

[2 π

Q

t

1 − t

]}
(0 ≤ t < 1),(4.32)

so that, recalling (3.15), the FPT pdf of the process (4.27) through the boundary (4.32)
exhibits for large S and large times the following asymptotic behavior:

g
Z

[
S(t), t | z, τ

]
≃ 1

(1 − t)2
exp

{
−α

[ t

1 − t
− τ

1 − τ

]}
ξ

X

[
t

1 − t
− τ

1 − τ

]
,(4.33)

for 0 ≤ τ < t < 1, with α given in (2.21) and where ξ
X

(ϑ), defined in (2.32), is a periodic
function of period Q.

For the process (4.27), Fig. 11 shows the evaluated FPT density g̃ Z (t) = g̃ Z [S(t), t | 0, 0)

with S(t) = (1 − t) {3 + 0.2 sin[2 π t/(5 − 5 t)]} and the estimated function ξ̃
X

(ϑ) with

α̂ = 0.012337. Integration step in (4.3) and (4.5) is 5 · 10−5.

4.5 Concluding Remarks The aim of this paper has been to obtain quantitative infor-
mation on the asymptotic behaviors of the FPT pdf’s of Gauss-Markov processes through
certain time-varying boundaries. This task has been achieved by proving that the asymp-
totic forms (2.13) and (2.30) of the FPT pdf’s for the non-stationary OU process X(ϑ)
through an asymptotically constant and an asymptotically periodic boundary η(ϑ), respec-
tively, can be used in order to disclose the asymptotic behaviors (3.9) and (3.14) of the
FPT pdf of a Gauss-Markov process Z(t) = m(t) + k(t) X

[
ϕ(t)

]
through the transformed

boundary S(t) = m(t) + k(t) η[ϕ(t)], with k(t) and ϕ(t) specified in (1.7). In particular,
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Figure 10: For the process Z(t) given in (4.27) with β = 1 and σ2 = 2, g̃
Z

(t) = g̃
Z

[S (1−t), t | 0, 0]
(solid line) is compared with the asymptotic density γ

Z
(t | 0) (dotted line) given in (4.31) for the

same choices of λ and S as in Fig.1.

starting from an asymptotic constant boundary η(ϑ) = S for the non-stationary OU pro-
cess with β = 1 and σ2 = 2, we have considered the boundaries (4.8), (4.15), (4.22) and
(4.29) for Wiener, stationary OU, Brownian bridge and transformed OU processes, respec-
tively, and shown that for large boundaries and for large times the asymptotic results (4.9),
(4.16), (4.23) and (4.30) hold. Furthermore, starting from an asymptotic periodic boundary
η(ϑ) = S + B cos(2πϑ/Q) + C sin(2πϑ/Q) for the non-stationary OU process with β = 1
and σ2 = 2, we have considered the boundaries (4.11), (4.18), (4.25) and (4.32) for Wiener,
stationary OU, Brownian bridge and transformed OU processes, respectively. We have then
proved that for large boundaries and for large times their FPT pdf’s exhibit the asymptotic
behaviors (4.12), (4.19), (4.26) and (4.33). The goodness of the asymptotic approximations
has been confirmed by numerical computations based on the variable step-size algorithm
(4.3) and (4.5).
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