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Abstract. We address the problem of studying the number of excitatory stimuli
producing a spike for a Stein-type stochastic model which includes a multiplicative
state-dependent effect. Some results on the probability distribution of the number M

of excitatory stimuli triggering a spike are obtained. We also evaluate the distribution
of M conditional on the firing time, and disclose some properties of its mode. Finally,
some results on the probability generating function of the conditional distribution are
given.

1 Introduction A mathematical model based on Stein stochastic differential equation
has been recently proposed in [5] to describe the firing activity of a neuronal unit. Similarly
to Stein approach [15], such model includes the arrival of excitatory stimuli according to a
Poisson process with an exponential decay in absence of stimuli. As an innovative feature,
the model is characterized by a multiplicative state-dependent effect, since the depolariza-
tions are random and depend on the voltage level at the stimulus time. This state-dependent
effect is suitable to describe a behavior sometimes observed in neuronal dynamics (see, for
instance, [14] where noisy stochastic conductance components are multiplicatively coupled
to the membrane potential). Closed-form expressions for the distribution of the membrane
potential level and for the firing density (in the case of homogeneous Poisson inputs) have
been recently obtained in [5] for our model.

The state-dependent Stein-type model is considered here to study the distribution of
the number of excitatory stimuli able to yield a neuronal firing. This provides a basic
characterization of the relationship between environmental stimuli and neural response.
For instance, it is well-known that spontaneous quantal transmitter release from the motor
nerve endings follows the Poisson distribution and generates miniature potentials which
contribute to the neuron postsynaptic potential [7]. The study performed in the present
paper can be useful to face the question of what determines the post-synaptic response to
the release of the quantal transmitter (see, for instance, [6] where an analysis of how retinal
ganglion cells re-encode the received information is present). More generally, the obtained
results are suitable to characterize the firing activity of a postsynaptic cell in networks of
Stein-type neuronal units under ad hoc assumptions about the dynamics of presynaptic
neurons (see [2], [3] and [4] where a simulation-based approach is used to investigate the
synchronization between interacting neurons). The mathematical background of the present
contribution is that of classical treatises on stochastic neuronal models, such as [12] and
[13].

A brief review on the relevant results of [5] is presented in Section 2. In Section 3 we
study the distribution of the number of stimuli producing the neuronal firing conditional
on the firing time. We point out that the applicability of our results in the theory of neural
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dynamics depends on a reasonable choice of the parameters’ values. In the treated cases,
these are taken in agreement with the observed values of the firing time.

In Section 4 we obtain the probability distribution of the number of stimuli producing a
spike, together with its mean value, and determine a condition ensuring the neuronal firing.
Finally, some concluding remarks are given in Section 5.

2 The Stein-type model Let {V (t); t ≥ 0} be a stochastic process with state-space
(0, +∞) describing the neuronal membrane potential, defined as

V (t) = v0 exp




−νt +

N(t)∑

k=1

Zk




 , t > 0, V (0) = v0.(1)

In this model excitatory stimuli, arriving according to a homogeneous Poisson process
{N (t); t ≥ 0} with intensity λ, produce membrane potential jumps of positive amplitude.
When the level of the membrane potential reaches the threshold value, an action potential
is generated and a refractory period begins, after which the membrane potential is reset to
the level v0 > 0. In the absence of stimuli, the membrane potential exponentially decays to
the resting level, assumed to be zero, with time constant 1/ν (ν > 0).

The random variables Zk in the right-hand side of Eq. (1) are assumed to be independent
and exponentially distributed with density fZ(x) = α e−αx, x > 0. The role of α is evident
from Eq. (1): denoting by tn the instant when the n-th stimulus occurs, it is V (tn)−V (t−n ) =
V (t−n )Wn, where Wn is a Pareto-type random variable with shape parameter α. Hence,
for a fixed membrane voltage V (t−n ), the mean value of the n-th depolarization is inversely
proportional to α, so that large values of α reduce the effect of the excitatory activity (see
Section 2 of [5] for some remarks on the role of α).

We thoroughly assume that {N (t); t ≥ 0} and {Z1, Z2, . . .} are independent. Finally,
for n = 1, 2, . . ., we denote by Tn the n-th interarrival time of process {N (t); t ≥ 0} and by
fTn

(t) its pdf.
The neuronal firing time is described as the first-passage time of V (t) through the

constant firing threshold β:

T
(β)
V = inf{t ≥ 0 : V (t) > β}, β > v0.(2)

This is the random time elapsing between the instant when the membrane potential resets
to v0 and the instant when an action potential is generated due to a crossing of the firing

threshold β. As shown in [5], the firing density gV (β, t), that is the pdf of T
(β)
V , can be

expressed as

gV (β, t) =

+∞∑

n=1

γn(t), t > 0,

where

γn(t) :=
∂2

∂t1∂t2
P
{
T

(β)
V ≤ t1, T1 + . . . + Tn ≤ t2

} ∣∣∣
t1=t,t2=t

, n = 1, 2, . . .(3)

is the sub-density of T
(β)
V at the occurrence of the n-th stimulus. It has been proved that

γn(t) = λn αn−1 e−(λ+αν)t

(
β

v0

)−α tn−1
(
νt + n log β

v0

)

n! (n − 1)!

(
log

β

v0
+ νt

)n−2

, t > 0,(4)
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and that, for t > 0 and β > v0, the firing density is given by

gV (β, t) =
λνt

log β
v0

+ νt
e−(λ+αν)t

(
β

v0

)−α

×






I1

(
2
√

λαt(log β
v0

+ νt)
)

√
λαt(log β

v0
+ νt)

+
(
log

β

v0

)I0

(
2
√

λαt(log β
v0

+ νt)
)

νt





,(5)

where In(x), n ≥ 0, denotes the modified Bessel function of the first kind.
The firing probability, i.e. the integral of the firing density over the positive half-line,

equals 1 if and only if λ ≥ αν. In such a case, the mean firing-time is given by (see [5])

E
[
T

(β)
V

]
=

1 + α log β
v0

λ − αν
.(6)

3 The conditional firing activity In this section we investigate the number of stimuli
producing a spike conditional on the firing time. Let M be the random variable that counts
the number of excitatory stimuli producing the firing, and let

hn(β, t) := P
(
M = n |T (β)

V = t
)
, n ≥ 1, t > 0.

Recalling definition (3) and making use of Eqs. (4) and (5) it follows that, for t > 0, the
conditional distribution of M is given by

hn(β, t) ≡ γn(t)

gV (β, t)
=

(
νt + n log β

v0

) [
w(t)

]2n−1

n!(n − 1)!
{
νtI1

(
2w(t)

)
+log β

v0
w(t) I0

(
2w(t)

)} ,(7)

where we have set

w(t) :=

√
λαt
(

log
β

v0
+ νt

)
.(8)

Plots of the conditional distribution (7) for fixed values of parameters ν, v0, β and for
different choices of (λ, t) and (α, t) are shown in Figures 1(a) and 1(b), respectively. We
point out that the values of parameters in Eq. (7) should be fixed in agreement with the
value of the firing time. For instance, by adopting a maximum likelihood approach, we
consider the parameters’ values in such a way that the mean firing time (6) is equal to the
firing time t. Hence, for fixed ν, v0, β and t, the values of λ and α are chosen according to
condition 1 + α log β

v0
= (λ − αν)t, with λ > αν. From this assumption, when α is fixed

and the firing time increases, the excitatory stimuli arrival rate λ decreases. Indeed, if the
mean membrane depolarization is kept constant, a decreasing input arrival rate justifies an
increasing firing time. On the contrary, if λ is fixed and the firing time increases, the value
of α increases, this producing a reduction of the effects of the excitatory activity.

As shown in Figure 1, when the value of α (λ) is fixed, if the firing time t increases
a large number of membrane potential jumps is expected. In particular, the mode of the
conditional probability hn(β, t) increases very slowly in t for fixed α (see Figure 1(a)),
whereas it exhibits a steep growth when λ is fixed (see Figure 1(b)).

A study on the mode of the conditional distribution hn(β, t) follows hereafter.

Theorem 3.1 The function hn(β, t) exhibits the following behavior:

• if t ≥ t̃, then ∃x ≥ 1 s.t. hn(β, t) ≤ hn+1(β, t) for 1 ≤ n ≤ ⌊x⌋,
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Figure 1: Conditional distribution hn(β, t) for v0 = 10 mV , ν = 0.1 ms−1 and β = 20 mV .
On the left-hand side (a) it is α = 2 and (1) (λ, t) = (2.5 ms−1, 1 ms), (2) (λ, t) =
(1 ms−1, 3 ms), (3) (λ, t) = (0.7 ms−1, 5 ms), (4) (λ, t) = (0.5 ms−1, 7 ms) (clockwise from
top-left). On the right-hand side (b) it is λ = 2 ms−1 and (1) (α, t) = (1.3, 1 ms), (2)
(α, t) = (5, 3 ms), (3) (α, t) = (7.5, 5 ms), (4) (α, t) = (9.3, 7 ms) (clockwise from top-left).

• if t < t̃, then hn(β, t) ≥ hn+1(β, t) for n ≥ 1,

where t̃ :=
log β

v0

ν

[
−1 +

√
1 +

2ν

λα log2 β
v0

]
.

Proof. Let us set η = (log β
v0

)/ν, θ = ηλα log β
v0

and y = t/η. For fixed t > 0 it is

hn(β, t) ≤ hn+1(β, t) if ϕ(n) ≤ 0,(9)

where
ϕ(x) = x3 + a2x

2 + a1x + a0,

and

a0 = −λαt
(

log
β

v0
+ νt

)2

/ log
β

v0
= −θy (1 + y)2,

a1 =
[
νt − λαt log

β

v0

(
log

β

v0
+ νt

)]
/ log

β

v0
= y [1 − θ(1 + y)],

a2 =
1

log β
v0

(
log

β

v0
+ νt

)
= 1 + y.

The roots of the polynomial equation ϕ(x) = 0 are real or complex according to the sign of
q3 + r2, with

q := a1/3 − a2
2/9, r := (a1a2 − 3a0)/6 − a2

2/27.

Since

q3 + r2 = −y
{
4θ + (1 − 8θ2)y + (−2 − 8θ − 44θ2 + 4θ3)y2 + (1 − 8θ − 72θ2 + 12θ3)y3

+(12θ3 − 44θ2)y4 + (4θ3 − 8θ2 + 4θ)y5
}

/108,

the condition y ≥
(
− 1 +

√
2+θ

θ

)
ensures the existence of a real root of ϕ(x) greater than

or equal to 1. Recalling the expressions of y, η and θ, the proof immediately follows. 2
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Remark 3.1 By assuming the firing time equals to the mean firing time (6), and setting

t̄ :=
[
−
(
3α log

β

v0
+ 1
)

+

√
8 +

(
α log

β

v0
− 1
)2 ]

/(2αν), due to Theorem 3.1 we have

• if α log β
v0

≥ (−1 +
√

5)/2 and t > 0, then ∃x ≥ 1 s.t. hn(β, t) ≤ hn+1(β, t) for
1 ≤ n ≤ ⌊x⌋,

• if 0 < α log β
v0

< (−1 +
√

5)/2 and t ≥ t̄, then ∃x ≥ 1 s.t. hn(β, t) ≤ hn+1(β, t) for
1 ≤ n ≤ ⌊x⌋,

• if 0 < α log β
v0

< (−1 +
√

5)/2 and t < t̄, then hn(β, t) ≥ hn+1(β, t) for n ≥ 1.

As suggested by Remark 3.1, when the mean membrane depolarization is large, this yielding
a large value of t̄, a single excitatory stimulus is likely to trigger the spike.

Hereafter we discuss the limit behavior of hn(β, t), n ≥ 1.

Remark 3.2 (i) As t → +∞ there holds:

hn(β, t) ∼ 2ν
√

π

(ν +
√

λαv log β
v0

)

e−2t
√

λαv (
√

λαv t)2n−1/2

n!(n − 1)!
,

whereas, for t → 0+, one has:

hn(β, t) ∼

(
λαt log β

v0

)n−1

(n − 1)!(n − 1)!
.

(ii) As α → +∞, it is

hn(β, t) ∼
2
√

π
(
νt+n log β

v0

)

log β
v0

e−2w(t)
[
w(t)

]2n−3/2

n!(n − 1)!
,

where w(t) is defined in (8), and for α → 0+

hn(β, t) ∼
(
νt + n log

β

v0

)(
log

β

v0
+ vt

)n−2 (λαt)n−1

n!(n − 1)!
.

Let us now obtain the probability-generating function of M given that a spike has
occurred at time t. Making use of Eq. (7), and recalling definition (8), it is not hard to see
that for |s| ≤ 1 there holds

G(s) := E
(
sM |T (β)

V = t
)

=

√
s ν t I1

(
2 w(t)

√
s
)

+ s log β
v0

w(t) I0

(
2 w(t)

√
s
)

ν t I1

(
2w(t)

)
+ log β

v0
w(t) I0

(
2 w(t)

) .(10)

From Eq. (10), the conditional mean value immediately follows:

E(M |T (β)
V = t) =

w(t)
{

log β
v0

w(t) I1

(
2w(t)

)
+
(
vt + log β

v0

)
I0

(
2w(t)

)}

ν t I1

(
2w(t)

)
+ log β

v0
w(t) I0

(
2w(t)

) .(11)

It is not hard to see that the mean value (11) is increasing in α, with

lim
α→0+

E(M |T (β)
V = t) = 1 and lim

α→+∞
E(M |T (β)

V = t) = +∞.
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Similarly,

lim
t→0+

E(M |T (β)
V = t) = 1 and lim

t→+∞
E(M |T (β)

V = t) = +∞.

We shall now discuss the behavior of the conditional mean by assigning specific values
to the parameters in agreement with some experimental results. In [6], Freed describes how
a retinal mammalian ganglion cell receives information about a white-noise stimulus as a
flickering pattern of glutamate quanta and performs a study about how such information
is re-encoded. For a brisk cell (capacitance Cm ∼ 38 pF , resistance Rm ∼ 25 MΩ) an
average quantal rate of about 112 ± 19 s−1 is recorded. Since the observed spike rate is
13±7 spikess−1 [9], Freed concludes that about 10 glutamate quanta are sufficient to trigger
a spike. Making use of these experimental data, and recalling the expression of the mean
firing time (6), we have the following estimates: ν̂ = 1.05 ms−1, λ̂ = 0.1 ms−1, t̂ = 100 ms
and α̂ = 0.09. The level attained by the membrane potential after a refractory period is set
to v̂0 = 20 mV , whereas the firing threshold is β̂ = 30 mV . Hence, the difference between
the threshold and the initial value is 10 mV , in agreement with several previous studies (see

[10], [11] and references therein). From Eq. (11) it follows that E(M |T (β)
V = t̂) = 10.2,

which is in a good agreement with the value obtained in [6].

4 Number of stimuli producing a spike Let us now study the probability distribution
of the number of excitatory stimuli which produces a neuronal firing.

Theorem 4.1 For n ≥ 1 one has:

p(n) := P
(
M = n

)
=

(
β

v0

)−α λnαn−1
(
log β

v0

)2n−1

νn(n − 1)!

×
{
Ψ
(
n + 1; 2n; log

β

v0

(λ + αν)

ν

)
+ Ψ

(
n; 2n − 1; log

β

v0

(λ + αν)

ν

)}
,(12)

where Ψ(·; ·; ·) denotes the confluent hypergeometric function of the second kind.

Proof. Recalling Eq. (4) we have

p(n) =

∫ +∞

0

γn(t) dt =

(
β

v0

)−α
λnαn−1

(n − 1)!(n − 1)!

{
ν

n

∫ +∞

0

tne−(λ+αν)t
(
log

β

v0
+ νt

)n−2

dt

+ log
β

v0

∫ +∞

0

tn−1e−(λ+αν)t
(
log

β

v0
+ νt

)n−2

dt

}
.(13)

From Eq. (13), by setting z = νt/ log β
v0

, it results

p(n) =

(
β

v0

)−α λnαn−1
(
log β

v0

)2n−1

νn (n − 1)!(n − 1)!






∫ +∞

0

zn

n
(1 + z)n−2

(
β

v0

)− (λ+αν)z

ν

dz

+

∫ +∞

0

zn−1 (1 + z)n−2

(
β

v0

)− (λ+αν)z

ν

dz




 .

Since (see, for instance, Eq. 13.2.5 of [1])

Ψ(a; γ; x) =
1

Γ(a)

∫ +∞

0

e−xwwa−1(1 + w)γ−a−1dw, a > 0,

Eq. (12) thus follows after some calculations. 2
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Figure 2: Probability distribution p(n) with v0 = 10 mV , ν = 0.1 ms−1, β = 20 mV ,
λ = 1 ms−1 and α = 0.5, 1, 2, 3 (clockwise from top-left).

Figure 2 shows plots of p(n) for various choices of α. Note that when α is small, there is
a high probability that a single excitatory stimulus produces the neuronal firing. On the
contrary, when α increases, the probability mass spreads over the n axis. In this case, due
to a reduction of excitatory stimuli effects, it is likely that a spike is triggered for a wide
range of large values of n.

The limit behavior of p(n) when α varies is studied in the following remark.

Remark 4.1 Let us assume that parameters λ, β, ν and v0 are fixed.
(i) If α → +∞, and n << α, it is (see Eq. (1′′), p. 105, of [16])

p(n) ∼
( β

v0

)−α λ

λ + αν

(
λ log β

v0

)n−1

(n − 1)!
,

(which is a somewhat remainder of a Poisson distribution).
(ii) If α → +∞ and n → +∞, with α/n → 1, we have (see Eq. (23), p. 128, of [16])

p(n) ∼ λ

ν

(log β
v0

)3/2

(4 + log2 β
v0

)1/4

w√
2w + 1

( β

v0

)−[w(1+λ/ν)+1]

× en

√
n(n − 1)!

[
λ

ν
log

β

v0

(
β

v0

)−(w+1)

(2w + 1)

]n−1

,

where

w =

(
2 − log

β

v0
+

√
4 + log2 β

v0

)
/
(
2 log

β

v0

)
.

For the probability distribution obtained in Theorem 4.1, we now study the probability
that the spike is due to a finite number of stimuli.
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Proposition 4.1 There holds:

PM (β) :=

+∞∑

n=1

p(n) =
2λ

λ + αν + |λ − αν|

(
β

v0

)λ − αν − |λ − αν|
2ν

.(14)

Proof. As (see Eq. (2′), p. 87, of [16])

Ψ(m; n + 1; z) = (−1)n−m(n − m)!z−nL−n
n−m(z), m ≤ n,(15)

where La
n(z) is the generalized Laguerre polynomial, we obtain

PM (β) =

(
β

v0

)−α
λ

λ + αν
+

(
β

v0

)−α λ2α log β
v0

(λ + αν)2

+∞∑

m=0

(−ν)m

m + 1

[
λα

(λ + αν)2

]m

×
{

ν

log β
v0

(λ + αν)
L−2m−3

m

(
log

β

v0

(λ + αν)

ν

)
+ L−2m−2

m

(
log

β

v0

(λ + αν)

ν

)}
.(16)

Recalling that (see Eq. 22.7.31 of [1], for instance)

La
n(z) =

1

z
{(n + a)La−1

n (z) − (n + 1)La−1
n+1(z)},(17)

from Eq. (16) we have

PM (β) =

(
β

v0

)−α
λ

λ + αν
+

(
β

v0

)−α
λ2αν

(λ + αν)3

+∞∑

m=0

(−1)m+1

[
λα ν

(λ + αν)2

]m

×
{
L−2m−3

m

(
log

β

v0

(λ + αν)

ν

)
+ L−2m−3

m+1

(
log

β

v0

(λ + αν)

ν

)}

=

(
β

v0

)−α
λ

λ + αν

+∞∑

m=0

[
− λα ν

(λ + αν)2

]m

×
{
L−2m−1

m

(
log

β

v0

(λ + αν)

ν

)
− λαν

(λ + αν)2
L−2m−3

m

(
log

β

v0

(λ + αν)

ν

)}
.(18)

Since (see Eq. 48.17.4 of [8])

+∞∑

k=0

ξkLc−2k
k (x) =

1

u
2−c−1 (1 + u)c+1e(1−u) x/2, u = (1 + 4ξ)1/2,(19)

after some calculations Eq. (14) follows from Eq. (18). 2

Note that Eq. (14) is identical to the firing probability obtained in [5]. Indeed, we find
again that condition λ ≥ αν ensures that the firing occurs with probability 1.

By calculations similar to those in the proof of Proposition 4.1, it is not hard to evaluate
the mean number of excitatory stimuli producing a spike.

Proposition 4.2 If λ > αν, it is

E[M ] =
λ(1 + α log β

v0
)

λ − αν
.(20)
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Proof. From Eqs. (12) and (15) we obtain

E[M ] = 2 −
(

β

v0

)−α
λ

λ + αν
+

(
β

v0

)−α
λ2αν

(λ + αν)3

+∞∑

m=1

m(−1)m+1

[
λα ν

(λ + αν)2

]m

×
{
L−2m−3

m

(
log

β

v0

(λ + αν)

ν

)
+ L−2m−3

m+1

(
log

β

v0

(λ + αν)

ν

)}
.

Hence, due to Eq. (17), we have

E[M ] = 2 −
(

β

v0

)−α
λ

λ + αν

+

(
β

v0

)−α λ2α log β
v0

(λ + αν)2

+∞∑

m=1

[
− λα ν

(λ + αν)2

]m

L−2m−2
m

(
log

β

v0

(λ + αν)

ν

)

+2

(
β

v0

)−α
λ2αν

(λ + αν)3

+∞∑

m=1

[
− λα ν

(λ + αν)2

]m

L−2m−3
m

(
log

β

v0

(λ + αν)

ν

)

−
(

β

v0

)−α
λ

λ + αν

+∞∑

m=1

[
− λα ν

(λ + αν)2

]m+1

L−2m−3
m+1

(
log

β

v0

(λ + αν)

ν

)
.

Finally, making use of (19), we obtain Eq. (20). 2

As we expect, from (6) and (20), it is E[M ] = λ·E[T
(β)
V ], i.e. the mean number of stimuli

triggering a spike is equal to the arrival rate of excitatory stimuli times the mean firing time.
The mean value (20) is increasing for α ∈ (0, λ/ν), whereas it decreases as function of λ.
In particular it goes to 1 as α ↓ 0 and diverges as α ↑ λ/ν. Hence, if the effect of excitatory
inputs is a large mean membrane depolarization, a single excitatory stimulus is expected

to trigger the neuronal firing. For fixed α, it results lim
λ→+∞

E[M ] = 1 + α log
β

v0
, so, even

if the arrival rate of excitatory stimuli is large, the mean number of membrane potential
jumps required to reach the firing threshold is linearly increasing with α. Finally, we note
that E(M) diverges as λ ↓ αν.

5 Concluding remarks In the present paper the relevant question on the relationship
between stimuli and neural response is faced by studying the number of excitatory stimuli
producing a spike. The model proposed is based on Stein equation and includes a state-
dependent synaptic transmission. The membrane potential is described as a stochastic
process which exponentially decays in absence of stimuli and performs jumps of random
positive amplitude at the occurrence of excitatory stimuli.

Our main results are the probability distribution of the number M of excitatory stimuli
triggering a spike and the distribution of M conditional on the firing time. The values
of the involved parameters have been considered as fixed in agreement with the value of
the firing time t. In particular, they have been chosen so that the mean firing time is
equal to t. The given results are in agreement with an a priori expected fact: namely,
when excitatory stimuli produce a large mean membrane depolarization, a single excitatory
stimulus triggers the spike. On the contrary, if the excitatory activity effect is a small mean
membrane depolarization, a large number of stimuli is required to trigger the spike.

Through the calculation of the probability generating function, we have obtained the
conditional mean value of M and performed a discussion on its behavior by assigning to
the parameters specific values suggested by experimental studies. In this case, the value of
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the conditional mean turned out to be in a good agreement with the available experimental
results.

Finally, for the mean number of stimuli producing the spike, we have obtained some
results on its limit behavior as α and λ vary. In particular, if the arrival rate of excitatory
stimuli goes to infinity, the mean value E(M) is shown to increase linearly with α.
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