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Abstract. A description of the sequence of interspike intervals and of the subsequent
firing times for single neurons is performed by means of an instantaneous return pro-
cess in the presence of refractoriness. Every interspike interval consists of an absolute
refractory period of fixed duration followed by a period of relative refractoriness whose
duration is described by the first-passage time of the modeling diffusion process through
a generally time-dependent threshold. In the cases of Wiener and Ornstein-Uhlenbeck
processes, the interspike probability density functions and some of its statistical fea-
tures are explicitly obtained for special monotonically non-increasing thresholds.

1 Introduction Stochastic models for neuronal firing in the presence of refractoriness
have been the object of various investigations. The first attempt to study the effect of
refractoriness in a point process is made in [22] and in [25] in which the authors consider
the role played by the dead time in determining the distribution of the output when the input
obeys a given distribution. Successively, an instantaneous return process, constructed on a
diffusion, has been considered aiming to a quantitative description of neuron’s membrane
potential behavior. Within such a context, the presence of refractoriness has been included
in two different ways. The first way assumes that the firing threshold acts as an elastic
barrier that is partially transparent, i.e. such that its behavior is intermediate between
total absorption and total reflection (cf. [3], [4], [5], [20]). Alternatively, the return process
paradigm for the description of the time course of the membrane potential is analyzed by
assuming that the neuronal refractoriness period is a random variable with a pre-assigned
probability density (cf. [1], [10], [11], [15], [23]). Recently, in [2] and [16], the Wiener
neuronal model in the presence of constant and of exponentially distributed refractoriness
has been considered, and expressions for output distributions and for interspike interval
densities have been obtained in closed form.

Customarily, the firing threshold has been viewed in the literature as a constant which
may not be appropriate, especially for rapidly firing cells (cf. [7], [13], [14], [26]). Indeed,
when a neuron releases an action potential, it becomes temporarily incapable of responding
to further input signals. In fact, for a period of time, of the order of one or two milliseconds,
the neuron is unable to respond to any stimuli (absolute refractory period). After that, for
several successive milliseconds its sensitivity to the incoming stimuli is normally reduced,
in some cases increasing successively. This type of after-firing behavior (after potentials)
may last up to about 100 msec. In the present context we focus our attention on a constant
absolute refractory period followed by a period of relative refractoriness that we model as
a random variable. Hence, after a spike release, we assume that the neuron is unable to
fire again during the absolute refractory period, while the firing threshold is assumed to
decrease progressively as the inhibitory effect of the previous spike fades away.
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In Section 2 we provide a description of the sequence of interspike intervals {In, n =
0, 1, . . .} by assuming that I0 is described by the first-passage time of the modeling diffu-
sion process through a monotonically non-increasing threshold S(t), whereas the interspike
interval In (n = 1, 2, . . . ) is characterized by the existence of two periods, Rn and Fn: the
first represents the period of absolute refractoriness of fixed length; the second denotes the
subsequent relative refractoriness whose duration is described by the first-passage time of
the modeling diffusion process through the threshold S(t) translated in the time. In Sec-
tion 3 and 4 the interspike probability density functions are determined for the Wiener and
Ornstein-Uhlenbeck processes and for particular thresholds.

2 Interspike distribution Let us denote by {X(t), t ≥ 0} a regular, time-homogeneous
diffusion process defined over an interval I = (r1, r2) and characterized by drift and infinites-
imal variance A1(x) and A2(x), respectively, that we assume to satisfy Feller conditions [12].

As is well-known, the first passage time (FPT) of X(t) to the continuous boundary S(t)
starting at X(τ) = η is defined as follows:

T = inf
t≥τ

{t : X(t) ≥ S(t)}, X(τ) = η < S(τ).(2.1)

Then,

g[S(t), t | η, τ ] =
∂

∂t
P (T < t), η < S(τ)(2.2)

is the FPT probability density function (pdf) ofX(t) through the boundary S(t) conditional
upon X(τ) = η. In the neuronal modeling context the boundary S(t) represents the neuron
firing threshold, the FPT through S(t) the firing time and g[S(t), t | η, τ ] the firing time
pdf. In the sequel we shall assume that P (T < +∞) = 1 for all τ > 0, so that the neuron’s
firing is a sure event.

Let {Z(t), t ≥ 0} be a return process in the presence of refractoriness. The process Z(t)
consists of recurrent cycles F0,R1,F1,R2,F2, . . . , where every period Rj (j = 1, 2, . . . ) of
absolute refractoriness is characterized by fixed length ζ and where F0,F1, . . . denote the
periods of relative refractoriness. Starting at η at time zero, a firing takes place when X(t)
attains the threshold S0(t) = S(t) for the first time, with η ∈ (r1, S0(0)); then, an absolute
refractory period occurs, after which Z(t) is instantaneously reset to η. In general, the j-th
subsequent evolution of the process goes on as described by X(t), until the threshold Sj(t),
that coincides with the threshold S(t) translated in the time, is again reached. A new firing
then occurs, followed by the absolute refractory period, and so on.

We now provide a description of the sequence of interspike intervals I0, I1, . . . , where
I0 = F0 and where Ik = Rk+Fk (k = 1, 2, . . . ). Here F0, F1, . . . denote the random variables
describing the durations of the relative refractory periods F0,F1, . . . , whereas R1, R2, . . .
denote the durations of the absolute refractory periods R1,R2, . . . . To this purpose, let Θj

(j = 0, 1, . . . ) be the random variable describing the (j + 1)-th firing time of the neuron.
The following relations hold:

Θ0 = I0 = F0, Θj = F0 +

j∑

k=1

(Rk + Fk) =

j∑

k=0

Ik (j = 1, 2, . . . ).(2.3)

In the sequel we shall assume that the firing thresholds are defined as follows:

S0(t) = S(t), Sj(t) =






S
(
t− θj−1 − ζ

)
, t > θj−1 + ζ

+∞, otherwise
(j = 1, 2, . . . ),(2.4)
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where θ0, θ1, . . . , representing the successive firing times of the neuron, denote the values
assumed by random variables Θ0,Θ1, . . . , respectively. Figure 1 shows the recurrent cycles
of the process Z(t).

Figure 1: An hypothetical sample path of Z(t). The instants θ0, θ1, . . . represent the firing times
and ζ is the duration of the absolute refractory periods. The instantaneous reset value has been
denoted by η.

We note that F0, correspondent to the first-passage time of the modeling diffusion pro-
cess X(t) through a monotonically non-increasing threshold S(t) = S0(t), is characterized
by pdf

g[S0(t), t | η, 0] ≡ g[S(t), t | η, 0], S0(0) = S(0) > η,(2.5)

whereas Fj , correspondent to the first-passage time of the modeling diffusion process X(t)
through a monotonically non-increasing threshold Sj(t) given in (2.4), is characterized by
pdf

g[Sj(t), t | η, θj−1 + ζ] =






0, t < θj−1 + ζ

g[S(t− θj−1 − ζ), t | η, θj−1 + ζ], t > θj−1 + ζ,
(2.6)

for j = 1, 2, . . . , where θj−1 is the time in which the j-th spike has had place.
We denote by γ0(t | 0) the pdf of I0, and by Γj(t | θj−1) and γj(t | θj−1) the conditional

distribution function and the conditional pdf of Ij given Θj−1 = θj−1 for j = 1, 2, . . . ,
respectively. From (2.3) and (2.5) it follows that I0 is characterized by pdf:

γ0(t | 0) := g[S(t), t | η, 0], S(0) > η.(2.7)



94 G. ALBANO, V. GIORNO, A.G. NOBILE AND L.M. RICCIARDI

0 θj−1 θj−1 + ζ θj

-

θj−1 + t

�

Interspike interval
-�

q qq q q

t

Figure 2: Starting at time θj−1, the duration of interspike interval is less than t.

Furthermore, recalling that Ij = ζ + Fj , one has (cf. Figure 2):

Γj(t | θj−1) := P (Ij < t | Θj−1 = θj−1) = P (Fj < t− ζ | Θj−1 = θj−1)

=






0, t < ζ

∫ θj−1+ t

θj−1+ζ

g[Sj(τ), τ | η, θj−1 + ζ] dτ, t > ζ
(j = 1, 2 . . . ).(2.8)

Hence, making use of (2.6), for j = 1, 2, . . . one obtains:

γj(t | θj−1) :=
dΓj(t | θj−1)

dt
=






0, t < ζ

g[S(t− ζ), t+ θj−1 | η, θj−1 + ζ], t > ζ.
(2.9)

The determination of the conditional pdf of interspike interval Ij (j = 1, 2, . . . ) is in
general unfeasible due to the memory effects present in the evolution of the process Z(t).
Hence, in the case of varying thresholds, analytical solutions are not available except in few
cases. For this reason, in the sequel we shall consider special diffusion processes X(t) and
suitable varying thresholds, such that the FPT pdf (2.2) satisfies the following property:

g[S(t− ζ), t+ θ | η, θ + ζ] = g[S(t− ζ), t− ζ | η, 0](2.10)

for all t > ζ and θ ≥ 0. Under assumption (2.10), from (2.9) one obtains:

γj(t | θj−1) =






0, t < ζ

g[S(t− ζ), t− ζ | η, 0], t > ζ
(j = 1, 2, . . . ).(2.11)

Eq. (2.11) shows that γj(t | θj−1) is independent of the time θj−1, so that I1 is independent of
Θ0 ≡ I0 and, in general, Ij is independent of Θj−1 = I0+I1+. . .+Ij−1 (j = 2, 3, . . . ). Hence,
if (2.10) holds, the interspike intervals I0, I1, . . . are independently distributed random
variables, with I1, I2, . . . also identically distributed.

Under assumption (2.10), we denote by I a random variable distributed as I1, I2, . . . and
by γ(t) ≡ γj(t | θj−1) its pdf. Hence, making use of (2.5) and (2.11), the first two moments
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of the interspike intervals I1, I2, . . . follow:

E(I) :=

∫ +∞

0

t γ(t) dt =

∫ +∞

ζ

t g[S(t− ζ), t− ζ | η, 0] dt

=

∫ +∞

0

(u+ ζ) g[S(u), u | η, 0] dt = ζ + E(Θ0),

(2.12)

E(I2) :=

∫ +∞

0

t2 γ(t) dt =

∫ +∞

ζ

t2 g[S(t− ζ), t− ζ | η, 0] dt

=

∫ +∞

0

(u+ ζ)2 g[S(u), u | η, 0] dt = ζ2 + 2 ζ E(Θ0) + E(Θ2
0),

where Θ0 is the FPT of X(t) through the continuous boundary S0(t) = S(t) starting at
X(0) = η. The variance of the interspike intervals I1, I2, . . . is then Var(I) = Var(Θ0).

If (2.10) holds, let hj(t) be the pdf of the random variable Θj describing the (j + 1)-th
firing time of the neuron, and let Hj(λ) be its Laplace transform (j = 0, 1, . . . ). We note
that h0(t) ≡ γ0(t | 0). Furthermore, since I0, I1, . . . are independently distributed random
variables, recalling (2.3), (2.5) and (2.11), for λ > 0 one has:

Hj(λ) :=

∫ +∞

0

e−λ t hj(t) dt =

∫ +∞

0

e−λ t γ0(t | 0) dt ·
[∫ +∞

0

e−λ t γ(t) dt

]j

=

∫ +∞

0

e−λ t g[S(t), t | η, 0] dt ·
[∫ +∞

ζ

e−λ t g[S(t− ζ), t− ζ | η, 0] dt

]j

= e−jλ ζ

[∫ +∞

0

e−λ t g[S(t), t | η, 0] dt

]j+1

= e−jλ ζ

[∫ +∞

0

e−λ t γ0(t | 0) dt

]j+1

(2.13)

for j = 0, 1, . . . Taking the inverse Laplace transform of (2.13) one is led to

hj(t) =






0, t < j ζ

[
γ0(t− j ζ)

](j+1)
, t > j ζ

(j = 0, 1, . . . ),(2.14)

where exponent (j+1) indicates (j+1)-fold convolution. In particular, if (2.10) holds, from
(2.3) and (2.12), or equivalently from (2.13), one obtains the means and the variances of
the subsequent firing times of the neuron in terms of the mean and of the variance of Θ0:

E(Θj) = E(Θ0) + j E(I) = j ζ + (j + 1)E(Θ0)

(j = 1, 2, . . . ).(2.15)

Var(Θj) = Var(Θ0) + j Var(I) = (j + 1) Var(Θ0)

In order to embody some physiological features of real neurons, several alternative mod-
els have been proposed in the literature (cf, for instance, [21], [24] and references therein).
In the next two Sections we shall investigate the properties of the interspike intervals and of
the subsequent firing times for the Wiener and Ornstein-Uhlenbeck neuronal models with
refractoriness for particular choices of time-depending thresholds.

3 Wiener model In this Section we shall assume that the membrane potential of the
neuron is modeled by a Wiener process {X(t), t ≥ 0}, defined in R, with drift and infinites-
imal variance

A1 = µ, A2 = σ2 (µ ∈ R, σ > 0).(3.1)



96 G. ALBANO, V. GIORNO, A.G. NOBILE AND L.M. RICCIARDI

Preliminarily, we shall disclose some properties of the FPT of X(t) through a linear bound-
ary and subsequently consider a return process Z(t) with refractoriness based on the Wiener
process and linear firing thresholds.

3.1 FPT for the Wiener process through a linear boundary Let T̃ be the FPT
of the Wiener process, defined in (3.1), through the threshold S̃(t) = At + B starting at
X(τ) = η < S̃(τ). The pdf of T̃ is given by (cf., for instance, [6] and [18]):

g[S̃(t), t | η, τ ] = g[At+ B, t | η, τ ] =
Aτ +B − η

σ
√

2 π (t− τ)3
exp

{
− [At+B − η − µ (t− τ)]2

2 σ2 (t− τ)

}

[S̃(τ) = Aτ +B > η].(3.2)

Remark 3.1 For the Wiener process (3.1), for Aτ +B > η and λ > 0 one has:

∫ +∞

τ

e−λ (t−τ) g[S̃(t), t | η, τ ] dt

= exp
{Aτ +B − η

σ2
(µ−A) − Aτ +B − η

σ2

√
(µ−A)2 + 2 σ2 λ

}
.(3.3)

Then,

P (T̃ < +∞) :=

∫ +∞

τ

g[S̃(t), t | η, τ ] dt

=






1, A τ +B > η, µ ≥ A

exp
{
−2 (A− µ) (Aτ +B − η)

σ2

}
, otherwise.

(3.4)

Proof. From (3.2), for λ > 0 one has:

∫ +∞

τ

e−λ (t−τ) g[S̃(t), t | η, τ ] dt =
Aτ +B − η

σ
√

2 π
exp

{
− (A− µ) (Aτ +B − η)

σ2

}

×
∫ +∞

0

z−3/2 exp
{
−

[
λ+

(A− µ)2

2 σ2

]
z
}

exp
{
− (Aτ +B − η)2

2 σ2 z

}
dz.(3.5)

Since (cf. [9], page 146, no. 28)

∫ +∞

0

z−3/2 e−p z e−α/(4 z) dz = 2

√
π

α
e−

√
α p (α > 0, p ≥ 0),(3.6)

choosing p = λ + (A − µ)2/(2 σ2) and α = 2 (Aτ + B − η)2/σ2, (3.3) immediately follows
from (3.5). Furthermore, by setting λ = 0 in (3.3), one obtains (3.4).

Remark 3.2 For the Wiener process (3.1), for Aτ +B > η and µ > A one has:

E(T̃ j) :=

∫ +∞

τ

(t− τ)jg[S̃(t), t | η, τ ] dt =
2 (Aτ +B − η)j+1/2

σ
√

2 π (µ−A)j−1/2

× exp
{
− (A− µ) (Aτ +B − η)

σ2

}
Kj−1/2

( (Aτ +B − η) (µ−A)

σ2

)
(j = 1, 2, . . . ),(3.7)
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where Kν(z) denotes the modified Bessel function of the third kind. Then,

E(T̃ ) =
Aτ +B − η

µ−A
, E(T̃ 2) =

(Aτ +B − η

µ−A

)2

+
(Aτ +B − η)σ2

(µ−A)3
(3.8)

for Aτ +B > η and µ > A.

Proof. If P (T̃ < +∞) = 1, making use of (3.2) for j = 1, 2. . . . one has:

E(T̃ j) =
Aτ +B − η

σ
√

2 π
exp

{
− (A− µ) (Aτ + B − η)

σ2

}

×
∫ +∞

0

zj−3/2 exp
{
− (A− µ)2 z

2 σ2

}
exp

{
− (Aτ +B − η)2

2 σ2 z

}
dz.(3.9)

Recalling that (cf. [9], page 146, no. 29):

∫ +∞

0

zν−1 e−p z e−α/(4 z) dz = 2
( α

4 p

)ν/2

Kν(
√
α p) (α > 0, p > 0)(3.10)

after setting p = (A− µ)2/(2 σ2), α = 2 (Aτ +B − η)2/σ2 and ν = j − 1/2, from (3.9) one
obtains (3.7). Furthermore, since (cf. [17], page 967 no. 8.468)

Kn+1/2(z) =

√
π

2 z
e−z

n∑

r=0

(n+ r)!

r! (n− r)! (2 z)r
(n = 0, 1, . . . ),

one has:

K1/2(z) =

√
π

2 z
e−z, K3/2(z) =

√
π

2 z
e−z

(
1 +

1

z

)
,

so that from (3.7) with j = 1, 2, relations (3.8) follow.

3.2 Interspike intervals for the Wiener model For the Wiener model of single
neuron activity, we consider a return process Z(t) in the presence of refractoriness, with
functions (2.4) chosen as follows:

S0(t) = S(t) = a t+ b

(3.11)

Sj(t) =






a(t− θj−1 − ζ) + b, t > θj−1 + ζ

+∞, otherwise
(j = 1, 2, . . . ),

with θ0, θ1, . . . representing the successive firing times. We assume a ≤ 0, so that the
thresholds (3.11) are non-increasing functions (decreasing if a < 0 and constant if a = 0).

Recalling (2.7), by virtue of (3.2) with A = a, B = b and τ = 0, we note that I0 = Θ0

is characterized by pdf:

γ0(t | 0) = g[S(t), t | η, 0] =
b− η

σ
√

2 π t3
exp

{
− (a t+ b− η − µ t)2

2 σ2 t

}
, b > η.(3.12)

From (3.4) and (3.12) there follows that P (Θ0 < +∞) = 1 if and only if b > η and µ ≥ a.
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Figure 3: For the Wiener model with µ = 0.5mV/msec and σ2 = 1mV2/msec, γ0(t) is plotted for
η = −70 mV, b = −60mV, and a = 0,−0.5,−1 mV/msec.

Figure 3 shows the FPT pdf γ0(t) = g[S(t), t | η, 0] for the Wiener model (3.1) with
µ = 0.5 mV/msec and σ2 = 1 mV2/msec through the threshold S(t) = (a t−60) mV starting
from η = −70 mV with a = 0,−0.5,−1 mV/msec.

Furthermore, if b > η and µ > a, the FPT moments are finite. Making use of (3.8) with
A = a, B = b and τ = 0, there hold:

E(Θ0) =
b− η

µ− a
, Var(Θ0) =

(b− η)σ2

(µ− a)3
·(3.13)

To analyze the interspike intervals I1, I2, . . . and the firing times Θ1,Θ2, . . . we first prove
that the FPT pdf of the Wiener process (3.1) through the linear boundary S(t) = a t + b
satisfies relation (2.10). To this purpose we note that

g[S(t− ζ), t+ θ | η, θ + ζ] = g[a(t− ζ) + b, t+ θ | η, θ + ζ]

= g[a (t+ θ) − a(θ + ζ) + b, t+ θ | η, θ + ζ],

from which, making use of (3.2) with A = a, B = b − a (θ + ζ), τ = θ + ζ and final time
chosen as t+ θ, we have:

g[S(t− ζ), t+ θ | η, θ + ζ] =
b− η

σ
√

2 π (t− ζ)3
exp

{
− [a (t− ζ) + b− η − µ (t− ζ)]2

2 σ2 (t− ζ)

}

≡ g[S(t− ζ), t− ζ | η, 0] (b > η)

for all t > ζ and θ ≥ 0. Therefore, (2.10) holds.
By virtue of (2.11), for b > η the pdf of interspike intervals Ij (j = 1, 2, . . . ) is:

γ(t) =






0, t < ζ

b− η

σ
√

2 π (t− ζ)3
exp

{
− [a (t− ζ) + b− η − µ (t− ζ)]2

2 σ2 (t− ζ)

}
, t > ζ.

(3.14)

From (3.4) and (3.14) there follows that P (Ij < +∞) = 1 (j = 1, 2, . . . ) if and only if b > η
and µ ≥ a.
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Figure 4 shows the interspike pdf γ(t), given by (3.14), for the Wiener model (3.1) with
µ = 0.5 mV/msec and σ2 = 1 mV2/msec in the presence of the linear firing thresholds (3.11)
in the case of η = −70 mV, b = −60 mV, a = 0,−0.5,−1 mV/msec and ζ = 1 msec (on the
left) and ζ = 10 msec (on the right). Figures 3 and 4 indicate that the difference between
γ0(t | 0) and γ(t) becomes more evident when the refractory period increases.
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Figure 4: For the Wiener model with µ = 0.5 mV/msec and σ2 = 1mV2/msec, γ(t) is plotted for
η = −70mV, b = −60mV, a = 0,−0.5,−1 mV/msec and ζ = 1 msec (on the left) and ζ = 10 msec
(on the right).

Furthermore, if b > η and µ > a, making use of (3.13) in (2.12), one obtains the mean
and the variance of the interspike intervals:

E(I) ≡ E(Θ0) + ζ =
b − η

µ− a
+ ζ, Var(I) ≡ Var(Θ0) =

(b− η)σ2

(µ− a)3
·(3.15)

In order to obtain the pdf of Θ1,Θ2, . . . , we first determine the Laplace transform of
γ0(t | 0). From (3.12), recalling (3.3) with A = a, B = b and τ = 0, one obtains:

∫ +∞

0

e−λ t γ0(t | 0) dt =

∫ +∞

0

e−λ t b− η

σ
√

2 π t3
exp

{
− (a t+ b− η − µ t)2

2 σ2 t

}
dt

= exp
{(µ− a) (b− η)

σ2
− b− η

σ2

√
(µ− a)2 + 2 σ2 λ

}
(b > η).(3.16)

Hence, from (2.13) for λ > 0 there follows:

Hj(λ) = e−λ j ζ exp
{(µ− a) (b− η) (j + 1)

σ2
− (b− η) (j + 1)

σ2

√
(µ− a)2 + 2 σ2 λ

}
(3.17)

for b > η. Then, taking the inverse Laplace transform of (3.17), for b > η the pdf of the
random variable Θj is obtained:

hj(t) =

∫ t

0

δ(τ − jζ) g
[
a(t− τ) + b(j + 1), t− τ | η(j + 1), 0

]
dτ

=






0, t < j ζ

g
[
a(t− j ζ) + b(j + 1), t− j ζ | η(j + 1), 0

]
, t > j ζ,
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or equivalently:

hj(t) =






0, t < j ζ

(b− η) (j + 1)

σ
√

2 π (t− j ζ)3
exp

{
− [a (t− j ζ) + (b− η) (j + 1) − µ (t− j ζ)]2

2 σ2 (t− j ζ)

}
, t > j ζ

(j = 0, 1, . . . ; b > η).(3.18)

We note that h0(t) coincides with γ0(t | 0), previous obtained in (3.12). Furthermore, (3.17)
yields P (Θj < +∞) = 1 (j = 0, 1, . . . ) if and only if b > η and µ ≥ a.

Figure 5 shows the pdf hj(t) (j = 0, 1, . . . , 5) for the Wiener model (3.1) with µ =
0.5 mV/msec and σ2 = 1 mV2/msec in the presence of the linear firing thresholds (3.11) in
the case of a = −0.5 mV/msec, b = −60 mV, η = −70 mV and ζ = 1 msec (on the left) and
ζ = 10 msec (on the right).
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Figure 5: For the Wiener model with µ = 0.5 mV/msec and σ2 = 1mV2/msec, hj(t) (j =
0, 1, . . . , 5) is plotted for η = −70mV, b = −60mV, a = −0.5 mV/msec and ζ = 1msec (on the
left) and ζ = 10 msec (on the right).

Finally, if b > η and µ > a the mean and the variance of the random variable Θj ,
describing the (j + 1)-th firing time of the neuron, follow from (2.15) and (3.13):

E(Θj) = j ζ + (j + 1)
b− η

µ− a
, Var(Θj) = (j + 1)

(b− η)σ2

(µ− a)3
(j = 0, 1, . . . ).(3.19)

4 Ornstein-Uhlenbeck model A more refined model that includes the spontaneous
exponential decay of the neuron’s membrane potential is the Ornstein-Uhlenbeck (OU)
neuronal model, namely the diffusion process {X(t), t ≥ 0}, defined in R, characterized by
drift and infinitesimal variance

A1(x) = −x− ̺

β
, A2 = σ2 (̺ ∈ R, β > 0, σ > 0).(4.1)

Differently from the Wiener model, in the absence of inputs the membrane potential expo-
nentially decays to the resting potential ̺ with a time constant β. We shall preliminarily
obtain some properties of the FPT of X(t) through an hyperbolic boundary and subse-
quently we shall consider a return process Z(t) with refractoriness based on the OU process
and hyperbolic firing thresholds.
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4.1 FPT for the OU process through a hyperbolic boundary Let T̃ be the FPT
of the OU process, defined in (4.1), through the threshold S̃(t) = ̺ + Ae−t/β + B et/β

starting from X(τ) = η < S̃(τ). The pdf of T̃ is given by (cf., for instance, [6], [8]):

g[S̃(t), t | η, τ ] = g
[
̺+Ae−t/β +B et/β, t | η, τ

]
=

2
[
̺+ Ae−τ/β +B eτ/β − η

]
e−(t−τ)/β

β

√
π σ2 β

(
1 − e−2 (t−τ)/β

)3

× exp

{
−

[
Ae−t/β +B et/β − (η − ̺) e−(t−τ)/β

]2

σ2 β
(
1 − e−2 (t−τ)/β

)
}

(4.2)

with S̃(τ) = ̺+Ae−τ/β +B eτ/β > η.

Remark 4.1 For the OU process (4.1) one has:

P (T̃ < +∞) =






1, ̺+ Ae−τ/β +B eτ/β > η, B ≤ 0

exp
{
−4B eτ/β (̺+Ae−τ/β +B eτ/β − η)

σ2 β

}
, otherwise.

(4.3)

Proof. From (4.2) one obtains:

P (T̃ < +∞) =

∫ +∞

τ

g[S̃(t), t | η, τ ] dt

=
̺+Ae−τ/β +B eτ/β − η√

π σ2 β
exp

{
−2B eτ/β (Ae−τ/β +B eτ/β + ̺− η)

σ2 β

}

×
∫ +∞

0

y−3/2 exp
{
−B

2 e2 τ/β y

σ2 β

}
exp

{
−

[
̺+Ae−τ/β +B eτ/β − η

]2

σ2 β y

}
dy,(4.4)

where the last equality follows after the change of variable y = e2 (t−τ)/β−1. Recalling (3.6)

with p = B2 e2 τ/β/(σ2 β) and α = 4
(
̺+Ae−τ/β +B eτ/β − η

)2
/(σ2 β), (4.3) immediately

follows from (4.4).

Remark 4.2 For the OU process (4.1), if S̃(t) = ̺ + Ae−t/β with ̺ + Ae−τ/β > η, one
has:

∫ +∞

τ

e−λ (t−τ) g[S̃(t), t | η, τ ] dt =
2λ β/2

√
π

Γ
(1

2
+
λβ

2

)
exp

{(̺+Ae−τ/β − η)2

2 σ2 β

}

×D−λβ

(̺+Ae−τ/β − η

σ

√
2

β

)
,(4.5)

where Dν(z) denotes the parabolic cylinder function, and

E(T̃ ) = β

[√
π ϕ1

(̺+Ae−τ/β − η

σ
√
β

)
−ψ1

(̺+Ae−τ/β − η

σ
√
β

)]
,

(4.6)

E(T̃ 2) = 2 β2

[√
π ln 2ϕ1

(̺+Ae−τ/β − η

σ
√
β

)
−
√
π ϕ2

(̺+Ae−τ/β − η

σ
√
β

)

+ψ2

(̺+Ae−τ/β − η

σ
√
β

)]
,
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where we have set:

ϕ1(z) =

∞∑

k=0

z2k+1

(2 k + 1) k!
, ϕ2(z) =

∞∑

n=0

z2n+3

(n+ 1)! (2n+ 3)

n∑

k=0

1

2k + 1
,

(4.7)

ψ1(z) =

∞∑

n=0

2n z2n+2

(n+ 1) (2n+ 1)!!
, ψ2(z) =

∞∑

n=0

2nz2n+4

(2n + 3)!! (n+ 2)

n∑

k=0

1

k + 1
·

Proof. If B = 0 and ̺ + Ae−τ/β > η, from Remark 4.1 it follows P (T̃ < +∞) = 1.
Furthermore, the FPT pdf for the OU process (4.1) through the threshold S̃(t) = ̺+Ae−t/β

starting from X(τ) = η < S̃(τ) immediately follows from (4.2):

g
[
̺+Ae−t/β, t | η, τ

]
=

2
[
̺+Ae−τ/β−η

]
e−(t−τ)/β

β

√
π σ2β

(
1−e−2 (t−τ)/β

)3
exp

{
−

[
Ae−t/β−(η−̺)e−(t−τ)/β

]2

σ2 β
(
1−e−2 (t−τ)/β

)
}

≡ ĝ
(
0, t− τ | ̺+Ae−τ/β − η),(4.8)

where ĝ(0, t | x0) denotes the FPT pdf through 0 at time t starting from x0 at the initial

time zero for the OU process X̂(t) characterized by drift Â1(x) = −x/β and infinitesimal

variance Â2 = σ2 (β > 0, σ > 0). Hence, from (4.8) one has:

∫ +∞

τ

e−λ (t−τ) g[S̃(t), t | η, τ ] dt =

∫ +∞

0

e−λ u ĝ(0 | ̺+Ae−τ/β − ̺) du,(4.9)

with ̺+Ae−τ/β − η > 0. Since (cf., for instance, [19]):

∫ +∞

0

e−λ t ĝ(0, t | x0) dt =
2λ β/2

√
π

Γ
(1

2
+
λβ

2

)
exp

{ x2
0

2 σ2 β

}
D−λβ

(x0

σ

√
2

β

)
(x0 > 0),

Eq. (4.5) immediately follows from (4.9). Furthermore, making use of (4.8) , for j = 1, 2, . . .
one has:

E(T̃ j) =

∫ +∞

τ

(t− τ)j g
[
̺+Ae−t/β, t | η, τ

]
dt

=

∫ +∞

0

zj ĝ
(
0, z | ̺+Ae−τ/β − η

)
dz = t̃j

(
0 | ̺+Ae−τ/β − η

)
,(4.10)

where t̃j(0 | x0) denotes the j-th moment of FPT for the OU process X̂(t) from x0 to the
state 0. Finally, recalling the expressions of t̃j(0 | x0) for j = 1, 2 (cf., for instance, [19]),
from (4.10) one immediately obtains (4.6).

4.2 Interspike intervals for the OU model For the OU model of single neuron
activity, a return process Z(t) in the presence of refractoriness is considered, where the
functions (2.4) are chosen as:

S0(t) = S(t) = ̺+ a e−t/β + b et/β

(4.11)

Sj(t) =






̺+ a exp
{
− t− θj−1 − ζ

β

}
+ b exp

{ t− θj−1 − ζ

β

}
, t > θj−1 + ζ

+∞, otherwise,
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for j = 1, 2, . . . , where θ0, θ1, . . . represent the successive firing times. We assume that b ≤ 0
and a ≥ b, so that the thresholds (4.11) are non-increasing functions.

Recalling (2.7), by virtue of (4.2) with A = a and B = b and τ = 0, we note that I0 ≡ Θ0

is characterized by pdf:

γ0(t | 0) =
2

(
̺+ a+ b− η

)
e−t/β

β

√
π σ2 β

(
1 − e−2 t/β

)3
exp

{
−

[
a e−t/β + b et/β − (η − ̺) e−t/β

]2

σ2 β
(
1 − e−2 t/β

)
}

(4.12)

with ̺+ a+ b > η. Due to (4.3) and (4.12), P (Θ0 < +∞) = 1 if and only if ̺+ a+ b > η
and b ≤ 0.

Figure 6 shows the FPT pdf γ0(t | 0) = g[S(t), t | η, 0] for the OU model (4.1) with
β = 5 msec, ̺ = −60 mV and σ2 = 1 mV2/msec through the firing threshold S(t) =
(−60 + a e−t/5)mV starting from η = −70 mV with a = 0, 50, 100 mV.
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Figure 6: For the OU model with β = 5 msec, ̺ = −60mV and σ2 = 1mV2/msec, γ0(t | 0) is
plotted for b = 0mV, η = −70mV and a = 0, 50, 100 mV.

In order to analyze the interspike intervals I1, I2, . . . and the firing times Θ1,Θ2, . . .
we first prove that the FPT pdf of the OU process (4.1) through the hyperbolic boundary
S(t) = ̺+ a e−t/β + b et/β satisfies relation (2.10). To this purpose, we note that

g[S(t− ζ), t+ θ | η, θ + ζ] = g
[
̺+ a e−(t−ζ)/β + b e(t+ζ)/β, t+ θ | η, θ + ζ

]

= g
[
̺+ a e(θ+ζ)/β e−(t+θ)/β + b e−(θ+ζ)/β e(t+θ)/β, t+ θ | η, θ + ζ

]
,

from which, making use of (4.2) with A = a e(θ+ζ)/β, B = b e−(θ+ζ)/β, τ = θ + ζ and final
time chosen as t+ θ, we obtain:

g[S(t− ζ), t+ θ | η, θ + ζ] =
2

(
̺+ a+ b − η

)
e−(t−ζ)/β

β

√
π σ2 β

(
1 − e−2 (t−ζ)/β

)3

× exp

{
−

[
a e−(t−ζ)/β + b e(t−ζ)/β − (η − ̺) e−(t−ζ)/β

]2

σ2 β
(
1 − e−2 (t−ζ)/β

)
}

≡ g[S(t− ζ), t− ζ | η, 0], ̺+ a+ b > η.

for all t > ζ and θ ≥ 0. Therefore, (2.10) holds.
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Making use of (2.11), for ̺+ a+ b > η the pdf of interspike interval Ij (j = 1, 2, . . . ) is
zero for t < ζ, whereas for t > ζ one has:

γ(t) =
2

(
̺+ a+ b− η

)
e−(t−ζ)/β

β

√
π σ2 β

(
1 − e−2 (t−ζ)/β

)3
exp

{
−

[
a e−(t−ζ)/β + b e(t−ζ)/β − (η − ̺) e−(t−ζ)/β

]2

σ2 β
(
1 − e−2 (t−ζ)/β

)
}

(4.13)

From (4.3) and (4.13) it follows that P (Ij < +∞) = 1 if and only if ̺+a+ b > η and b ≤ 0.
Figure 7 shows the interspike pdf γ(t), given in (4.13), for the OU model (4.1) with

β = 5 msec, ̺ = −60 mV and σ2 = 1 mV2/msec in the presence of the hyperbolic firing
thresholds (4.11) in the case of η = −70 mV, b = 0 mV, a = 0, 50, 100 mV and ζ = 1 msec
(on the left) and ζ = 10 msec (on the right). Figures 6 and 7 show that the difference
between γ0(t | 0) and γ(t) becomes more evident as the refractory period increases.
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Figure 7: For the OU model with β = 5msec, ̺ = −60 mV and σ2 = 1mV2/msec, γ(t) is plotted
for η = −70mV, b = 0mV, a = 0, 50, 100 mV and ζ = 1msec (on the left) and ζ = 10 msec (on the
right).

If b = 0 and ̺+a > η, the FPT moments are finite and, making use of (4.6) with A = a
and τ = 0, one has:

E(Θ0) = β

[√
π ϕ1

(̺+ a− η

σ
√
β

)
−ψ1

(̺+ a− η

σ
√
β

)]

E(Θ2
0) = 2 β2

[√
π ln 2ϕ1

(̺+ a− η

σ
√
β

)
−
√
π ϕ2

(̺+ a− η

σ
√
β

)
+ψ2

(̺+ a− η

σ
√
β

)]
.

where ϕ1, ϕ2 and ψ1, ψ2 are given in (4.7). Furthermore, if b = 0 and ̺ + a > η, making
use of (4.14) in (2.12) one obtains the mean and the variance of the interspike intervals:

E(I) = ζ + E(Θ0) = ζ + β

[√
π ϕ1

(̺+ a− η

σ
√
β

)
−ψ1

(̺+ a− η

σ
√
β

)]
,

(4.14)

Var(I) = Var(Θ0) = 2 β2

[√
π ln 2ϕ1

(̺+ a− η

σ
√
β

)
−
√
π ϕ2

(̺+ a− η

σ
√
β

)
+ψ2

(̺+ a− η

σ
√
β

)]

−β2

[√
π ϕ1

(̺+ a− η

σ
√
β

)
−ψ1

(̺+ a− η

σ
√
β

)]2

.
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In order to obtain the pdf of Θ0,Θ1, . . . for β = 0, we first evaluate the Laplace transform
of γ0(t | 0). Recalling (4.5) with A = a and τ = 0, from (4.12) for β = 0 one obtains:

∫ +∞

0

e−λ tγ0(t | 0) dt=

∫ +∞

0

2 e−λ t
(
̺+ a− η

)
e−t/β

β

√
π σ2 β

(
1 − e−2 t/β

)3
exp

{
−

[
a e−t/β − (η − ̺) e−t/β

]2

σ2 β
(
1 − e−2 t/β

)
}
dt

=
2λ β/2

√
π

Γ
(1

2
+
λβ

2

)
exp

{(̺+ a− η)2

2 σ2 β

}
D−λβ

(̺+ a− η

σ

√
2

β

)
.(4.15)

Hence, from (2.13) for λ > 0 one has:

Hj(λ) = e−jλ ζ
[2λ β/2

√
π

Γ
(1

2
+
λβ

2

)
D−λβ

(̺+ a− η

σ

√
2

β

)]j+1

exp
{(̺+ a− η)2(j + 1)

2 σ2 β

}
,

so that taking the inverse Laplace transform, for j = 0, 1, . . . one is led to

hj(t) =






0, t < j ζ

[
2

(
̺+ a− η

)
e−(t−j ζ)/β

β

√
π σ2 β

(
1 − e−2 (t−j ζ)/β

)3
exp

{
−

[
a e−(t−j ζ)/β − (η − ̺) e−(t−j ζ)/β

]2

σ2 β
(
1 − e−2 (t−j ζ)/β

)
}](j+1)

t > j ζ.

(4.16)

Finally, if b = 0 and ̺ + a > η the mean and the variance of the random variable Θj,
describing the (j + 1)-th firing time of the neuron (j = 0, 1, . . . ) follow from (2.15) and
(4.14):

E(Θj) = j ζ + (j + 1) β

[√
π ϕ1

(̺+ a− η

σ
√
β

)
−ψ1

(̺+ a− η

σ
√
β

)]
,

(4.17)

Var(Θj) = 2 β2 (j + 1)

[√
π ln 2ϕ1

(̺+ a− η

σ
√
β

)
−
√
π ϕ2

(̺+ a− η

σ
√
β

)
+ψ2

(̺+ a− η

σ
√
β

)]

−β2 (j + 1)

[√
π ϕ1

(̺+ a− η

σ
√
β

)
−ψ1

(̺+ a− η

σ
√
β

)]2

.
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