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ON THE FIRST PASSAGE TIME FOR AUTOREGRESSIVE PROCESSES
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Abstract. The first passage time problem for an autoregressive process AR(p) is
examined. When the innovations are gaussian, the determination of the first pas-
sage time probability distribution is closely related to computing a multidimensional
integral of a suitable gaussian random vector, known in the literature as orthant prob-
ability. Recursive equations involving the first passage time probability distribution
are given and a numerical scheme is proposed which takes advantage of the recursion.
Compared with the existing procedures in the literature, the algorithm we propose
is computationally less expensive and reaches a very good accuracy. The accuracy is
tested on some closed form expressions we achieve for special choices of the AR(p)
parameters.

1 Introduction Let Wt with t ∈ {. . . ,−2,−1, 0, 1, 2, . . .} be a sequence of independent
and identically distributed (i.i.d.) random variables (r.v.’s) on a probability space (Ω,F, P ).
A general linear process {Xt} can be defined as

Xt =

∞
∑

t=−∞
αtWt,(1.1)

where {αt} is a sequence of real numbers. The autoregressive AR(p), the moving average
MA(q) and the autoregressive moving average ARMA(p, q) are all special cases of linear
processes. Discrete time series models are commonly used to represent a wide variety
of data: from storage models to exchange rates, from growth of populations to human
endeavor.

The purpose of the present paper is to determine the probability distribution (p.d.) of
the random variable (r.v.) representing the instant when, for the first time, a dynamic
system by enters a preassigned critical region of the state space. In making decisions, we
may want to know how likely it is that the process will attain a certain high level before it
drops back to or even below the present level, or we may want to know the expected time
for the process to reach a certain level. So, the attention will be devoted to the instance
in which such a critical region collapses into one single point, while the system is described
mathematically by a linear process.

As first step of a theory involving more general linear processes, we examine AR(p)
models, one of the most important among time series. Studies related to the first passage
time (FPT) problem for AR(1) sequences are often employed in application fields such as
surveillance analysis [8], signal detection and many other areas. In economy, the role played
by the AR(p) models is well known and confirmed by a wide and detailed literature, see
for instance [3]. Recently, AR(p) models have been proposed to study neuronal interspike
intervals, assuming the greater is the dependency of the neuronal interspike intervals, the
stronger is the memory of the process (see [11] and references therein).
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Let us recall that the analytical results on FPT problems are mostly centered on stochas-
tic processes of diffusion type, where the Markov property plays a leading role in handling
the related transition probability density function (pdf), see [16] for a review. FPT distri-
butions have explicit analytical expressions also for the class of stochastic processes named
the Levy type anomalous diffusion, in which the mean square displacement of the diffusive
variable Xt scales with time as tγ with 0 < γ < 2 (see [15] and references therein). Never-
theless, no closed forms of FPT distributions are available in the literature, apart from few
special cases. Thus numerical algorithms or simulation procedures have been resorted to in
order to get more information on the FPT problem. In particular, simulation procedures
are suitable to being implemented on parallel computers, see [6].

A typical simulation procedure samples n values of the FPT r.v., by a suitable con-
struction of N ≥ n time-discrete paths, so that suitable estimators are obtained. However,
as shown through examples in the last section, a Monte Carlo simulation via (1.1) is not
always a proper method to approximate distribution and expectation of FPT r.v.’s with
high accuracy, see also [7]. So different numerical procedures are hoped for.

The martingale technique has already been used in [13] and [14] for deriving analyti-
cal approximations to the distribution and expectation of the FPT r.v. for discrete and
continuous time AR(1) type processes. An integral-equation approach, together with the
state space representation of time series models, are applied in [2] in order to evaluate exit
probabilities from bounded regions for AR(p) models. Numerical schemes are used to solve
the constructed integral equations.

Here, by using the state space representation of time series models, we derive recursive in-
tegral equations for the FPT p.d. Recursive integration methodologies have many statistical
applications and significantly reduce the computational time when applied to the evalua-
tion of high dimensional integrals, see [10]. Here, we propose a Gauss-Laguerre quadrature
formula, in order to evaluate numerically these recursive equations. The accuracy of the
proposed method is tested on some closed form expressions achieved in correspondence of
special values of the parameters {αt}. Due to the connection of the FPT problem with the
evaluation of orthant probabilities [5], the method is analyzed for gaussian AR(p) models.

The paper is structured as follows. In Section 2 we define the FPT r.v. for an autoregres-
sive process AR(p), showing its connection with the computation of the so-called orthant
probabilities, when the innovations are gaussian. In Section 3, we recall the state space
representation of an AR(p) model, computing the recursive structure of the vector mean
and of the covariance matrix. In Section 4, we analyze the asymptotic behavior of the FPT
p.d. and evaluate the occupation time. In Section 5, recursive equations are given charac-
terizing the FPT p.d. The fairness of the FPT r.v. is also stated. Orthant probabilities
play a special role in expressing the mean of the FPT r.v., when we add more hypotheses
on {αt}. Section 6 is devoted to the computation of taboo probabilities and Section 7 gives
upper and lower bounds for the FPT cumulative distribution function (cdf). In Section 8,
we show comparisons of some numerical results with the ones existing in the literature.

2 Autoregressive processes A process {Xn} is called an autoregression of order p ∈ N,
or AR(p) model, if it satisfies

Xn = α1Xn−1 + · · · + αpXn−p +Wn n ≥ 1(2.1)

for some α1, . . . , αp ∈ R, where (X0, X−1, . . . , X1−p) is the vector of initial values and
{Wn} is a sequence of i.i.d. r.v.’s, named innovations, with finite mean and finite variance.
In the following we assume Wn having a gaussian distribution N(0, σ2), which is the most
natural choice to describe a noise component.
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Define the FPT r.v. T of {Xn} through a constant boundary S as

T = minn≥1{Xn ≥ S},

where P(X0 < S,X−1 < S, . . . , X1−p < S) = 1. Set X0 = (X0, X−1, . . . , X1−p)
T . In the

following, we assume the process starts from a fixed position under the boundary, i.e.

P(X0 = x0) = 1,(2.2)

with x0 ∈ (−∞, S)p and denote by Px0
(T = n) the probability that the process {Xn}

reaches the boundary at the time n, being started in x0. The region Op = (−∞, S)p is
known in the literature as orthant region, see [17].

In order to evaluate the FPT p.d., observe that, if p = 1, {Xn} is trivially a Markov
chain and it can be viewed in one sense as an extension of a gaussian random walk [12]. If
p > 1, the Markov property does not hold anymore so that different considerations should
be done in order to gain some information on the FPT problem.

First of all, we have

Px0
(T = n) = P(X1 < S,X2 < S, . . . , Xn−1 < S,Xn ≥ S|X0 = x0)(2.3)

and due to the hypotheses on {Xn},

Px0
(T = n) =

∫

Dn

1

(2π)n/2|Σn|1/2
exp

{

−1

2
(x− mn)T Σ−1

n (x− mn)

}

dx,

where Dn = (−∞, S)n−1 × [S,∞) and mn and Σn are respectively mean vector and co-
variance matrix of the vector (X1, X2, . . . , Xn)T . By using (2.1) and (2.2), it can be stated
|Σn| > 0 for every n ≥ 1. In the following, we will provide a proof by using some different
technicalities (see Remark 3.1).

Equation (2.3) can be rewritten as

Px0
(T = n) =

{

1 − P1(S,Σ1), if n = 1,
Pn−1(S,Σn−1) − Pn(S,Σn), if n > 1,

(2.4)

where

Pn(S,Σn) = P [∩n
i=1(Xi < S)|X0 = x0]

=

∫

On

1

(2π)n/2|Σn|1/2
exp

{

−1

2
(x− mn)T Σ−1

n (x− mn)

}

dx(2.5)

are the so-called orthant probabilities, due to the integration regions On = (−∞, S)n. A
more general orthant probability is Pn(S,Σn) with On = ×n

i=1(−∞, Si) and S the vector
(S1, S2, . . . , Sn).

So, the problem of characterizing Px0
(T = n) could be bring back to the evaluation of

orthant probabilities. Unless n ≤ 3 or Σn = In, where In is the identity matrix, no closed
form expressions are known for Pn(S,Σn) so its evaluation requires numerical methods, see
[4] for an updated review. The main problem of numerical evaluations of Pn(S,Σn) is the
growing complexity of the involved multidimensional integrals depending on n.

The relation between orthant probabilities and the FPT problem discloses a new method
to evaluate such multivariate integrals [5]. Here, by means of the state space representation
of {Xn} as Markov chain on R

p [3], we give recursive equations for the FPT p.d. which
turn out to be useful also in computing orthant probabilities.
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3 Representation of an autoregressive process as Markov chain Set

F =











α1 . . . αp−1 αp

1 . . . 0 0
... . . .

...
...

0 . . . 1 0











and G =











1
0
...
0











.

Then, equation (2.1) can be rewritten as:

Yn = FYn−1 +GWn,(3.1)

with Yn = (Xn, Xn−1, . . . , Xn−p+1)
T and Y0 = X0. Being F and G not dependent from

n, the Markov chain {Yn} is temporally homogeneous. The conditional pdf of Yn given
Yn−1 = x is

fYn|Yn−1
(y|x) =

1√
2πσ2

exp

{

−1

2
(y − Fx)T (y − Fx)

}

,(3.2)

where x and y are column vectors of R
p. Due to the temporally homogeneous property, the

function fYn|Yn−1
(y|x) does not depend on n, so it will be denoted by f(y|x). Moreover, if

x = (x1, x2, . . . , xp)
T then y = (y, x1, . . . , xp−1)

T due to (3.1), so that the conditional pdf
(3.2) becomes

f(y|x) =
1√

2πσ2
exp







− 1

2σ2

(

y −
p
∑

i=1

αixi

)2






= h(y|x), y ∈ R(3.3)

which is crucial in our discussion, as we will see later on.

Proposition 3.1 If P(Y0 = x0) = 1, then Yn is a multidimensional gaussian vector with
mean mn and covariance matrix ΣYn

mn = Fnx0 and ΣYn = σ2CnC
T
n ,(3.4)

where Cn is a p×n matrix built collocating side by side the vectors F jG, j = 0, 1, . . . , n−1,
that is

Cn = [Fn−1G|Fn−2G| . . . |FG|G].(3.5)

Proof: By induction on n, equation (3.1) gives

Yn = FnY0 +

n
∑

j=1

Fn−jGWj = FnY0 + CnWn,(3.6)

where Wn = (W1,W2, . . . ,Wn)T and Cn is given in (3.5).

If p = 1, then Yn = Xn and y0 = x0. So we have E[Xn] = αn
1x0 and Cn = (αn−1

1 , . . . , α1, 1).
The following proposition gives the expression of Cn elements, when p > 1.

Proposition 3.2 Assume Cn given in (3.5), then

(Cn)i,j =







a
(n−(i+j)+1)
1 , if j < n− i+ 1,

1, if j = n− i+ 1,
0, if j > n− i+ 1,

(3.7)
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where a
(j)
1 is the first component of a sequence of row vectors {a(j)}j≥1, recursively defined

by

a(0) = G and

{

a
(j)
i = αi a

(j−1)
1 + a

(j−1)
i+1 , i = 1, 2, . . . , p− 1,

a
(j)
p = αp a

(j−1)
1 .

(3.8)

Proof: By induction on n, set n = 1. Being C1 = G, then (3.7) follows immediately.
Suppose (3.7) holds for n = k − 1. Being Ck = [FCk−1|G], then (3.7) holds for i ≥ 2,
whereas for i = 1 we have

(Ck)1,k−j =

min{j,p}
∑

i=1

αi a
(j−i)
1 for j = k − 1, k − 2, . . . , 1.

From (3.8) for i = 1, we have a
(j)
1 = (Ck)1,k−j for j = k−1, k−2, . . . , 1 by which the result

follows.

Since Cn is a triangular matrix whose elements on the second diagonal are all different from
zero, the covariance matrix ΣYn has full rank. Moreover from (3.4), we have

(ΣYn)i,j = σ2

n−j+i
∑

t=i

a
(n−t)
1 a

(n−t−j+i)
1 for j > i,

so that

Var(Xk) = σ2

(

1 +

k−1
∑

i=1

[a
(i)
1 ]2

)

k = n− p+ 1, . . . , n.(3.9)

If p = 1, then Var(Xn) = σ2
∑n−1

i=0

(

α2
1

)i
. Equations (3.8) allow to compute explicitly the

mean vector mn, by calculating the powers of F.

Proposition 3.3 We have

Fn =

{

(a(n),a(n−1), . . . ,a(n−p+1))T , if n ≥ p,

(a(n),a(n−1), . . . ,a(1), e(1), . . . , e(p−n))T , if n < p,
(3.10)

where {a(j)}j≥1 is given in (3.8) and

e
(j)
i =

{

1, if i = j,
0, if i 6= j.

Proof: Observe that F = (a(1), e(1), . . . , e(p−1))T . Equation (3.10) follows by induction on
n and by the following identity

a
(j)
k =

min{j,p}
∑

i=1

αi a
(j−i)
1 , for j ≥ 1 and k = 1, 2, . . . , p.

The above identity can be stated by applying recursively (3.8).
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Remark 3.1 From the first equation in (3.6) and Proposition 3.3, we have

Xn = a(n)x0 +

n
∑

j=1

a
(n−j)
1 Wj ,

so that

Cov(Xk+n, Xk) = E









k+n
∑

j=1

a
(k+n−j)
1 Wj









k
∑

j=1

a
(k−j)
1 Wj







 = σ2
k
∑

j=1

a
(k−j)
1 a

(k+n−j)
1 ,

which gives (3.9) when n = 0. In particular in (2.5) we have Σn = Ln L
T
n where

(Ln)i,j =







0, if i < j,
1, if i = j,

a
(i−j)
1 , if i > j.

The matrix Ln has full rank, since it is a lower triangular matrix with elements on the main
diagonal all equal to 1.

4 Occupation time For every borel set B ⊂ R, the occupation time ηB is the number
of visits of Xn to B after time zero. When B = (S,∞), we denote by ηS the number of
times that the process is over S :

ηS =

∞
∑

n=1

1(Xn > S),(4.1)

where 1(·) is the indicator function. From (4.1), we have

E[ηS |Y0 = x0] =

∞
∑

n=1

P (Xn > S|Y0 = x0) .(4.2)

In order to compute E[ηS |Y0 = x0], we need to evaluating P (Xn > S|Y0 = x0) . Due to
Remark 3.1, we have

P (Xn > S|Y0 = x0) =
1

2















1 − Erf









S − a(n)x0
√

2σ2
(

1 +
∑n−1

i=1 [a
(i)
1 ]2

)























,(4.3)

where

Erf(x) =
2√
π

∫ x

0

exp(−t2) dt, x ∈ R.

Theorem 4.1 If the eigenvalues of F fall within the open unit disk in R, then

lim
n→∞

P (Xn > S|Y0 = x0) =
1

2

[

1 − Erf

(

S√
2σ2s2

)]

,

where limn→∞ Var(Xn) = σ2s2 <∞.
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Proof: If the eigenvalues of F fall within the open unit disk in R, then limn→∞ Fn = 0
(cf. [9]) with geometric rate, so that

lim
n→∞

a(n)x0 = 0 and lim
n→∞

Var(Xn) = σ2s2 <∞.

The result follows from (4.3).

Corollary 4.1 If the eigenvalues of F fall within the open unit disk in R, then E[ηS |Y0 =
x0] is not finite.

Corollary 4.2 If the eigenvalues of F fall within the open unit disk in R, then

lim
n→∞

Pn+1(S,Σn+1)

Pn(S,Σn)
=

1

2

{

1 + Erf

[

S√
2σ2s2

]}

,(4.4)

with Pn(S,Σn) orthant probability in (2.5).

Note that the hypothesis of Theorem 4.1 is equivalent to require the linear process is causal,
a property not of the process {Xn} alone, but rather of the relationship between the two
processes {Xn} and {Wn}. For a linear process, this property means that {Xn} is expressible
in terms only of {Wk} for k ≤ n (cf. [3]). This requirement appears to be natural for a
wide range of applications. For Markov chains on countable state spaces, the statement of
Corollary 4.1 is sufficient to prove that the chain reaches any region of the state space almost
surely. For Markov chains on general state spaces, we need to add some more hypotheses
on the model, which will be clarified in the next section. Finally, due to (2.4), Corollary
4.2 states that Px0

(T = n) goes to zero with geometric rate when n goes to infinity.

Note that, if p = 1, the hypothesis of Theorem 4.1 gives |α1| < 1. From (3.9) and Remark
3.1, we have

Var(Xn) = σ2 1 − α2n
1

1 − α2
1

, Cov(Xk+n, Xk) = σ2α
n
1 (1 − α2k

1 )

1 − α2
1

and s2 = (1 − α2
1)

−1. If |α1| = 1, from (3.9), we have limn→∞ Var(Xn) = ∞. Being
limn→∞E(Xn) = x0, from (4.3) we have limn→∞ P (Xn > S|X0 = x0) = 1/2 and the result
of Corollary 4.1 still holds.

5 First passage time Denote the one-step transition pdf of the chain Yn by

P (x,D) = P(Yn ∈ D|Yn−1 = x),

with x ∈ R
p and D = D1 ×D2 × · · · ×Dp ∈ B(Rp), where B(Rp) is the σ-field generated

by the borel sets of R
p. From (3.3), we have

P (x,D) =

∫

D

f(y|x) dy =

∫

D1

h(y|x) dy iff (x1, . . . , xp−1) ∈ D2 × · · · ×Dp,(5.1)

otherwise being zero.

Theorem 5.1 For any x0 ∈ R
p and S ∈ R

Px0
(T = n) =







∫∞
S
h(y|x0) dy, if n = 1,

∫ S

−∞ h(y|x0)P(y;x0,1;... ;x0,p−1)T (T = n− 1) dy, if n > 1.

(5.2)
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Proof: From (2.3) and (3.1), we have

Px0
(T = n) = P(Yn ∈ D,Yn−1 ∈ Op, . . . ,Y1 ∈ Op|Y0 = x0),(5.3)

where D = [S,∞)×(−∞, S)p−1 and Op = (−∞, S)p. Due to the Markov property of {Yn},
equation (5.3) can be recursively rewritten

Px0
(T = n) =







P (x0, D), if n = 1,

∫

Op
f(y|x0)Py(T = n− 1) dy, if n > 1.

(5.4)

The result follows from (5.1) and (3.3).

The following corollary is the first step to implementing recursively equations (5.2).

Corollary 5.1 If x0 ∈ (−∞, S)p, then

Px0
(T = n) =

1

2
φn

(

S − αx0√
2σ2

)

, n ≥ 1(5.5)

where φ1(x) = 1 − Erf(x) = Erfc(x) and

φn(x) =
1√
π

∫ ∞

0

exp[−(x− t)2]φn−1

[

α1t+
S − αw√

2σ2

]

dt,(5.6)

with α = (α1, α2, . . . , αp) and w = (S;x0,1; . . . ;x0,p−1)
T .

Proof: From (5.2), we have

Px0
(T = 1) =

1√
2 π σ2

∫ ∞

S

exp

{

− (y − αx0)
2

2 σ2

}

dy =
1

2
Erfc

(

S − αx0√
2σ2

)

,

by which equation (5.5) follows for n = 1. By induction on n, suppose equation (5.5) true
for n = k − 1. From (5.2), we have

Px0
(T = k) =

∫ S

−∞
h(y|x0)P(y;x0,1;... ;x0,p−1)T (T = k − 1) dy

=
1

2
√

2π σ2

∫ S

−∞
exp

{

− (y − αx0)
2

2σ2

}

φk−1

[

S − α1y −
∑p

i=2 αix0,i−1√
2σ2

]

dy,(5.7)

where we have replaced P(y;x0,1;... ;x0,p−1)T (T = k−1) by the function obtained from (5.5) for

n = k−1 and starting point (y;x0,1; . . . ;x0,p−1)
T ∈ (−∞, S)p, since y < S. The expression

(5.5) for n = k follows by replacing y = S − t
√

2σ2 in the integral (5.7).

Remark 5.1 Suppose α1 = 0. From equation (5.5) we have:

Px0
(T = n) =































1

2
Erfc

(

S − αx0√
2σ2

)

, if n = 1

1

22
Erfc

(

S − αw√
2σ2

)

Erfc

(

αx0 − S√
2σ2

)

, if n = 2

1

2n−2
Px0

(T = 2)

[

Erfc

(

αw − S√
2σ2

)]n−2

, if n ≥ 3.

(5.8)

So Px0
(T = n) goes to zero with geometric rate when n goes to infinite, relaxing any

hypothesis on the eigenvalues of F.
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Proposition 5.1 The FPT r.v. T is fair, that is Px0
(T <∞) = 1.

Proof: Summing Px0
(T = n) in (5.2) for n ≥ 1 gives

L(x0) = P (x0, D) +

∫ S

−∞
h(y1|x0)L[(y1;x0,1; . . . ;x0,p−1)

T ] dy1,(5.9)

where D = [S,∞) × (−∞, S)p−1,

L(x0) =
∑

n≥1

Px0
(T = n) and L[(y1;x0,1; . . . ;x0,p−1)

T ] =
∑

n≥1

P(y1;x0,1;... ;x0,p−1)T (T = n).

Set z = S − y1 in the integral of equation (5.9). We have

L(x0) = P (x0, D) +

∫ ∞

0

h(S − z|x0)L[(S − z;x0,1; . . . ;x0,p−1)
T ] dz.(5.10)

Define K to be the operator such that

K[L(x0)] =

∫ ∞

0

h(S − z|x0)L[(S − z;x0,1; . . . ;x0,p−1)
T ] dz.

Due to (3.3), this operator is compact. Indeed a sufficient condition for K to be compact
is to have the kernel bounded and continuous (cf. [1]), which is true for h(S − z|x0). So by
virtue of the Fredholm alternative, the equation exhibits a unique solution. Since L(x0) = 1
satisfies (5.10), the result follows.

5.1 Mean of the FPT r.v. The goal of this section is to prove that if the eigenvalues
of F fall within the open unit disk in R, then the FPT mean is finite. To this aim, we first
need to prove the following lemma.

Lemma 5.1 If the eigenvalues of F fall within the open unit disk in R, then

∞
∑

n=1

Pn(S,Σn) <∞.

Proof: Let Fx0
(n) be the FPT cdf, that is

Fx0
(n) =

n
∑

i=1

Px0
(T = i).

From (2.4), we have

Fx0
(n) = 1 − Pn(S,Σn).(5.11)

As T is a fair r.v., then
lim

n→∞
Pn(S,Σn) = 0.

The result follows from Corollary 4.2, by which the sequence {Pn(S,Σn)} decreases to zero
with a geometric rate, if the eigenvalues of F fall within the open unit disk in R.
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From (5.11), we have
Px0

(T > n) = Pn(S,Σn)

and ∞
∑

n=1

Px0
(T ≥ n) = 1 +

∞
∑

n=1

Pn(S,Σn) <∞,

due to Lemma 5.1 and Proposition 5.1. As T is a r.v. assuming only nonnegative integer
values, then

Ex0
[T ] =

∞
∑

n=1

Px0
(T ≥ n),

by which we state the following theorem.

Theorem 5.2 If the eigenvalues of F fall within the open unit disk in R, then the FPT
mean is finite and

Ex0
[T ] = 1 +

∞
∑

n=1

Pn(S,Σn).

6 Taboo probability We define the n-step taboo probability as

AP
n(x0, B) = P(Xn ∈ B, TA ≥ n|X0 = x0),

where A,B ∈ B(R), TA = minn≥1{Xn ∈ A} and x0 ∈ A
p
. So the n-step taboo probability

AP
n(x0, B) denotes the probability of a transition to B in n steps, avoiding the set A.

Theorem 6.1 Suppose A = (−∞, a] and B = [b,∞) with a < b. For any x0 ∈ (a,∞)p, we
have

AP
n(x0, B) =































1

2
ϕ1

(

b− αx0√
2 σ2

)

, if n = 1,

1

2
ϕn

(

αx0 − a√
2 σ2

)

, if n > 1,
(6.1)

where

ϕn(x) =























Erfc(x), if n = 1,
1√
π

∫ ∞

0

exp[−(x− t)2] Erfc

(

b− αw√
2σ2

− α1t

)

dt, if n = 2,

1√
π

∫ ∞

0

exp[−(x− t)2]ϕn−1

(

αw − a√
2σ2

+ α1t

)

dt, if n > 3,

with α = (α1, α2, . . . , αp) and w = (a;x0,1; . . . ;x0,p−1)
T .

Proof: As in Theorem 5.1, the taboo probabilities satisfy the iterative relations

AP
n(x0, B) =







∫∞
b h(y|x0) dy, if n = 1,

∫∞
a h(y|x0) AP

n−1[(y;x0,1; . . . ;x0,p−1)
T , B] dy, if n > 1.

(6.2)

For n = 1 the result follows immediately, being AP
1(x0, B) = P (x0, B). For n > 1 the

result follows by replacing y = t
√

2σ2 + a in (6.2), as already done in the proof of Corollary
5.1.
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Close to taboo probabilities, there are the probabilities of first entrance in B avoiding the
set A. If A = (−∞, a] and B = [b,∞) with a < b, these probabilities are related to the
upper exit time from [a, b], i.e. the probabilities of crossing the level b before the level a :

P a,b
n (x0) = P(a < X1 < b, . . . , a < Xn−1 < b,Xn ≥ b|X0 = x0) = Px0

(TA ≥ n, TB = n).

For A = (−∞, a] and B = [b,∞), we have

AP
n(x0, B) ≥ P a,b

n (x0).

The proof of the next theorem is similar to the one of Theorem 6.1.

Theorem 6.2 Suppose a < b. Then for any x0 ∈ (a,∞)p the upper exit time p.d. is

P a,b
n (x0) =

1

2
ψn

(

b− αx0√
2 σ2

)

,(6.3)

where ψ1(x) = Erfc(x) and for n ≥ 2

ψn(x) =
1√
π

∫
b−a√
2σ2

0

exp[−(x− t)2]ψn−1

(

b− αw√
2σ2

+ α1t

)

dt,(6.4)

with α = (α1, α2, . . . , αp) and w = (b;x0,1; . . . ;x0,p−1)
T .

Remark 6.1 If α1 = 0, equation (6.4) may be rewritten

ψn(x) =
1

2

[

Erf(x) − Erf

(

x− b− a√
2σ2

)]

ψn−1

(

b− αw√
2σ2

)

,(6.5)

and in particular for n ≥ 2

ψn

(

b− αw√
2σ2

)

=
1

2n−1

[

Erf

(

b− αw√
2σ2

)

− Erf

(

a− αw√
2σ2

)]n−1

Erfc

(

b− αw√
2σ2

)

,(6.6)

applying (6.5) recursively. Therefore, replacing (6.6) in (6.3), we have

P a,b
n (x0) =

1

2n

[

Erf

(

b− αw√
2σ2

)

− Erf

(

a− αw√
2σ2

)]n−1

Erfc

(

b− αw√
2σ2

)

,(6.7)

for n ≥ 2.

7 Bounds for the first passage time cumulative distribution function In the
following, we give some bounds for the FPT cdf, depending on some properties of orthant
probabilities. First, we recall a result due to Plackett and later stated by Slepian in a more
general form (see [17]).

Theorem 7.1 Let X ≡ (X1, X2, . . . , Xn)T and Y ≡ (Y1, Y2, . . . , Yn)T be standard gaus-
sian vectors, with (ΣX

n )ij = ρX
ij and (ΣY

n )ij = ρY
ij the correlation matrix respectively of X

and Y. If ρX
ij ≥ ρY

ij for all i, j = 1, 2, . . . , n then

Pk(S,ΣX
k ) ≥ Pk(S,ΣY

k ), k = 1, 2, . . . , n.(7.1)

The previous theorem states that Pk(S,Σk) is a non-decreasing function of ρij ∈ I(i,j) =
{ρij : Σk is positive definite}.
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Proposition 7.1 [Lower Bound] Set

ρ(n)
max = max

i,j=1,2,... ,n;i 6=j















∑min{i,j}
t=1 a

(i−t)
1 a

(j−t)
1

√

(

1 +
∑i−1

t=1[a
(t)
1 ]2

)(

1 +
∑j−1

t=1 [a
(t)
1 ]2

)















.

If x0 ∈ (−∞, S)p, then for n ≥ 2

Fx0
(n) ≥

{

1 − Un[S
(n)
max, ρ

(n)
max], if ρ

(n)
max ∈ [0, 1),

1 − Φn[S
(n)
max], if ρ

(n)
max ≤ 0,

where S
(n)
max is the maximum among the components of the vector S(n) such that

S(n) =









S − a(1)x0

σ
,

S − a(2)x0

σ

√

(

1 + [a
(1)
1 ]2

)

, . . . ,
S − a(n)x0

σ

√

(

1 +
∑n−1

j=1 [a
(j)
1 ]2.

)









,(7.2)

Φ(x) is the standard gaussian cdf with pdf φ(x), and

Un(s, t) =

∫

R

Φn

(

s+ z
√
t√

1 − t

)

φ(z) dz, s ∈ R, t ∈ (−1, 1).(7.3)

Proof: First observe that

Pn(S,Σn) = Pn[S(n), Rn] =

∫

O∗

n

1

(2π)n/2|Rn|1/2
exp

{

−1

2
yTR−1

n y

}

dy,

where Rn is the correlation matrix of (X1, X2, . . . , Xn) and O∗
n = {y ∈ R

n : y < S(n)}.
So, due to the Theorem 7.1, Pn[S(n), Rn] ≤ Pn[S(n), R∗

n], where R∗
n is a correlation matrix

with entries are all equal to ρ
(n)
max, referring to a gaussian random vector with zero mean.

Moreover, we have Pn[S(n), R∗
n] ≤ Pn[S

(n)
max, R∗

n]. If ρ
(n)
max ≥ 0, then Pn[S

(n)
max, R∗

n] are orthant

probabilities associated to exchangeable r.v.’s (see [17]) and in particular Pn[S
(n)
max, R∗

n] =

Un[S
(n)
max, ρ

(n)
max]. If ρ

(n)
max ≤ 0, then Pn[S(n), Rn] ≤ Pn[S(n), In] ≤ Pn[S

(n)
max, In] = Φn[S

(n)
max],

since the gaussian r.v.’s involved in Pn[S
(n)
max, In] are independents.

By similar arguments one can prove the following result.

Proposition 7.2 [Upper Bound] Set

ρ
(n)
min = min

i,j=1,2,... ,n;i 6=j















∑min{i,j}
t=1 a

(i−t)
1 a

(j−t)
1

√

(

1 +
∑i−1

t=1[a
(t)
1 ]2

)(

1 +
∑j−1

t=1 [a
(t)
1 ]2

)















.

For ρ
(n)
min ∈ [0, 1) and x0 ∈ (−∞, S)p, we have

Fx0
(n) ≤ 1 − Un[S

(n)
min, ρ

(n)
min] for n ≥ 2,

where S
(n)
min is the minimum among the components of the vector S(n) given in (7.2) and

Un(s, t) is the function given in (7.3).
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8 Numerical examples As shown in the previous sections, the evaluation of Px0
(T = n)

can be treated only numerically, as well as its mean and taboo probabilities. In this section,
we suggest a numerical scheme to implement equations (5.5), (6.1) and (6.3), which is
substantially different from the numerical schemes proposed in [2]. In the following, we
focus the attention on the AR(2) process:

Xn = 0.2Xn−1 + 0.3Xn−2 +Wn(8.1)

with Wn ≈ N(0, 1). We assume x0 = (0.5, 0.5).

In order to compute Px0
(T = n) numerically, first notice that the functions φn(x) in

(5.6) could be rewritten as

φn(x) =
exp(−x2)

2
√
πσ2

∫ ∞

0

exp(−t)√
t

exp(2x
√
t)φn−1

[

α1

√
t+

S − αw√
2σ2

]

dt,(8.2)

by which we have |φn(x)| ≤ φn(0) < ∞, for all n ∈ N and limx→±∞ φn(x) = 0. So a
generalized Gauss-Laguerre quadrature formula may be implemented in order to estimate
(8.2), that is

φn(x) ≈ exp(−x2)

2
√
πσ2

m
∑

k=1

wk exp(2x
√
nk)φn−1

[

α1
√
nk +

S − αw√
2σ2

]

,(8.3)

with {nk, wk}m
k=1 respectively nodes and weights of the quadrature formula. For all figures,

we have used m = 8 nodes.
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Figure (a)

Gauss−Laguerre quadrature
Geometric rate

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02
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0.04

Figure (b)

Monte Carlo method
Geometric rate

Figure 1: Plots refer to {Px0
(T = n)} through the boundary S = 2 for the AR(2) process (8.1). In

Figure 1(a), the sequence {Px0
(T = n)}, computed via (5.5) with φn approximated through (8.3),

has been plotted together with the p.d.{pn} of a geometric r.v. with failure probability q equal to

the resulting limit in (4.4). In Figure 1(b), the same p.d. {pn} has been plotted together with the

sequence {Px0
(T = n)} estimated via a Monte Carlo method with 106 simulated paths.

In Figure 1(a), we compare the p.d. {Px0
(T = n)}, computed via the generalized

Gauss-Laguerre quadrature formula (8.3) when S = 2, with the p.d. {pn} of a geometric
r.v. having failure probability q equal to the resulting limit in (4.4). Here, the value 1.196
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Figure 2: In Figure 2(a), for the AR(2) process (8.1) and S = 2, plots of Fx0
(n) and its upper

and lower bounds are shown (see Propositions 7.1 and 7.2). In Figure 2(b), plot of {Px0
(T = n)},

given in (5.5) with φn computed via (8.3), is shown together with the same p.d. computed via

(5.8), when α1 = 0, α2 = 1 and S = 2,x0 = (0.5, 0.5).

of s2 has been numerically estimated, by using (3.9) and by observing that, for the AR(2)
process in (8.1), we have

a
(0)
1 = 1, a

(1)
1 = α1, a

(j)
1 = α1 a

(j−1)
1 + α2 a

(j−2)
1 for j ≥ 2.

The asymptotic behavior is matched even at lower values of T. As shown in Figure 1(b),
if we estimate the p.d. {Px0

(T = n)} via a Monte Carlo method, the fitting with the
geometric asymptotic behavior is not so early. Here we have generated 106 paths.

We remark that the computational cost of the generalized Gauss-Laguerre quadrature
is very low. Indeed, in order to compute Px0

(T = n) for all n, we need to compute the
required m nodes and weights just one time, at the beginning of the procedure. Due to the
recursive structure of (8.3), at each step we need to compute

φn

(

S − αx0√
2σ2

)

and φn

[

α1
√
nk +

S − αw√
2σ2

]

k = 1, . . . ,m.

No comparisons have been made with the numerical procedure proposed in [2], where it
is not suggested an algorithm to compute Px0

(T = n), being unbounded the integration
interval.

In Figure 2(a), we have plotted the cdf of the AR(2) process in (8.1) together with its
bounds. In Figure 2(b), we have plotted {Px0

(T = n)}, given in (5.5) with φn computed
via (8.3), together with {Px0

(T = n)} given in (5.8). In this case we have chosen α1 = 0
and α2 = 1, so that the F eigenvalues fall within the closed unit disk in R. As it is evident,
the matching is very good.

In Figures 3, we have plotted {P a,b
n (x0)} given in (6.7) through the levels a = −1 and

b = 1 for an AR(2) process with α1 = 0.0, α2 = 0.3 assuming x0 = (0.5, 0.5). In Figure 3(a),
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Figure 3: Plots refer to {P a,b
n (x0)} through the boundaries a = −1 and b = 1 for an AR(2) process

with α1 = 0.0, α2 = 0.3 assuming x0 = (0.5, 0.5). In Figure 3(a) we show {P a,b
n (x0)} given in (6.3),

with ψn computed via a Gauss-Legendre quadrature formula applied to (6.4), and {P a,b
n (x0)} given

in (6.7). In Figure 3(b), we show {P a,b
n (x0)} given in (6.7) and the same p.d. estimated via a Monte

Carlo method with 106 simulated paths.

we have also plotted {P a,b
n (x0)} given in (6.3). In order to use the functions in (6.4), we

have implemented a Gauss-Legendre quadrature formula, by a suitable transformation of

the integration interval
(

0, b−a√
2σ2

)

in (−1, 1). In Figure 3(b), we have also plotted {P a,b
n (x0)}

built by using a Monte Carlo method with 106 simulated paths. It is evident that the Monte
Carlo method has not a great accuracy.

Finally, we compare the computations of the overall upper exit time probability, that is
∑

n P
a,b
n (x0), via a Gauss-Legendre quadrature formula with the numerical scheme proposed

in [2]. This numerical scheme consists in a solution of a system of linear equations plus an
interpolation algorithm. So the computational cost is greater than the one of the Gauss-
Legendre quadrature formula we propose. The results are given in Table 1. The results
given in [2] are in agreement with those obtained via a Monte Carlo method. But, we have
already stressed that the Monte Carlo method does not allow to compute such probabilities
with high accuracy (see Figures 3). Notice that, for the choice of the parameters in Figures
3, the overall upper exit time probability is 0.6132, if we use the Gauss-Legendre quadrature
formula, while it results 0.5628 if we use the Monte Carlo method.
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