LUKASIEWICZ FINITELY LOCAL ALGEBRAS

FRANCESCO LACAVA

Received July 13, 2001

ABSTRACT. In this paper finitely local L-algebras are introduced as a generalization of quasi-local L-algebras. The class of finitely local algebras includes the semilocal L-algebras. Some properties are studied and characterizations are given

1 Introduction A L-algebra is said to be local if it has a unique maximal ideal [5]. Local L-algebras are also characterized as the L-algebre where for each element x exists a positive integer n such that nx = 1 or nx' = 1 [1].

A generalization of these algebras are semilocal L-algebras which are defined and studied in [4]. They are characterized as the L-algebre with finitely many maximal ideals. Another generalization, that arises from the second characterization of the local L-algebras, are the quasi-local L-algebras in which for each element x exists a positive integer n such that nxor nx' is a boolean element [7].

These two generalizations, semilocal and quasi-local, are independent, i.e. there are semilocal algebras that are not quasi-local and vice versa.

In this paper we define a new class of L-algebras, called finitely local, containing both quasi-local and semilocal L-algebras.

2 Preliminaries Following [9] we recall that a *L*-algebra $\langle A, +, '; 0, 1 \rangle$ (Lukasiewicz-algebra or MV-algebra [1], [2], [4]) is a sistem such that, $\forall x, y \in A$,

- 1) $\langle A, +, 0 \rangle$ is an Abelian monoid
- 2) x + 1 = 1
- 3) (x')' = x
- 4) 0' = 1
- 5) x + x' = 1
- 6) (x'+y)'+y = (x+y')'+x.

Setting as well

- i) $x \cdot y = (x' + y')'$
- *ii*) $x \lor y = (x' + y)' + y$
- *iii*) $x \wedge y = (x' \vee y')'$
- *iv*) $x \le y$ if and ony if x' + y = 1.

²⁰⁰⁰ Mathematics Subject Classification. 03G20, 06D30, 06D35. Key words and phrases. Local L-algebra, semi-local MV-algebra.

The structure $\langle A, \lor, \land, \leq; 0, 1 \rangle$ is a bounded distributive lattice.

A *L*-algebra *A* is said to be a *L*-chain if the \leq order is linear. Every *L*-algebra is a subdirect product of *L*-chains [2].

Given a L-algebra A, let B_A denote the set of its boolean (idempotent) elements, i.e. the set of all $x \in A$ with 2x = x. The set B_A is a Boolean subalgebra of A [2] and, $\forall x, y \in B_A$, $x + y = x \lor y$ and $x \cdot y = x \land y$.

A non-empty subset $I \subseteq A$ is an ideal if it is closed under + and if $x \in I$, $y \in A$ with $y \leq x$ imply $y \in I$.

For $a, b \in A$, $a \leq b$, let $A_{a,b} = \{x \in A : a \leq x \leq b\}$.

The system $\langle A_{a,b}, \oplus, \bar{\prime}; a, b \rangle$ is a *L*-algebra with respect to the following operations:

$$x \oplus y = a + [(x' + a)(y' + a)]'(b' + a)'$$
$$x' = a + (b' + x)'$$

Every L-algebra is isomorphic to $A_{0,b'} \times A_{0,b}$, where $b \in B_A$ with $b \neq 0, 1$.

Recall that an element $a \in A$ has finite order n if n is the least positive integer such that na = 1 and we write ord(a) = n. If no such n exists, we say that a has infinite order.

An element $a \in A$ is said to be quasi-archimedean if $na \in B_A$ for some integer n > 0. If no such n exists the element a is said to be non-archimedean.

A L-algebra A is said to be

-<u>local</u> if, for each $x \in A$, ord x or ord x' is finite, i.e. if and only if A has a unique maximal ideal;

– quasi-local if, for each $a \in A$, a or a' is quasi-archimedean;

 $-\underline{\text{semilocal}}$ if it has only finitely many maximal ideals (we refer the reader to [5], [7] and [4]).

3 Finitely local *L*-algebras

Definition 1 A L-algebra A is called n-local, $n \ge 2$, if the following properties hold:

- 1) For each non-archimedean $x \in A$ there exist $b \in B_A$, $b \neq 0$, and a positive integer m such that $mx \wedge b$ is non-archimedean and $mx' \wedge b$ is boolean;
- 2) For any $b_1, b_2, ..., b_n \in B_A$, for which $b_i \wedge b_j = 0 \quad \forall i \neq j$, there exists $k, 1 \leq k \leq n$, such that $x < b_k$ is not true for every non-archimedean element $x \in A$.

A is called 1-local if it is a local L-algebra.

Hence, we say that A is a finitely local L-algebra if it is n-local for some $n \ge 1$.

We remark that if A is n-local, then it is m-local for any $m \ge n$.

Throughout this paper, $\operatorname{Rad}(A)$ denotes the radical of A, that is, the intersection of all maximal ideals of A and π denotes the canonical omomorphism of A on $\frac{A}{\operatorname{Rad}(A)}$.

Lemma 1 Let A be a L-algebra. Then B_A is isomorphic to $B_{\frac{A}{Rad(A)}}$.

Proof. It is suffices to check that if [b] is a boolean element of $\frac{A}{\text{Rad}(A)}$, then there exists a unique $y \in B_A$ such that $\pi(y) = [b]$.

Let x be an element of A such that $\pi(x) = [b]$ and put y = (2(2x)')'. Thus

(1)
$$\pi(y) = \pi((2(2x)')') = (2(2\pi(x))')' = \pi(x) = [b].$$

Now we note that

$$((2y)' + y)' = ((2(2(2x)')')' + (2(2x)')')' = ((2(2x)' + 2(2x)')' + 2(2x)')' = = (((3(2x)')' + 2x)' + (3(2x)')' + (2x)')' = (2) = (((3(2x)')' + 2x)' + ((2(2x)')' + 2x)' + 2x)'.$$

Since

(3)
$$\pi(3(2x)')' + 2x) = \pi(x) \text{ and } \pi((2(2x)')' + 2x) = \pi(x)$$

yield

(4)
$$((3(2x)')' + 2x)' + x)' \in \operatorname{Rad}(A) \text{ and } (((2(2x)')' + 2x)' + x)' \in \operatorname{Rad}(A);$$

we obtain ((2y)' + y)' = 0 i.e. 2y = y.

The uniqueness of y follows from the fact that the $\operatorname{Rad}(A)$ contains only one boolean element, that is 0.

Proposition 2 A is a semilocal L-algebra if and only if A is direct product of finitely many local L-algebras.

Proof. Let A be direct product of finitely many local L-algebras. Then, by Theorem 2.6 in [4], A is semilocal.

Conversely, suppose that A is a semilocal L-algebra. Thus the L-algebra $\frac{A}{\operatorname{Rad}(A)}$ is a direct product of finitely many simple L-chains (see [4]).

Let $[b_1], [b_2], ..., [b_n]$ be the atoms of $B_{\frac{A}{\operatorname{Rad}(A)}}$. By Lemma 7, we can suppose that $b_1, b_2, ..., b_n$ are atoms of B_A . Then A is isomorphic to the direct product $A_{0,b_1} \times A_{0,b_2} \times A_{0,b_n}$, where each $A_{0,b_i} \simeq \frac{A}{\langle b_i \rangle}$, i = 1, 2, ..., n, is semilocal. Since $B_{A_{0,b_i}} = \{0, b_i\}$, the *L*-algebras A_{0,b_i} are local.

Proposition 3 Let A be a semilocal L-algebra. Then A is a finitely local L-algebra.

Proof. Take $b_1, b_2, ..., b_n \in B_A$ as in Proposition 1. Let x be a non-archimedean element of A and let $B_x = \{b_i : x \land b_i \text{ is non-archimedean}\}.$

We remark that B_x is not empty: otherwise, by Proposition 7 *ii*) in [7], the element $\bigvee (x \land b_i) = x$ would be quasi-archimedean.

Thus, put $b = \bigvee \{b_i : b_i \in B_x\}$, the element $x \wedge b$ is non-archimedean. But, since for each b_i , $i = 1, 2, ..., n, x \wedge b_i$ or $x' \wedge b_i$ is quasi-archimedean, the element $x' \wedge b$ is quasi-archimedean. Hence we conclude that A is a m-local L-algebra with $m \leq n$.

Proposition 4 A is a quasi-local L-algebra if and only if it is a 2-local L-algebra.

Proof. If A is a quasi-local L-algebra, then the claim follows from Proposition 8 in [7]. Suppose that A is a 2-local L-algebra. Let x be a non-archimedean element of A. By hypothesis, there exist $b \in B_A$, $b \neq 0$, and a positive integer m such that $mx \wedge b$ is non-archimedean and $mx' \wedge b$ is boolean.

Since, by (2) of Definition 1, $mx \wedge b$ non-archimedean gives $mx' \wedge b'$ quasi-archimedean, then the element $mx' = (mx' \wedge b) \vee (mx' \wedge b')$ is quasi-archimedean.

Let $I_A = \{x \in A : x \land z \text{ is quasi-archimedean}, \forall z \in A\}$. We show that

Proposition 5 I_A is an ideal of A.

FRANCESCO LACAVA

Proof. Take $x \in I_A$ and $y \in A$ with $y \leq x$. Since $y \wedge z = (x \wedge y) \wedge z = x \wedge (y \wedge z)$ is quasi-archimedean, the element y lies in I_A .

Let $x, y \in I_A$, then we can find an integer $n \ge 1$ such that $nx, ny \in B_A$. Since $x \land z$ and $y \land z$ are quasi-archimedean, from $n((x + y) \land z) = (nx + ny) \land nz = (nx \lor ny) \land nz = (nx \land nz) \lor (ny \land nz) = n((x \land z) \lor (y \land z))$ follows that the element $(x + y) \land z$ is also quasi-archimedean. Hence $x + y \in I_A$.

Proposition 6 Let A be a n-local L-algebra which is not (n-1)-local. Then there exist $b_1, b_2, ..., b_{n-1} \in B_A$, with $b_i \wedge b_j = 0$ for $i \neq j$, with the following properties

1) $(\bigvee b_i)' \in I_A$

2) For each x non-archimedean, there is 0 < j < n such that $x \wedge b_j$ is non-archimedean.

Proof. Since A is not (n-1)-local, there exist $b_1, b_2, ..., b_{n-1} \in B_A$, $b_i \wedge b_j = 0$ for $i \neq j$, such that for each b_i there is a non-archimedean element $x \in A$ with $x < b_i$. Since A is n-local, for each non-archimedean element $x \in A$, $x \not\leq (\bigvee b_i)'$. Then $(\bigvee b_i)' \in I_A$. This implies that the element $(x \wedge (\bigvee b_i)')$ is quasi-archimedean, for each x non-archimedean. Then, since $x = x \wedge (b_1 \lor b_2 \lor \ldots \lor b_{n-1} \lor (\bigvee b_i)') = (x \wedge b_1) \lor \ldots \lor (x \wedge b_{n-1}) \lor (x \wedge (\bigvee b_i)')$, at least one element $x \wedge b_j$ must be non-archimedean.

Theorem 7 A is a finitely local L-algebra if and only if $\frac{A}{L_A}$ is a semilocal L-algebra.

Proof. Suppose that $\overline{A} = \frac{A}{I_A}$ is semilocal. First we show that if $[x] \in B_{\frac{A}{I_A}}$, then there exists $b \in B_A$ such that [x] = [b]. From [x] = 2[x] we have $z = ((2x)' + x)' \in I_A$. Let n be the positive integer such that $nz \in B_A$. Then x + nz = x + (n+1)z = 2x + nz = 2x + 2nz = 2(x + nz), that is $x + nz \in B_A$ and [x + nz] = [x].

Now let x be a non-archimedean element of A.

We remark that [x] is also non-archimedean: otherwise would exist a non-archimedean $a \in A$ and $b \in B_A$ such that [a] = [b]. This implies that there is a boolean $c \in I_A$ such that $a+c = a \lor c = b$ which gives $(c' \land (a \lor c)) \lor (a \land c) = a$. Hence $a \land c$ would be non-archimedean which is a contradiction being $c \in I_A$.

Since $\frac{A}{I_A}$ is semilocal, we can take the atoms $[b_1], [b_2], ..., [b_n]$ of $B_{\frac{A}{I_A}}$ (see proposition 1). Then, from $[x] = ([b_1] \wedge [x]) \vee ([b_2] \wedge [x]) \vee ... \vee ([b_n] \wedge [x])$, follows that there is at least a $[b_i] \wedge [x]$ which is non-archimedean. Hence $b_i \wedge x$ is non-archimedean.

On the other hand, since \overline{A}_{0,b_i} is local, we have $[b_i] \wedge [x'] = [b_i]$ which implies $b_i \wedge x'$ quasiarchimedean. Now it is easy to conclude that A is n + 1-locale.

Conversely, suppose A finitely local. Let $b_1, b_2, ..., b_{n-1} \in B_A$ as in the above proposition. Let J_i be the ideal generated by

 $H_i = \{b \in B_A : b \land (x \land b_i) \text{ quasi-archimedean } \forall x\} \cup \{x \land b_i \text{ non-archimedean}\}.$

We show that J_i is a maximal ideal of A containing I_A . Let \overline{J} be an ideal of A with $J_i \subset \overline{J}$. Take $a \in \overline{J} - J_i$. This element a is quasi-archimedean: otherwise, by proposition 5, we would have $a < b_j$, for $j \neq i$, which implies $a \in J_i$, since $b_j \in H_i$. Then there exists n such that $na = \overline{b} \in B_A$. Since $\overline{b} \notin H_i$, there is an element z of A such that $\overline{z} = \overline{b} \wedge z \wedge b_i$ is non-archimedean. If $\overline{b}' \wedge x \wedge b_i$ is quasi-archimedean for each x, then $\overline{b}' \in H_i$ wich gives $1 \in \overline{J}$, that is $\overline{J} = A$. Conversely, if there is $y \in A$ with $\overline{b}' \wedge y \wedge b_i = \overline{y}$ non-archimedean, then $\overline{b}' \wedge b_i > \overline{z}$ and $(\overline{b}' \wedge b_i) \wedge (\overline{b} \wedge b_i) = 0$. Since A is n-local, we obtain a contradiction.

Now we take a maximal ideal J of A different from $J_1, J_2, ..., J_{n-1}$ and show that $I_A \not\subseteq J$.

If, for each $i = 1, 2, ..., n - 1, b_i \in J$, then $(\bigvee b_i)' \notin J$ which implies $I_A \notin J$. Hence we can suppose that there exists $1 \le k \le n-1$ such that $b_k \notin J$. Since $H_k \notin J$, we distinguish two cases:

1) There is $b \in B_A$ such that $b \wedge (x \wedge b_k)$ is quasi-archimedean, for each $x \in A$, and $b \notin J$; 2) There is $x \wedge b_k$ non-archimedean such that $x \wedge b_k \notin J$.

In the first case, being J a prime ideal of A, the element $b \wedge b_k$ lies in I_A but not in J.

In the second case, by Theorem 4.7 in [2], there is a positive integer n such that $n(x \wedge b_k)' \in J$. Since $(x \wedge b_k)' = x' \vee b'_k = (x' \wedge b_k) \vee b'_k$, the element $(x \wedge b_k)'$ is quasi-archimedean. Thus, for some integer $m, b = m(x \wedge b_k)' \in J \cap B_A$ that is $b' \notin J$. We remark that $b + b_k = m(x \wedge b_k)' + b_k = mx' \vee b'_k + b_k = 1$ that is $b' \leq b_k$. Thus we have $b_k \wedge x = [(b \wedge b_k) \vee b'] \wedge x = [(b \wedge b_k) \wedge x] \vee (b' \wedge x)$. Since $b' \wedge x$ is quasi-archimedean, the above relation gives $(b \wedge b_k) \wedge x$ non-archimedean. It follows that, for each $y \in A$, the element $b' \wedge y$ is quasi-archimedean, hence $b' \in I_A$ and $b' \notin J$.

We can conclude that $\frac{A}{I_A}$ has n maximal ideals that is, by [4], it is semilocale.

Corollary 8 A L-algebra A is quasi-local if and only if $\frac{A}{L_A}$ is a local L-algebra.

Theorem 9 A L-algebra A is finitely local if and only if it is isomorphic to a direct product of finitely many quasi local L-algebras.

Proof. We remark that if $b \in B_A$, then $I_{A_{0,b}} = \{x \land b : x \in I_A\}$. Hence the claim follows by the propositions 1 and 6 and the corollary 1.

References

- [1] L.P.Belluce-A.Di Nola-S.Sessa, Local MV-algebras, Rend. Circ. Mat. Palermo (2), 3 (1994), 347 - 361
- [2] C.C.Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc., 88 (1958), 467-490
- [3] C.C.Chang, A new proof of the completeness of Lukasiewicz axioms, Trans. Amer.Math. Soc., **93** (1959), 74-80
- [4] C.S.Hoo, Semilocal MV-algebras, Math. Japon., 40 (1994), 451-453
- [5] F.Lacava, Alcune proprietà delle L-algebre e delle L-algebre esistenzialmente chiuse, Boll.Un. Mat. Ital. A (5), 16 (1979), 360-366
- [6] F.Lacava, Sulla struttura delle L-algebre, Atti Accad. Naz. Lincei Mem. Cl.Sci. Fis. Natur. Sez.Ia (8), 67 (1979), 275-281
- [7] F.Lacava, Algebre di Lukasiewicz guasi-locali, Boll.Un. Mat. Ital. (7) 11-B (1997), 961-972
- [8] F.Lacava, Algebre di Lukasiewicz quasi-locali stoneane, Boll.Un. Mat. Ital. (8) 4-B (2001), 759-766
- [9] P.Mangani, Su certe algebre connesse con logiche a più valori, Boll.Un. Mat. Ital. (4) 8 (1973), 68-78

Dipartimento di Matematica "U.Dini" Viale Morgagni 67/A 50134 Flaorence(ITALY) Tel. 055-4237143 Fax 055-4222695 email: francesco.lacava@mate.unifi.it