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HUYGENS’ PRINCIPLE
FOR THE DIRICHLET BOUNDARY VALUE PROBLEM

FOR THE WAVE EQUATION

KOICHI YURA

Received June 16, 2004

Abstract. We prove Huygens’ principle for the Dirichlet boundary value problem by
using the Herglotz-Petrovskii-Leray formula.

1. Introduction.

Huygens’ principle for the initial value problem is well-known. However, that for the
boundary value problem is not a general fact. One of approaches to prove Huygens’ prin-
ciple is to derive the Herglotz-Petrovskii-Leray formula. This formula was effectively used
to prove the existence of lacuna for the hyperbolic initial value problem in Atiyah-Bott-
Garding[1]. By the formula, the fundamental solution E(x) is described as the integration
on a homology class depending on x, and if the homology class is homologous to 0, the lacuna
exists in a neighborhood of x. On the other hand, in Yura[2], the Herglotz-Petrovskii-Leray
formula for the hyperbolic boundary value problem was derived. The formula is described
as the integration on a “chain”, not a “homology class”. But this difference does not give
any effect on studying the existence of lacuna.

In this paper, the proof of the existence of strong lacuna is a concrete calculation of the
formula. Primarily, we should prove the chain of integration is homotopic to 0. But it is
very complicated because the integrand has a branch locus. In the case of the initial value
problem, any branch locus does not appear. Our calculation is simple, however, we believe
that the lacuna’s theory which was abstract is materialized by our calculation.

2. Huygens’ Principle.

We denote x′ = (x1, x2, x3) for x = (x1, x2, x3, x4) in R4 and consider the Dirichlet
boundary value problem in four-dimensional space-time⎧⎨

⎩
P (D)F (x) = 0, x ∈ {x ∈ R4 ; x4 > 0},
F (x)

∣∣∣
x4=0

= δ(x′).
(2.1)

Here P (D) is the wave operator D2
1 − D2

2 − D2
3 − D2

4 and D means 1
i

∂
∂x . Of course, P

is hyperbolic with respect to ϑ = (1, 0, 0, 0). δ is Dirac’s δ function. F (x) is the forward
fundamental solution whose support is included in {x ∈ R4 ; x1 ≥ 0} and expresses the
propagation of the wave in the case where the delta shock is given at {x ∈ R4 ; x4 = 0}.
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F (x) is written in integral form (see Yura[2])

F (x) = (2π)−4i−1

∫
R4−iϑ

eixζP+(ζ)−1 dζ.(2.2)

Here P+(ζ) = ζ4−
√
ζ2
1 − ζ2

2 − ζ2
3 and the branch of

√
ζ2
1 − ζ2

2 − ζ2
3 is selected so as to have

positive imaginary part for ζ′ ∈ R3 − iϑ′, ϑ′ = (1, 0, 0). ζ2
1 − ζ2

2 − ζ2
3 �= 0 if ζ′ ∈ R3 − iϑ′.

F (x) is interpreted in the distribution sense with respect to x.

Theorem 2.1. Huygens’ principle holds for the Dirichlet boundary value problem (2.1). In
other words, F (x) vanishes in the inside of the propagation cone.

We shall prove Theorem 2.1 by evaluating F (x) transformed into the Herglotz-Petrovskii-
Leray formula.

For convenience, we put B(ζ′) = ζ2
1 −ζ2

2 −ζ2
3 . {ζ ∈ C4 ; B(ζ′) = 0} represents the branch

locus of P+(ζ). Let

Γ′(P, ϑ) = {ξ′ ∈ R3 ; B(ξ′) > 0, ξ1 > 0}.(2.3)

Γ′(P, ϑ) coincides with Γ′(P, ϑ) defined in [2]. Since B(ζ′) does not take a value in [0,∞) if
ζ′ ∈ R3−iΓ′(P, ϑ), P+(ζ) is single-valued, holomorphic and non-zero in R4−iΓ′(P, ϑ)×{0}.
To expand such a domain, let us make use of localization. The following is the definition of
localization.

Definition 2.2. Let Γ be an open connected cone in Rn and let f be a homogeneous holo-
morphic function in Rn − iΓ. Then localization fξ of f at ξ ∈ Rn is defined by the first
non-vanishing homogeneous term in Puiseux expansion

f(ξ + tζ) = tpfξ(ζ) + o(tp) as t→ +0(2.4)

for ζ ∈ Rn − iΓ. When f is a polynomial, (2.4) becomes Taylor expansion.

We also define the local hyperbolic cone of B,P+ at ξ by

Γξ(B,ϑ) = the connected component of

{η ∈ R4 ; η = (η′, η4), η4 ∈ R, Bξ′(η′) �= 0} which contains ϑ,

Γξ(P+, ϑ) = the connected component of

{η ∈ Γξ(B,ϑ) ; P+ξ(−iη) �= 0} which contains ϑ.

(2.5)

Lemma 2.3. Γξ(B,ϑ) coincides with Γ̇ξ′ × R in [2].

Proof. First, let us remember the definition of Γ̇ξ′ × R. Let ξ′ ∈ R3 \ {0} be arbitrarily
fixed and λ be a real multiple root of P (ξ′, λ) = 0. Then, Γ̇ξ′ ×R is defined by Γ(ξ′,λ)(P, ϑ),
which is independent of λ. If P (ξ′, λ) = 0 has no real multiple root, Γ̇ξ′ × R is R4 by
definition.

When ξ′ ∈ R3 \ {0}, P (ξ′, λ) = 0 has a real multiple root if and only if B(ξ′) = 0. For
ξ′ ∈ {ξ′ ∈ R3 \ {0} ; B(ξ′) = 0},

Γ̇ξ′ × R = Γξ(B,ϑ) = the connected component of

{η ∈ R4 ; 2(ξ1η1 − ξ2η2 − ξ3η3) �= 0} which contains ϑ.
(2.6)

On the other hand, for ξ′ ∈ {ξ′ ∈ R3 \ {0} ; B(ξ′) �= 0},
Γ̇ξ′ × R = Γξ(B,ϑ) = R4.(2.7)
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In virtue of Lemma 2.3, Γξ(P+, ϑ) is also the same as Γξ(P+, ϑ) in [2] and P+(ξ− itη) is
non-zero where t is small enough and η ∈ Γξ(P+, ϑ).

Let Γ◦
ξ(P+, ϑ) be the dual cone of Γξ(P+, ϑ), that is,

Γ◦
ξ(P+, ϑ) = {x ∈ R4 ; xη ≥ 0 for all η ∈ Γξ(P+, ϑ)}.(2.8)

Then, by Theorem 4.1 in [2], F (x) can be described as

F (x) = (2πi)−3

∫
γ(ξ)=1

δ(2)(xξ)P+(ζ)−1 ω4(ζ), ζ = ξ − iv(ξ)(2.9)

when x �∈ ∪ξ∈R4\{0}Γ◦
ξ(P+, ϑ)∪{x ∈ R4 ; x1 < 0}. Here v(ξ) is a special kind of C∞ vector

field satisfying the following conditions:
(i) If λ ∈ R \ {0},

v(λξ) = |λ|v(ξ).(2.10)

(ii) For any ξ ∈ R4 \ {0},
v(ξ) ∈ Γξ(P+, ϑ) ∩ {ξ ∈ R4 ; xξ = 0}.(2.11)

(iii) If ξ ∈ R4 \ {0}, 0 < t ≤ 1,

P+(ξ − itv(ξ)) �= 0.(2.12)

γ(ξ) is a special kind of C∞ function which is positive homogeneous of degree 1 outside a
neighborhood of ξ = 0 and satisfies d γ|γ=1 �= 0. ωn(ζ) is the Kronecker form,

ωn(ζ) =
n∑

j=1

(−1)j−1ζjdζ1 ∧ · · · ∧ d̂ζj ∧ · · · ∧ dζn.(2.13)

In (2.9), δ(2)(xξ) is interpreted in the distribution on γ(ξ) = 1.
Now, suppF (x) ⊂ Γ◦

0(P+, ϑ) from (2.2),(2.5) and

Γ◦
0(P+, ϑ) = {x ∈ R4 ; x2

1 − x2
2 − x2

3 − x2
4 ≥ 0, x1 ≥ 0, x4 ≥ 0}.(2.14)

In order to prove Theorem 2.1, we prove that F (x) vanishes at any point of the interior of
the propagation cone Γ◦

0(P+, ϑ). Because of homogeneity of the integrand and rotational
invariance in ζ2, ζ3, all we have to do is to prove that F (a) vanishes for a = (1, 0, α, β) where
α, β are real numbers satisfying 1 − α2 − β2 > 0, β > 0.

3. Preliminaries.

Let us evaluate F (a) by using (2.9). We change the variables from ζ to σ by rotation,
which makes calculation easy.⎛

⎜⎜⎝
σ1

σ2

σ3

σ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos θ1 0 0 − sin θ1
0 1 0 0
0 0 1 0

sin θ1 0 0 cos θ1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ2 − sin θ2
0 0 sin θ2 cos θ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
ζ1
ζ2
ζ3
ζ4

⎞
⎟⎟⎠ ,

cos θ1 =

√
α2 + β2√

α2 + β2 + 1
, sin θ1 =

1√
α2 + β2 + 1

,

cos θ2 =
β√

α2 + β2
, sin θ2 =

α√
α2 + β2

.

(3.1)

By this change of variables, we have a = (0, 0, 0,
√
α2 + β2 + 1) in the new coordinates

(σ1, σ2, σ3, σ4). Hence δ(2)(aξ) = δ(2)(
√
α2 + β2 + 1σ4). However, B becomes complicated
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by this rotation. Hence, we change the varibles again by linear transformation. Let us
consider ⎛

⎜⎜⎝
η1
η2
η3
η4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos θ1 0 0 0
0 1 0 0

− sin θ1 sin θ2 0 cos θ2 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
σ1

σ2

σ3

σ4

⎞
⎟⎟⎠ .(3.2)

By this linear transformation, B goes back to the original form η2
1 − η2

2 − η2
3 when η4 = 0

(see Lemma 3.1). For a function Q(ζ) in ζ, we denote Q̄(η) the function Q(ζ(η)) in η given
by the transformations (3.1) and (3.2).

Lemma 3.1. F (a) can be written as

F (a) = (2πi)−3β−1(α2 + β2 + 1)−1

×
∫

γ̄(ξ′,0)=1

(
− ∂

∂ξ4

)2

P̄+(η′, ξ4)−1
∣∣∣
ξ4=0

ω3(η′), η′ = ξ′ − iv̄(ξ′, 0)′
(3.3)

where

P̄+(η′, ξ4) = − 1
β
η1 − α

β
η3 +

β√
α2 + β2 + 1

ξ4

−
√(

η1 + ξ4/
√
α2 + β2 + 1

)2

− η2
2 −

(
η3 + αξ4/

√
α2 + β2 + 1

)2

.

(3.4)

Proof. ω4 is invariant by (3.1). By (3.2), ω4 is multiplied by β−1
√
α2 + β2 + 1. Therefore,

from (2.9),

F (a) = (2πi)−3β−1
√
α2 + β2 + 1

×
∫

γ̄(ξ)=1

δ(2)(
√
α2 + β2 + 1 ξ4)P̄+(η)−1 ω4(η), η = ξ − iv̄(ξ).

(3.5)

We remark v̄4 = 0 by the condition (2.11). Thus we have

ω4(η) = ω3(η′) ∧ dξ4 − ξ4dη1 ∧ dη2 ∧ dη3, η′ = ξ′ − iv̄(ξ)′.(3.6)

Since the support of integrand is {ξ ∈ R4 ; ξ4 = 0}, we can make γ̄(ξ) independent of
ξ4. Also by the lower semi-continuity of Γξ(P+, ϑ) with respect to ξ, we can make v̄(ξ)
independent of ξ4 near {ξ ∈ R4 ; ξ4 = 0}. Thus we have

ω4(η) = ω3(η′) ∧ dξ4, η′ = ξ′ − iv̄(ξ′, 0)′(3.7)

near {ξ ∈ R4 ; γ̄(ξ) = 1, ξ4 = 0}. In terms of integration by parts with respect to ξ4, we
can obtain (3.3). (3.4) follows from (3.1),(3.2) and P+(ζ) = ζ4 −

√
ζ2
1 − ζ2

2 − ζ2
3 .

4. Proof of Theorem 2.1.

In Lemma 3.1, F (a) was transformed into a convenient form to calculate. By selecting
γ̄(ξ′, 0) = |ξ′|, let us show F (a) = 0.

We introduce spherical coordinates on {ξ′ ∈ R3 ; |ξ′| = 1}, that is,

ξ1 = cos θ, ξ2 = sin θ cosφ, ξ3 = sin θ sinφ (0 ≤ θ ≤ π, 0 ≤ φ < 2π).(4.1)

Let us define v̄(ξ′, 0)′ as

v̄1(ξ′, 0) = −ε(ξ21 − ξ22 − ξ23)/|ξ′| = −ε cos 2θ,

v̄2(ξ′, 0) = −2εξ1ξ2/|ξ′| = −ε sin 2θ cosφ,

v̄3(ξ′, 0) = −2εξ1ξ3/|ξ′| = −ε sin 2θ sinφ

(4.2)
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near {ξ′ ∈ R3 ; |ξ′| = 1, ξ4 = 0}. Here ε(> 0) is sufficiently small. Let us show that
v̄(ξ′, 0)′ satisfies the conditions (2.10), (2.11) and (2.12).

Lemma 4.1. v̄(ξ′, 0)′ in (4.2) satisfies the following conditions:

(i) When λ ∈ R \ {0},
v̄(λξ′, 0)′ = |λ|v̄(ξ′, 0)′.(4.3)

(ii) For any ξ′ ∈ {ξ′ ∈ R3 ; |ξ′| = 1},
(v̄(ξ′, 0)′, 0) ∈ Γ(ξ′,0)(P̄+, ϑ̄).(4.4)

(iii) When ξ′ ∈ {ξ′ ∈ R3 ; |ξ′| = 1}, 0 < t ≤ 1,

P̄+(ξ′ − itv̄(ξ′, 0)′, 0) �= 0.(4.5)

Here ϑ̄ is ϑ after the transformations (3.1) and (3.2), that is,

ϑ̄ = (cos2 θ1, 0,− sin θ1 cos θ1 sin θ2, sin θ1).(4.6)

Proof. (4.3) is trivial. (4.5) follows from the definition of localization. Therefore, let us
show (4.4).

Remember that a = (1, 0, α, β) is in the propagation cone. Hence localization of P
at {ξ ∈ R4 \ {0} ; aξ = 0} is non-zero constant and so is P+. Therefore, localization of
P̄+ is also non-zero constant at {ξ ∈ R4 \ {0} ; ξ4 = 0} and Γ(ξ′,0)(P̄+, ϑ̄) coincides with
Γ(ξ′,0)(B̄, ϑ̄) when ξ′ ∈ {ξ′ ∈ R3 ; |ξ′| = 1}. B̄(ξ′, 0) = 0 if and only if θ = π/4, 3π/4 in
(4.1). When ξ′ ∈ {ξ′ ∈ R3 ; |ξ′| = 1, B̄(ξ′, 0) = 0},

B̄(ξ′,0)(ζ) = 2{ξ1(ζ1 + ζ4/
√
α2 + β2 + 1)

− ξ2ζ2 − ξ3(ζ3 + αζ4/
√
α2 + β2 + 1)}

(4.7)

and B̄(ξ′,0)(v̄(ξ′, 0)′, 0) > 0, B̄(ξ′,0)(ϑ̄) > 0. Hence (4.4) holds.

¿From (3.4), we have

(
− ∂

∂ξ4

)2

P̄+(η′, ξ4)−1
∣∣∣
ξ4=0

=
β2{(1 − α2)B(η′) − (η1 − αη3)2}

(α2 + β2 + 1)(η1 + αη3 + β
√
B(η′))2

√
B(η′)

3

− 2β3(β
√
B(η′) − η1 + αη3)2

(α2 + β2 + 1)(η1 + αη3 + β
√
B(η′))3B(η′)

(4.8)

where η′ = ξ′ − iv̄(ξ′, 0)′. By using (4.8) we prove Theorem 2.1.

Proof of Theorem 2.1. We have only to show F (a) = 0. Let us evaluate the integral part
in (3.3). Setting

η±ε,1(θ) = cos θ ± iε cos 2θ,

η±ε,2(θ, φ) = sin θ cosφ± iε sin 2θ cosφ,

η±ε,3(θ, φ) = sin θ sinφ± iε sin 2θ sinφ,

η±
′

ε (θ, φ) = (η±ε,1(θ), η
±
ε,2(θ, φ), η±ε,3(θ, φ))

(4.9)
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by spherical coordinates, we can obtain

∫
|ξ′|=1

(
− ∂

∂ξ4

)2

P̄+(η+′
ε (θ, φ), ξ4)−1

∣∣∣
ξ4=0

ω3(η+′
ε (θ, φ))

=
(4.8)

∫ 2π

0

∫ π

0

[ β2{(1 − α2)B(η+′
ε (θ, φ)) − (η+

ε,1(θ) − αη+
ε,3(θ, φ))2}

(α2 + β2 + 1){η+
ε,1(θ) + αη+

ε,3(θ, φ) + β
√
B(η+′

ε (θ, φ))}2

√
B(η+′

ε (θ, φ))
3

−
2β3(β

√
B(η+′

ε (θ, φ)) − η+
ε,1(θ) + αη+

ε,3(θ, φ))2

(α2 + β2 + 1){η+
ε,1(θ) + αη+

ε,3(θ, φ) + β
√
B(η+′

ε (θ, φ))}3B(η+′
ε (θ, φ))

]
ω3(η+′

ε (θ, φ))

(4.10)

where

B(η+′
ε (θ, φ)) = η+

ε,1(θ)
2 − η+

ε,2(θ, φ)
2 − η+

ε,3(θ, φ)
2

= cos 2θ − ε2 cos 4θ + 2iε cos 3θ,

ω3(η+′
ε (θ, φ)) = η+

ε,1(θ)dη
+
ε,2(θ, φ) ∧ dη+

ε,3(θ, φ)

− η+
ε,2(θ, φ)dη+

ε,1(θ) ∧ dη+
ε,3(θ, φ)

+ η+
ε,3(θ, φ)dη+

ε,1(θ) ∧ dη+
ε,2(θ, φ)

= sin θ(1 + 2iε cos θ)(1 + 3iε cos θ − 2ε2) dθ ∧ dφ.

(4.11)

Let us divide the range of θ integration into three intervals 0 ≤ θ ≤ π
4 −δ, π

4 −δ ≤ θ ≤ 3
4π+δ

and 3
4π + δ ≤ θ ≤ π, (0 < δ � 1) because B(η+′

0 (θ, φ)) has zeros at θ = π/4, 3π/4.
We first evaluate θ integration from 3

4π + δ to π. Let θ = −τ + π, φ = −ψ + 2π and
rewrite τ, φ with θ, ψ, then we have

∫ 2π

0

∫ π

3
4π+δ

(
− ∂

∂ξ4

)2

P̄+(η+′
ε (θ, φ), ξ4)−1

∣∣∣
ξ4=0

ω3(η+′
ε (θ, φ))

=
∫ 2π

0

∫ π
4 −δ

0

[ β2{(1 − α2)B(η−
′

ε (θ, φ)) − (η−ε,1(θ) − αη−ε,3(θ, φ))2}

(α2 + β2 + 1){η−ε,1(θ) + αη−ε,3(θ, φ) − β
√
B(η−

′
ε (θ, φ))}2

√
B(η−

′
ε (θ, φ))

3

+
2β3(β

√
B(η−

′
ε (θ, φ)) + η−ε,1(θ) − αη−ε,3(θ, φ))2

(α2 + β2 + 1){η−ε,1(θ) + αη−ε,3(θ, φ) − β
√
B(η−

′
ε (θ, φ))}3B(η−

′
ε (θ, φ))

]
ω3(η−

′
ε (θ, φ)).

(4.12)

Here we remark

Re
√
B(η−

′
ε (θ, φ)) = −Re

√
B(η+′

ε (θ, φ)),

Im
√
B(η−

′
ε (θ, φ)) = Im

√
B(η+′

ε (θ, φ))
(4.13)

by selection of the branch
√
B(η+′

ε (θ, φ)) =
√
η+

ε,1(θ)2 − η+
ε,2(θ, φ)2 − η+

ε,3(θ, φ)2.
By Stokes’ formula, (4.10) does not depend on ε. Therefore, we can let ε → +0, then

Im
√
B(η−

′
ε (θ, φ)) and Im

√
B(η+′

ε (θ, φ)) tend to 0. Thus, it follows that∫ 2π

0

∫
I

(
− ∂

∂ξ4

)2

P̄+(η+′
ε (θ, φ), ξ4)−1

∣∣∣
ξ4=0

ω3(η+′
ε (θ, φ)) → 0 as ε→ +0(4.14)

where I = [0, π
4 − δ] ∪ [ 34π + δ, π].
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Let us evaluate θ integration from π
4 − δ to 3

4π + δ. We remark (4.10) does not also
depend on δ. Therefore, by rationalization of denominator and integration by parts, we can
obtain ∫ 2π

0

∫ 3
4 π+δ

π
4 −δ

(
− ∂

∂ξ4

)2

P̄+(η+′
ε (θ, φ), ξ4)−1

∣∣∣
ξ4=0

ω3(η+′
ε (θ, φ))

=
∫ 2π

0

∫ 3
4π+δ

π
4 −δ

−β2(η+
ε,1(θ)

2 − α2η+
ε,3(θ, φ)2)2(η+

ε,1(θ) + αη+
ε,3(θ, φ))2

(α2 + β2 + 1){(η+
ε,1(θ) + αη+

ε,3(θ, φ))2 − β2B(η+′
ε (θ, φ))}3

× 1
(sin 2θ − 2ε2 sin 4θ + 3iε sin 3θ)

× ∂

∂θ

( 1√
B(η+′

ε (θ, φ))

)
ω3(η+′

ε (θ, φ)) + o(δ)

=
∫ 2π

0

[ −β2(η+
ε,1(θ)

2 − α2η+
ε,3(θ, φ)2)2(η+

ε,1(θ) + αη+
ε,3(θ, φ))2

(α2 + β2 + 1){(η+
ε,1(θ) + αη+

ε,3(θ, φ))2 − β2B(η+′
ε (θ, φ))}3

× sin θ(1 + 2iε cos θ)(1 + 3iε cos θ − 2ε2)

(sin 2θ − 2ε2 sin 4θ + 3iε sin 3θ)
√
B(η+′

ε (θ, φ))

] 3
4 π+δ

π
4 −δ

dφ+ o(δ) as δ → +0.

(4.15)

By using the change of variable φ = −ψ + 2π used in (4.12) and

Re
√
B(η+′

ε (θ, φ))
∣∣∣
θ= 3

4π+δ
= −Re

√
B(η+′

ε (θ, φ))
∣∣∣
θ= π

4 −δ
,

Im
√
B(η+′

ε (θ, φ))
∣∣∣
θ= 3

4π+δ
= Im

√
B(η+′

ε (θ, φ))
∣∣∣
θ= π

4 −δ
,

(4.16)

the first term of the last expression in (4.15) tends to 0 as ε tends to +0.
This just means that Huygens’ principle holds for the Dirichlet boundary value problem

(2.1).

There is another proof, according to M. Uchida∗. It is very simple. Here let us introduce
his proof. We set

G(x) = (2π)−4i−1

∫
R4−iϑ

eixζP−(ζ)−1 dζ.(4.17)

Here P−(ζ) = ζ4 +
√
ζ2
1 − ζ2

2 − ζ2
3 and the branch of

√
ζ2
1 − ζ2

2 − ζ2
3 is the same as before.

Then we have

F (x)
∣∣∣
x4>0

= F (x) +G(x)

= −2(2π)−4i−1

∫
R4−iϑ

eixζζ4P (ζ)−1 dζ

= −2(2π)−4i−1D4

∫
R4−iϑ

eixζP (ζ)−1 dζ

(4.18)

because of G(x) = 0 in {x ∈ R4 ; x4 > 0}. Consequently our problem is reduced to
Huygens’ principle for the initial value problem which is well-known. However, this is only
applied to the case where P (D) is the wave operator.

On the other hand, our proof can be applied to some other cases. For instance, we can
evaluate F (x) concretely when the integrand is transformed into rational function of one
variable. There exists such a case because we can deform the chain of integration by the
Stokes’ formula. In the case of n = 4, the integrand becomes one variable if we take a
cylinder as {ξ′ ∈ R3 ; γ̄(ξ′, 0) = 1}, introduce cylindrical coordinates and take v̄(ξ′, 0)′ = 0
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out of a neighborhood of zero and the branch locus of P+. In a neighborhood of them,
our calculation becomes complex integration of one variable by taking v̄(ξ′, 0)′ so that the
integral path does not meet them. This is possible because the integrand is closed form.

In conclusion, the author wishes to thank M. Uchida for his valuable advice.
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