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Abstract. In this paper, we characterize prime and semiprime ideals in a subtraction
semigroup. Among them for any subtraction semigroup, an ideal is semiprime if and
only if it is intersection of all prime ideals containing it. Moreover, if an ideal of a
subtraction semigroup is prime, then it is semiprime and strongly irreducible.

1. Introduction

B. M. Schein [4] considered systems of the form (Φ; ◦, \), where Φ is a set of functions
closed under the composition “◦” of functions (and hence (Φ; ◦) is a function semigroup)
and the set theoretic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the
sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. B. Zelinka [5] discussed a problem proposed by B. M.
Schein concerning the structure of multiplication in a subtraction semigroup. He solved the
problem for subtraction algebras of a special type, called the atomic subtraction algebras. In
this paper, we characterize prime and semiprime ideals in a subtraction semigroup. Among
them for any subtraction semigroup, an ideal is semiprime if and only if it is intersection
of all prime ideals containing it. Moreover, if an ideal of a subtraction semigroup is prime,
then it is semiprime and strongly irreducible.

2. Preliminaries

By a subtraction algebra we mean an algebra (X ;−) with a single binary operation “−”
that satisfies the following identities: for any x, y, z ∈ X ,
(S1) x − (y − x) = x;
(S2) x − (x − y) = y − (y − x);
(S3) (x − y) − z = (x − z) − y.
The last identity permits us to omit parentheses in expressions of the form (x − y) − z.
The subtraction determines an order relation on X : a ≤ b ⇔ a − b = 0, where 0 = a − a
is an element that does not depend on the choice of a ∈ X . The ordered set (X ;≤) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
a∧ b = a− (a− b); the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a − ((a − b) ∧ (a − c))
= a − ((a − b) − ((a − b) − (a − c))).
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A nonempty subset S of a subtraction algebra X is said to be a subalgebra of X if
x − y ∈ S whenever x, y ∈ S.

In a subtraction algebra, the following hold:
(S1) x − 0 = x and 0 − x = 0.
(S2) x ≤ y if and only if x = y − w for some w ∈ X.
(S3) (x − y) − x = 0.
(S4) x − (x − (x − y)) = x − y.
(S5) (x − y) − (y − x) = x − y.

By a subtraction semigroup we mean an algebra (X ; ·,−) with two binary operations “−”
and “·”that satisfies the following axioms: for any x, y, z ∈ X ,

(SS1) (X ; ·) is a semigroup;
(SS2) (X ;−) is a subtraction algebra;
(SS3) x(y − z) = xy − xz and (x − y)z = xz − yz.

Example 2.1. Let X = {0, 1} in which “−” and “·” are defined by

− 0 1
0 0 0
1 1 0

· 0 1
0 0 0
1 0 1

It is easy to check that X is a subtraction semigroup.

Lemma 2.2. ([2]) Let X be a subtraction semigroup. Then (X ;≤) is a poset, where x ≤
y ⇔ x − y = 0 for any x, y ∈ X.

Proposition 2.3. ([2]) Let X be a subtraction semigroup. Then for any x, y ∈ X x ∧ y =
x − (x − y) is the greatest lower bound of x and y.

Lemma 2.4. Let X be a subtraction semigroup. If x ≤ y for any x, y ∈ X, then we have

sx ≤ sy and xs ≤ ys.

Proof. Since x ≤ y implies x− y = 0, we obtain sx− sy = s(x− y) = s0 = 0 for any s ∈ X.
Hence sx ≤ sy. Similarly, xs ≤ ys.

Definition 2.5. ([2]) Let X be a subtraction semigroup. A subalgebra I of (X,−) is called
a left ideal of X if XI ⊆ I, a right ideal if IX ⊆ I, and an (two-sided) ideal if it is both a
left and right ideal.

Example 2.6. Let X = {0, 1, 2, 3, 4, 5} in which “−” and “·” are defined by

− 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 0 3 4 3 1
2 2 5 0 2 5 4
3 3 0 3 0 3 3
4 4 0 0 4 0 4
5 5 5 0 5 5 0

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 4 3 4 0
2 0 4 2 0 4 5
3 0 3 0 3 0 0
4 0 4 4 0 4 0
5 0 0 5 0 0 5

It is easy to check that (X ;−, ·) is a subtraction semigroup. Let I = {0, 1, 3, 4}. Then I is
an ideal of X.

Example 2.7. Let X be a subtraction semigroup and a ∈ X. Then

aX = {ax | x ∈ X}
is a right ideal of X.
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Proof. Let ax, ay ∈ aX. Then ax−ay = a(x−y) ∈ aX, and so aX is a subalgebra of (X,−).
Let ax ∈ aX and z ∈ X. Then (ax)z = a(xz) ∈ aX, which shows that (aX)X ⊆ aX.
Therefore, aX is a right ideal.

Lemma 2.8. Let X be a subtraction semigroup. Then the following hold.
(1) x ∧ (x − y) = x − y;
(2) x ∧ (y − x) = 0;
(3) (x − y) ∧ (y − x) = 0.
(4) (x − z) ∧ (y − z) = (x − z) ∧ y.

Proof. (1) For any x, y ∈ X, we have

x ∧ (x − y) = x − (x − (x − y))
= x − y (from (S4)).

(2) For any x, y ∈ X, we have

x ∧ (y − x) = x − (x − (y − x))
= x − x (from (S3))
= 0.

(3) For any x, y ∈ X, we obtain

(x − y) ∧ (y − x) = (x − y) − ((x − y) − (y − x))
= (x − y) − (x − y) (from (S5))
= 0.

(4) For any x, y and z ∈ X, we obtain

(x − z) ∧ (y − z) = (x − z) − ((x − z) − (y − z))
= (x − z) − ((x − y) − z) (from Lemma 2.2, [3])
= (x − z) − ((x − z) − y)
= (x − z) ∧ y.

The element 1 is called a unity in a subtraction semigroup X if 1x = x1 = x for all
x ∈ X .

Definition 2.9. ([2]) A strong subtraction semigroup is a subtraction semigroup X that
satisfies the following condition : for each x, y ∈ X ,

x − y = x − xy.

If a strong subtraction semigroup X has a unity 1, then 1 is the greatest element in X
since x − 1 = x − x1 = x − x = 0 for all x ∈ X .

Example 2.10. Let X = {0, a, b, 1} in which “−” and “·” are defined by

− 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

· 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

It is easy to check that (X ;−, ·) is a strong subtraction semigroup with unity 1.

Lemma 2.11. ([2]) Let X be a strong subtraction semigroup with 1. Then we have

x ∧ y = xy.
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Let X be a strong subtraction semigroup and A be an ideal of X. For x ∈ X such that
x /∈ A, we denote

Ax = {y | y ∧ x ∈ A}.
Lemma 2.12. Let A be an ideal of a strong subtraction semigroup X with 1.

Proof. Let a, b ∈ Ax. Then we have a ∧ x ∈ A and b ∧ x ∈ A, and so (a − b) ∧ x =
(a ∧ x) − (b ∧ x) ∈ A. Moreover, let a ∈ Ax and s ∈ X. Then we have a ∧ x = ax ∈ A. So,
we obtain sa∧ x = (sa)x = s(ax) ∈ A. Similarly, as∧ x ∈ A. This completes the proof.

Theorem 2.13. ([2]) Let (X,−, ·) be a strong subtraction semigroup and I a subalgebra of
(X,−). Then the followings are equivalent :

(1) I is an ideal in (X,−, ·),
(2) y ∈ I and x ≤ y imply x ∈ I.

Theorem 2.14. ([2]) Let X be a strong subtraction semigroup with a unity 1. Then the
following are equivalent :

(1) I is an ideal in X,
(2) y ∈ I and x ≤ y imply x ∈ I.

Let S be a subset of a subtraction semigroup X . The ideal of X generated by S is the
intersection of all ideals in X containing S. Denote (S) the ideal generated by S. If S = {a},
then (S) is denoted by (a).

Theorem 2.15. ([2]) If X is a strong subtraction semigroup, then the principal ideal gen-
erated by a ∈ X is (a] = {x ∈ X | x ≤ a}.

If X is a strong subtraction semigroup with 1, then the principal ideal generated by a is
(a] = aX .

Theorem 2.16. Let X be a strong subtraction semigroup with 1. For an ideal P (�= X) of
X, the following are equivalent:

(1) If A and B are ideals of X such that AB ⊆ P, then we have either A ⊆ P or B ⊆ P.
(2) If (a), (b) are principal ideals of X such that (a)(b) ⊆ P, then we have either a ∈ P or

b ∈ P.
(3) If aXb ⊆ P, then we have a ∈ P or b ∈ P.
(4) If I1 and I2 are two right ideals of X such that I1I2 ⊆ P, then we have either I1 ⊆ P

or I2 ⊆ P.
(5) If J1 and J2 are two left ideals of X such that J1J2 ⊆ P, then we have either J1 ⊆ P

or J2 ⊆ P.

Proof. (1)=⇒ (2). It is easy to prove, and so proof is omitted. (2)=⇒ (1). Suppose that A
and B ideals of X such that AB ⊆ P but A �⊆ P. Then there exists a a ∈ A such that a /∈ P.
Now for any b ∈ B, we have (a)(b) ⊆ AB ⊆ P, whence b ∈ P. Thus we have B ⊆ P. (1)=⇒
(3). Let aXb ⊆ P. Then by (1), (a)(b) ⊆ P. So we get a ∈ (a) ⊆ P or b ∈ (b) ⊆ P. (3)=⇒
(4). Let I1I2 ⊆ P and I1 �⊆ P. Then there exists an element a1 ∈ I1 such that a1 /∈ P. So
for every a2 ∈ I2, we have a1Xa2 ⊆ I1I2 ⊆ P. Hence from (3), we obtain a2 ∈ P, that is,
I2 ⊆ P. Similarly we have (3)=⇒ (5).
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3. Prime and Semiprime Ideals

In what follows, let X denote a subtraction semigroup unless otherwise specified.

Definition 3.1. ([2]) Let X and X ′ be subtraction semigroups. A mapping f : X → X ′

is called a subtraction semigroup homomorphism (briefly, homomorphism) if f(x − y) =
f(x) − f(y) and f(xy) = f(x)f(y) for all x, y ∈ X.

Lemma 3.2. Let f : X → X ′ be a subtraction semigroup homomorphism. Then
(1) f(0) = 0,
(2) x ≤ y imply f(x) ≤ f(y).
(3) f(x ∧ y) = f(x) ∧ f(y).

Proof. (1). Suppose that x is an element of X. Then

f(0) = f(x− x) = f(x) − f(x) = 0

(2) Let x ≤ y. Then we have x − y = 0. Thus we have

0 = f(x − y) = f(x) − f(y),

and so f(x) ≤ f(y).
(3) f(x ∧ y) = f(x − (x − y)) = f(x) − (f(x) − f(y)) = f(x) ∧ f(y).

Let X be a subtraction semigroup and I, J ⊆ X. Denote

I ∧ J = {i ∧ j | i ∈ I, j ∈ J}.
Lemma 3.3. Let X and X ′ be subtraction semigroups and let f : X → X ′ be a subtraction
semigroup homomorphism. Then

(1) (I ∧ J) ∧ K = I ∧ (J ∧ K) for all I, J, K ⊆ X,
(2) f(I1 ∧ I2) = f(I1) ∧ f(I2) for all I1, I2 ⊆ X,
(3) f−1(J1) ∧ f−1(J2) ⊂ f−1(J1 ∧ J2) for all J1, J2 ⊂ X ′.

Proof. (1) Since (x∧y)∧z = x∧(y∧z), we have (I∧J)∧K = I∧(J∧K) for all I, J, K ⊆ X.
(2) Since for any x ∈ I1 and y ∈ I2, x∧y = x−(x−y), we obtain f(x∧y) = f(x−(x−y)) =

f(x) − (f(x) − f(y)) = f(x) ∧ f(y), and so f(I1 ∧ I2) = f(I1) ∧ f(I2).
(3) Let f−1(j1)∧f−1(j2) = x∧y. Then we have f(x∧y) = f(x)∧f(y) = j1∧j2 ∈ J1∧J2,

and so x ∧ y ∈ f−1(J1 ∧ J2). This completes the proof.

Definition 3.4. Let X be a subtraction semigroup. A prime ideal of X is defined to be an
ideal P such that x ∧ y ∈ P then x ∈ P or y ∈ P.

Example 3.5. In Example 2.10, define the operation “∧” are defined by

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Let P = {0, a}. Then P is a prime ideal of a subtraction semigroup X.

Let X be a strong subtraction semigroup with 1. We define the set

ann(a) = {x ∈ X | x ∧ a = 0, a ∈ X}
as the annihilator of a. It can be shown that ann(a) is an ideal of X, and if t ≤ s, then
ann(s) ⊆ ann(t) for any s, t ∈ X.
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Proposition 3.6. Suppose that A is an ideal of strong subtraction semigroup X with 1.
Let I be an ideal that is maximal among all annihilators of non-zero elements of A. Then
I is a prime ideal of X.

Proof. Suppose I = ann(x) for some 0 �= x ∈ A. Let a, b ∈ X such that a∧ b ∈ I and a /∈ I.
Then x ∧ a �= 0. Now ann(x) ⊆ ann(x ∧ a). Since x ∈ A, x ∧ a ≤ x and by Theorem 2.13,
we have 0 �= x ∧ a ∈ A. Since I is maximal among all annihilators of non-zero elements of
A, we obtain that ann(x ∧ a) = ann(x) = I. Thus a ∧ b ∈ I implies that a ∧ b ∧ x = 0 and
hence b ∈ ann(x ∧ a) = ann(x) = I. This proves that I is a prime ideal of X.

Let P be a prime ideal of strong subtraction semigroup X. Put

0P = {x ∈ X | x ∧ a = 0 for some a /∈ P}.
0P is evidently non-empty set because 0 ∈ 0P .

Proposition 3.7. 0P is an ideal of strong subtraction semigroup X with 1.

Proof. Let x, y ∈ 0P . Then we have x ∧ a = xa = 0 and y ∧ a = ya = 0 for some a, b /∈ P.
Since P is prime ideal, a /∈ P, b /∈ P implies a ∧ b /∈ P. Hence we obtain

(x − y) ∧ (a ∧ b) = (x − y)(a ∧ b) = (x − y)(ab)
= x(ab) − y(ab) = (xa)b − y(ab)
= 0b − y(ab) = 0 − y(ab)
= 0,

and so we get x− y ∈ 0P . Let x ∈ 0P and s ∈ X. Then x∧ a = xa = 0 for some a /∈ P. Now

sx ∧ a = (sx)a = s(xa) = s0 = 0,

and so sx ∈ 0P . Similarly xs ∈ 0P . This completes the proof.

Proposition 3.8. Let P be an ideal of a subtraction semigroup X. Then the following
statements are equivalent.

(1) P is prime.
(2) For any ideals I and J of X, I ∧ J ⊆ P implies I ⊆ P or J ⊆ P.
(3) For any elements i and j in X, i /∈ P and j /∈ P implies (i) ∧ (j) �⊆ P.

Proof. (1) =⇒ (2). Suppose that P is a prime ideal of X such that A ∧ B ⊂ P , where A
and B are ideals of X . Assume that A �⊂ P and B �⊂ P . Then there exist x ∈ A \ P and
y ∈ B \ P , and so x ∧ y ∈ A ∧ B ⊂ P. Since P is prime, it follows that x ∈ P or y ∈ P ,
which is a contradiction.

(1)=⇒ (3). Let P be a prime, i /∈ P and j /∈ P. Suppose that (i) ∧ (j) ⊆ P. Then
i∧ j ∈ (i)∧ (j) ∈ P. Since P is prime, we have i ∈ P or j ∈ P. This leads to a contradiction.
Thus we have (i) ∧ (j) �⊆ P.

(3)=⇒ (1). Since (i) ∧ (j) ⊆ P imply i ∈ P or j ∈ P, the proof is trivial.

The following results are easy to prove, and so proofs are omitted.

Proposition 3.9. Let X be a subtraction semigroup. If I is an ideal of X and P a prime
ideal of X, then I ∩ P is a prime ideal of I.

Proposition 3.10. Let X be a subtraction semigroup. If P is a prime ideal of X and a is
an element of X such that XaX ⊆ P, then a ∈ P.

Definition 3.11. Let X be a subtraction semigroup. A nonempty subset H of X is called
an m-system of X if for any a, b ∈ H, there exist a1 ∈ (a) and b1 ∈ (b) such that a1∧b1 ∈ H.
The empty set is to be considered as an m-system of X.
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Proposition 3.12. Let X be a subtraction semigroup. An ideal P (�= X) of X is prime if
and only if its complement P c is an m-system.

Proof. Assume that P is prime. Let a ∈ X\P and b ∈ X\P. Then (a) ∧ (b) �⊆ P. So, there
exist a1 ∈ (a) and b1 ∈ (b) such that a1 ∧ b1 /∈ P, that is, a1 ∧ b1 ∈ X\P. Thus X\P is an
m-system.

Conversely, let X\P is an m-system and let a ∈ X\P and b ∈ X\P. Then there exist
a1 ∈ (a) and b1 ∈ (b) such that a1∧b1 ∈ X\P. Thus (a)∧(b) �⊆ P, and hence P is prime.

Proposition 3.13. Let {Pα}α∈A be family of prime ideals which are totally ordered by set
inclusion. Then

⋂

α∈A

Pα is prime

Proof. Let I and J be ideals of X. If I ∧ J ⊆ ⋂

α∈A

Pα, then I ∧ J ⊆ Pα, for all α ∈ A.

Assume that there exist α ∈ A such that I �⊆ Pα. Then J ⊆ Pα, and so J ⊆ Pβ for all
β ≥ α. Suppose that there exist γ < α such that J ⊆ Pγ . Then I ⊆ Pγ and so I ⊆ Pα. This
is impossible. Thus J ⊆ Pβ for any β ∈ A. Hence

⋂

α∈A

Pα, is prime.

Proposition 3.14. Let X be a strong subtraction semigroup with 1 and let P1, P2 be ideals
of X such that P1 ∩ P2 be a prime ideal of X. Then P1 ⊆ P2 or P2 ⊆ P1

Proof. Let P1 �⊆ P2 and x ∈ P2. If y ∈ P1, y /∈ P2, we obtain x ∧ y = xy ∈ P2X ⊆ P2 and
x∧ y = xy ∈ XP1 ⊆ P1. Then x∧ y ∈ P1 ∩P2. Since P1 ∩P2 is prime, we have x ∈ P1 ∩P2

or y ∈ P1 ∩ P2. Since y /∈ P2, we have y /∈ P1 ∩ P2. Hence x ∈ P1 ∩ P2, and so x ∈ P1. This
completes the proof.

Proposition 3.15. Let P and Q be distinct prime ideals of subtraction semigroup X such
that P ⊆ Q. Then there exist prime ideals P1 and Q1 such that

P ⊆ P1 ⊆ Q1 ⊆ Q (∗)
and there is no other prime ideal that lies between P1 and Q1.

Proof. By the Zorn’s lemma, we can insert a chain {Pi}i∈π of prime ideals between P and
Q. Let x ∈ Q but x /∈ P. Define Q1 as the intersection of Pi’s containing x and P1 as the
union of Pi’s not containing x. Since {Pi}i∈π is a chain of prime ideals, it is easy to see that
P1 and Q1 are prime ideals and obviously the inclusion (∗) holds. Also, none of the Pi’s
lies properly between P1 and Q1. For if x ∈ Pi, then Q1 ⊆ Pi and if x /∈ Pi then Pi ⊆ P1.
This cannot happen by the maximality of the chain. Thus no ideal lies properly between
P1 and Q1. This completes the proof.

Definition 3.16. Let X be a subtraction semigroup. An ideal Q is said to be semiprime
if for any ideal I of X, I ∧ I ⊆ Q implies I ⊆ Q. A nonempty subset S is said an s-system
if for every s ∈ S, there exists s1, s2 ∈ (s) such that s1 ∧ s2 ∈ S.

Clearly every prime ideal is semiprime, and each m-system is an s-system.

Proposition 3.17. Let X be a subtraction semigroup and Q an ideal of X. Then Q is
semiprime if and only if X\Q is an s-system.

Proof. Suppose that Q is semiprime of X. Let a ∈ X\Q. Then we have (a) �⊆ Q and so
(a) ∧ (a) �⊆ Q. Thus there exists a1, a2 ∈ (a) such that a1 ∧ a2 /∈ Q. Hence X\Q is an
s-system. Conversely, assume that X\Q is an s-system. Let I be an ideal with I ∧ I ⊆ Q.
Suppose that I �⊆ Q. Then there exists s ∈ I\Q ⊆ X\Q. Since X\Q is an s-system, there
exists s1, s2 ∈ (s) such that s1 ∧ s2 ∈ X\Q. Since s1 ∧ s2 ∈ (s) ∧ (s) ⊆ I ∧ I, we obtain
I ∧ I �⊆ Q. This is impossible. So, I ⊆ Q and Q is semiprime.
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Lemma 3.18. Let S be a nonempty subset of a subtraction semigroup X. Then S is an
s-system if and only if S =

⋃

α∈A

Sα, where Sα’s are m-systems of X.

Proof. Suppose that S is an s-system and s0 ∈ S. Then there exist s1
0, s

2
0 ∈ (s0) such that

s1 = s1
0∧s2

0 ∈ S. Now for s1, there exist s1
1, s

2
1 ∈ (s1) such that s2 = s1

1∧s2
1 ∈ S. Continuing

this process, we get a sequence s0, s1, s2, · · ·. We claim that M = {s0, s1, s2, · · ·} is an
m-system. Let si, sj ∈ M. We may assume that i < j without loss of generality. Then
(sj) ⊆ (si). Take s1

j , s
2
j ∈ (sj). Then s1

j ∧ s2
j = sj+1 ∈ M. Thus M is an m-system. The

converse is clear.

Theorem 3.19. Let Q be an ideal in a subtraction semigroup X. Then Q is semiprime if
and only if Q is the intersection of all prime ideals Pα(α ∈ A) containing Q.

Proof. Suppose that Q is semiprime and let S = X\Q. Then S is an s-system. By Lemma
3.18, S =

⋃

β∈B

Sβ for some m-system Sβ . Since for each β ∈ B, Sβ ⊆ S, Pβ = X\Sβ is

prime containing Q and so Q ⊆ ⋂

α∈A

Pα ⊆ ⋂

β∈B

Pβ =
⋂

β∈B

(X\Sβ) = X\ ⋃

β∈B

Sβ = X\S = Q.

Thus Q is the intersection of Pα. Conversely, let I be an ideal in X with I ∧ I ⊆ Q. then
I ∧ I ⊆ Pα for all α ∈ A. Since Pα is prime, we have I ⊆ Pα for all α ∈ A and so I ⊆ Q.
thus Q is semiprime.

Definition 3.20. An ideal I of a subtraction semigroup X is said to be irreducible if for
any ideals H, K in X, I = H ∩ K implies I = H or I = K. An ideal is said to be strongly
irreducible if H ∩ K ⊆ I implies H ⊆ I or K ⊆ I.

Theorem 3.21. If an ideal P of a strong subtraction semigroup X with 1 is prime, then
it is semiprime and strongly irreducible.

Proof. If P is prime, then it is semiprime. Moreover, if H, K are ideals of X such that
H ∩K ⊆ P, then we have H ∧K = HK ⊆ H ∩K ⊆ P. Since P is prime, we obtain H ⊆ P
or K ⊆ P, and so P is strongly irreducible.
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