PSEUDO- $M T L$ ALGEBRAS AND PSEUDO- R_{0} ALGEBRAS

Liu Lianzhen and Li Kaitai

Received July 8, 2003; revised June 27, 2004

Abstract

The relations between pseudo- $M T L$ algebras and pseudo- R_{0} algebras are discussed. The main results are as follows: pseudo- $I M T L$ algebras are equivalent to weak pseudo- R_{0} algebras; pseudo- $N M$ algebras are equivalent to pseudo- R_{0} algebras.

1. Introduction The notion of $M T L$ algebras was introduced by Esteva and Godo in [3] as a generalization of $B L$ algebras [6]. In [1,2,4], Georgescu et.al proposed the notion of pseudo- $B L$ algebras as a noncommutative extension of $B L$ algebras. Afterwards, Georgescu and Popescu [5] proposed the notion of pseudo- $M T L$ algebras (called weak pseudo- $B L$ algebras) as a noncommutative extension of $M T L$ algebras. In [7], we generalized Georgescu's ideas to R_{0} algebras and proposed the concept of pseudo- R_{0} algebras. In this paper, we discuss the relations between pseudo- $M T L$ algebras and pseudo- R_{0} algebras. We prove that pseudo- $I M T L$ algebras are equivalent to weak pseudo- R_{0} algebras, and that pseudo- $N M$ algebras are equivalent to pseudo- R_{0} algebras.

Now let us recall the definition of $M T L$ algebras (see [3]).
An $M T L$ algebra is a structure $L=(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ such that
(i) $(L, \vee, \wedge, 0,1)$ is a bounded lattice,
(ii) $(L, \odot, 1)$ is an abelian monoid, i.e. \odot is commutative and associative and $x \odot 1=$ $1 \odot x=x$,
(iii) the following conditions hold for all $x, y, z \in L$:
(1) $x \odot y \leq z$ if and only if $x \leq y \rightarrow z \quad$ (residuation),
(2) $(x \rightarrow y) \vee(y \rightarrow x)=1 \quad$ (prelinearity).

An $M T L$ algebra L is called an $I M T L$ algebra, if the following condition holds:
(3) $(x \rightarrow 0) \rightarrow 0=x$.

An $I M T L$ algebra L is called a $N M$ algebra, if the following condition holds:
(4) $(x \odot y \rightarrow 0) \vee(x \wedge y \rightarrow x \odot y)=1$.
2. Pseudo- $M T L$ algebras Definition 2.1. (see [5]) A pseudo- $M T L$ algebra is a structure $L=(L, \vee, \wedge, \odot, \rightarrow, \leadsto, 0,1)$ of type $(2,2,2,2,2,0,0)$, which satisfies the following axioms:
(C1) $(L, \vee, \wedge, 0,1)$ is a bounded lattice,
(C2) $(L, \odot, 1)$ is a monoid, i.e. \odot is associative and $x \odot 1=1 \odot x=x$,
(C3) $x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ if and only if $y \leq x \sim z$,
(C4) $(x \rightarrow y) \vee(y \rightarrow x)=(x \leadsto y) \vee(y \sim x)=1$.
The following example shows that pseudo- $M T L$ algebras exist.
Example 2.2. Let $L=\{0, a, b, c, 1\}$ and satisfy $0 \leq a \leq b \leq c \leq 1$. We define $x \wedge y=\min \{x, y\}, x \vee y=\max \{x, y\}$, and define $\odot, \rightarrow, \leadsto$ as follows:

[^0]| \odot | 0 | a | b | c | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| a | 0 | 0 | 0 | a | a |
| b | 0 | a | b | b | b |
| c | 0 | a | b | c | c |
| 1 | 0 | a | b | c | 1 |

\rightarrow	0	a	b	c	1
0	1	1	1	1	1
a	a	1	1	1	1
b	a	a	1	1	1
c	0	a	b	1	1
1	0	a	b	c	1

\leadsto	0	a	b	c	1
0	1	1	1	1	1
a	b	1	1	1	1
b	0	a	1	1	1
c	0	a	b	1	1
1	0	a	b	c	1

It is easily checked that $(L, \wedge, \vee, \odot, \rightarrow, \sim, 0,1)$ is a pseudo- $M T L$ algebra.
Lemma 2.3. (see [5]) Let L be a pseudo- $M T L$ algebra. The following properties hold:
(1) $x \rightarrow x=x \leadsto x=1$,
(2) $1 \rightarrow x=1 \leadsto x=x$,
(3) $x \odot y \leq x \wedge y, y \odot x \leq x \wedge y$,
(4) $x \rightarrow(y \leadsto z)=y \leadsto(x \rightarrow z)$,
(5) $x \odot(x \sim y) \leq x \wedge y,(x \rightarrow y) \odot x \leq x \wedge y$,
(6) If $x \leq y$, then $x \odot z \leq y \odot z, z \odot x \leq z \odot y$,
(7) $x \leq y$ if and only if $x \rightarrow y=1$ if and only if $x \leadsto y=1$,
(8) $y \rightarrow z \leq(x \rightarrow y) \rightarrow(x \rightarrow z), y \leadsto z \leq(x \sim y) \leadsto(x \leadsto z)$,
(9) $y \rightarrow z \leq(z \rightarrow x) \sim(y \rightarrow x), y \sim z \leq(z \sim x) \rightarrow(y \sim x)$,
(10) $(x \odot y) \leadsto z=y \leadsto(x \leadsto z),(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)$,
(11) $x \odot(y \vee z)=(x \odot y) \vee(x \odot z),(y \vee z) \odot x=(y \odot x) \vee(z \odot x)$,
$(12) x \odot(y \wedge z)=(x \odot y) \wedge(x \odot z),(y \wedge z) \odot x=(y \odot x) \wedge(z \odot x)$.
Remark 2.4. The identity $x \wedge y=x \odot(x \sim y)=(x \rightarrow y) \odot x$ does not hold in pseudo$M T L$ algebras. In fact, in Example 2.2, take $x=b, y=a$, we have $x \wedge y=b \wedge a=a$, but $(x \rightarrow y) \odot x=(b \rightarrow a) \odot b=a \odot b=0$.

Let L be a pseudo- $M T L$ algebra. Define

$$
\neg x=x \rightarrow 0, \sim x=x \leadsto 0
$$

Obviously, \neg and \sim are unary operations on L.
Definition 2.5. A pseudo- $M T L$ algebra is called a pseudo- $I M T L$ algebra, if it satisfies (C5) $x=\neg \sim x=\sim \neg x$.
Definition 2.6. A pseudo- $I M T L$ algebra is called a pseudo- $N M$ algebra, if it satisfies
(C6) $(x \odot y \rightarrow 0) \vee(x \wedge y \rightarrow x \odot y)=1,(x \odot y \sim 0) \vee(x \wedge y \sim x \odot y)=1$.
Lemma 2.7. Let L be a pseudo-IMTL algebra. The following properties hold:
(1) $x \leadsto y=\sim y \rightarrow \sim x, x \rightarrow y=\neg y \leadsto \neg x$,
(2) $x \leq y$ if and only if $\neg y \leq \neg x$ if and only if $\sim y \leq \sim x$,
(3) $\sim(x \vee y)=\sim x \wedge \sim y, \neg(x \vee y)=\neg x \wedge \neg y$,
(4) $\sim(x \wedge y)=\sim x \vee \sim y, \neg(x \wedge y)=\neg x \vee \neg y$,
(5) $x \odot y=\neg(y \sim \sim x)=\sim(x \rightarrow \neg y)$,
(6) $x \leadsto y=\sim(\neg y \odot x), x \rightarrow y=\neg(x \odot \sim y)$,
(7) $x \leadsto(y \vee z)=(x \sim y) \vee(x \leadsto z), x \rightarrow(y \vee z)=(x \rightarrow y) \vee(x \rightarrow z)$.

Proof. (1) By Lemma 2.3 and (C5), we have $x \leadsto y \leq(y \leadsto 0) \rightarrow(x \leadsto 0)=\sim y \rightarrow \sim$ $x \leq(\sim x \rightarrow 0) \leadsto(\sim y \rightarrow 0)=\neg \sim x \leadsto \neg \sim y=x \leadsto y$, and so $x \leadsto y=\sim y \rightarrow \sim x$. Similarly, $x \rightarrow y=\neg y \leadsto \neg x$.
(2) From Lemma 2.3 and (1), it follows that $x \leq y$ if and only if $x \leadsto y=1$ if and only if $\sim y \rightarrow \sim x=1$ if and only if $\sim y \leq \sim x$. Similarly, $x \leq y$ if and only if $\neg y \leq \neg x$.
(3) Since $x, y \leq x \vee y$, we have $\sim(x \vee y) \leq \sim x, \sim(x \vee y) \leq \sim y$. Let $t \leq \sim x, t \leq \sim y$, by (2) and (C5), we have $x=\neg \sim x \leq \neg t, y=\neg \sim y \leq \neg t$, hence $x \vee y \leq \neg t$. Using (2) and (C5) again, we have $t=\sim \neg t \leq \sim(x \vee y)$, thus $\sim(x \vee y)=\sim x \wedge \sim y$. Similarly, $\neg(x \vee y)=\neg x \wedge \neg y$.
(4) The proof is similar to (3).
(5) By (C3), (C5), (1) and (2), we have $x \odot y \leq t$ if and only if $x \leq y \rightarrow t=\neg t \leadsto \neg y$ if and only if $\neg t \leq x \rightarrow \neg y$ if and only if $\sim(x \rightarrow \neg y) \leq \sim \neg t=t$. Therefore $x \odot y=\sim$ $(x \rightarrow \neg y)$. On the other hand, $x \odot y \leq t$ if and only if $y \leq x \leadsto t=\sim t \rightarrow \sim x$ if and only if $\sim t \leq y \leadsto \sim x$ if and only if $\neg(y \leadsto \sim x) \leq \neg \sim t=t$. Thus $x \odot y=\neg(y \leadsto \sim x)$.
(6) From (5) and (C5), it follows that $\sim(\neg y \odot x)=\sim \neg(x \sim \sim(\neg y))=x \leadsto y, \neg(x \odot \sim$ $y)=\neg \sim(x \rightarrow \neg(\sim y))=x \rightarrow y$.
(7) By (6), (3), (4) and Lemma 2.3, we have $x \leadsto(y \vee z)=\sim(\neg(y \vee z) \odot x)=\sim$ $((\neg y \wedge \neg z) \odot x)=\sim((\neg y \odot x) \wedge(\neg z \odot x))=\sim(\neg y \odot x) \vee \sim(\neg z \odot x)=(x \leadsto y) \vee(x \leadsto z)$. Similarly, $x \rightarrow(y \vee z)=(x \rightarrow y) \vee(x \rightarrow z)$.

Remark 2.8. Lemma $2.7(5)$ shows that operator \odot can be defined by operators \neg, \sim ,$\rightarrow($ or $\sim)$ in pseudo- $I M T L$ algebras.
3. Main results Pseudo- R_{0} algebras were introduced by the authors in [7] as a noncommutative extension of R_{0} algebras [8]. In this section, we discuss the relations between pseudo- $M T L$ algebras and the pseudo- R_{0} algebras.

Definition 3.1. (see [7]) A pseudo- R_{0} algebra is a structure

$$
L=(L, \vee, \wedge, \rightarrow, \leadsto, \sim, \neg, 0,1)
$$

of type $(2,2,2,2,1,1,0,0)$, which satisfies the following axioms, for all $x, y, z \in L$:
(i) $(L, \vee, \wedge, 0,1)$ is a bounded lattice,
(ii) The following conditions hold:
(PR1) $\sim x \rightarrow \sim y=y \leadsto x, \neg x \sim \neg y=y \rightarrow x$,
(PR2) $1 \rightarrow x=1 \leadsto x=x$,
(PR3) $(y \leadsto z) \vee((x \leadsto y) \leadsto(x \sim z))=(x \leadsto y) \leadsto(x \leadsto z)$,
$(y \rightarrow z) \vee((x \rightarrow y) \rightarrow(x \rightarrow z))=(x \rightarrow y) \rightarrow(x \rightarrow z)$,
(PR4) $x \rightarrow(y \sim z)=y \sim(x \rightarrow z)$,
(PR5) $x \rightarrow(y \vee z)=(x \rightarrow y) \vee(x \rightarrow z)$, $x \sim(y \vee z)=(x \sim y) \vee(x \sim z)$,
(PR6) $(x \rightarrow y) \vee((x \rightarrow y) \leadsto(\neg x \vee y))=(x \leadsto y) \vee((x \sim y) \rightarrow(\sim x \vee y))=1$,
(PR7) $\neg x=x \rightarrow 0, \sim x=x \leadsto 0$.
If a bounded lattice L satisfies (PR1)-(PR5) and (PR7), then L is called a weak pseudo- R_{0} algebra.

Lemma 3.2 (see [7]). Let L be a pseudo- R_{0} algebra. The following hold:
(1) $x=\sim \neg x=\neg \sim x$,
(2) $x \rightarrow x=x \leadsto x=1$,
(3) $x \leq y$ if and only if $x \rightarrow y=1$ if and only if $x \leadsto y=1$,
(4) $x \leq y \rightarrow z$ if and only if $y \leq x \leadsto z$,
(5) $\neg(x \vee y)=\neg x \wedge \neg y, \sim(x \vee y)=\sim x \wedge \sim y$,
(6) $\neg(x \wedge y)=\neg x \vee \neg y, \sim(x \wedge y)=\sim x \vee \sim y$.

The following theorem is a characterization of a pseudo- R_{0} algebra.
Theorem 3.3. Let $(L, \vee, \wedge, 0,1)$ be a bounded lattice. \neg and \sim are two unary operations on L, and $\neg 0=\sim 0=1, \rightarrow$ and \leadsto are two binary operations on L. Then $(L, \vee, \wedge, \rightarrow, \leadsto, \neg, \sim, 0,1)$ is a pseudo- R_{0} algebra if and only if L satisfies (PR1), (PR4), (PR5), (PR6) and (PR8), where
(PR8) $x \leq y$ if and only if $x \sim y=1$ if and only if $x \rightarrow y=1$.
Proof. Let L be a bounded lattice and satisfy (PR1), (PR4)-(PR6) and (PR8). Since $x \leq x$, by (PR8) we have $x \leadsto x=x \rightarrow x=1$. By (PR4), $x \rightarrow(1 \leadsto x)=1 \leadsto(x \rightarrow x)=$ $1 \leadsto 1=1$, so by (PR8) $x \leq 1 \leadsto x$. Conversely, from (PR4) it follows that $1 \leadsto((1 \leadsto$ $x) \rightarrow x)=(1 \leadsto x) \rightarrow(1 \sim x)=1$. By (PR8) we have $(1 \sim x) \rightarrow x=1$ and $1 \sim x \leq x$. Therefore $1 \sim x=x$. Similarly, $1 \rightarrow x=x$. Thus (PR2) holds. From (PR1) and (PR2), it
follows that $x \leadsto 0=\sim 0 \rightarrow \sim x=1 \rightarrow \sim x=\sim x, x \rightarrow 0=\neg 0 \leadsto \neg x=1 \leadsto \neg x=\neg x$. Thus (PR7) holds. Finally, from (PR5) we have if $x \leq y$, then $z \leadsto x \leq z \leadsto y, z \rightarrow x \leq z \rightarrow y$. On the other hand, from (PR4) and (PR8), it follows that $x \leq y \leadsto z$ if and only if $y \leq x \rightarrow z$. Now let $t \leq y \rightarrow z$, then $y \leq t \leadsto z$ and $x \rightarrow y \leq x \rightarrow(t \leadsto z)=t \leadsto(x \rightarrow z)$. Hence $t \leq(x \rightarrow y) \rightarrow(x \rightarrow z)$. This implies $y \rightarrow z \leq(x \rightarrow y) \rightarrow(x \rightarrow z)$. Therefore $(y \rightarrow z) \vee((x \rightarrow y) \rightarrow(x \rightarrow z))=(x \rightarrow y) \rightarrow(x \rightarrow z)$. Similarly, $(y \sim z) \vee((x \sim$ $y) \leadsto(x \leadsto z))=(x \leadsto y) \leadsto(x \leadsto z)$. Thus (PR3) holds. Consequently, L is a pseudo- R_{0} algebra. The converse is obvious.

Corollary 3.4. Let $(L, \vee, \wedge, 0,1)$ be a bounded lattice. \neg and \sim are two unary operations on L, and $\neg 0=\sim 0=1, \rightarrow$ and \leadsto are two binary operations on L. Then ($L, \vee, \wedge, \rightarrow, \leadsto, \neg, \sim, 0,1$) is a weak pseudo- R_{0} algebra if and only if L satisfies (PR1), (PR4), (PR5) and (PR8).

From Lemmas 2.3, 2.7 and Corollary 3.4, we have the following theorem:
Theorem 3.5. Each pseudo- $I M T L$ algebra is a weak pseudo- R_{0} algebra.
Corollary 3.6. Each pseudo- $N M$ algebra is a pseudo- R_{0} algebra.
Proof. Let L be a pseudo- $N M$ algebra. By Theorem 3.5, L is a weak pseudo- R_{0} algebra. Now we only prove that L satisfies (PR6). By Lemma 2.7(6) we have $x \leadsto y=\sim$ $(\neg y \odot x), x \rightarrow y=\neg(x \odot \sim y)$. Hence $(x \rightarrow y) \vee((x \rightarrow y) \sim(\neg x \vee y))=(\neg(x \odot \sim$ $y)) \vee((\neg(x \odot \sim y)) \sim(\neg x \vee y))=(\neg(x \odot \sim y)) \vee(\sim(\neg x \vee y) \rightarrow \sim(\neg(x \odot \sim y)))=(\neg(x \odot \sim$ $y)) \vee((x \wedge \sim y) \rightarrow(x \odot \sim y))=1$. Similarly, $(x \leadsto y) \vee((x \leadsto y) \rightarrow(\sim x \vee y))=(\sim$ $(\neg y \odot x)) \vee((\sim(\neg y \odot x)) \rightarrow(\sim x \vee y))=(\sim(\neg y \odot x)) \vee(\neg(\sim x \vee y) \sim(\neg y \odot x))=$ $(\sim(\neg y \odot x)) \vee((\neg y \wedge x) \leadsto(\neg y \odot x))=1$. Thus (PR6) holds. By Theorem 3.3, L is a pseudo- R_{0} algebra.

Corollary 3.7. Each $I M T L$ algebra is a weak R_{0} algebra. Further, each $N M$ algebra is a R_{0} algebra.

Theorem 3.8. Let $L=(L, \vee, \wedge, \rightarrow, \neg, \neg, \sim, 0,1)$ be a weak pseudo- R_{0} algebra. For all $x, y \in L$, we define

$$
x \odot y=\neg(y \leadsto \sim x) .
$$

Then $L=(L, \wedge, \vee, \odot, \rightarrow, \neg, \neg, \sim, 0,1)$ is a pseudo- $I M T L$ algebra.
Proof. It suffices to check the conditions (C1)-(C5) hold. From Definition 3.1 and Lemma 3.2, it follows that (C1) and (C5) hold.
(C2) By the definition of \odot, we have $x \odot 1=\neg(1 \leadsto \sim x)=\neg \sim x=x, 1 \odot x=\neg(x \leadsto \sim$ 1) $=\neg(x \leadsto 0)=\neg \sim x=x$. And $(x \odot y) \odot z=\neg(z \sim \sim(x \odot y))=\neg(z \sim(y \leadsto \sim x))=$ $\neg(z \leadsto(\sim(\sim x) \rightarrow \sim y))=\neg(\sim(\sim x) \rightarrow(z \leadsto \sim y))=\neg(\neg(z \sim \sim y) \leadsto \neg \sim(\sim x))=$ $\neg((y \odot z) \leadsto \sim x)=x \odot(y \odot z)$. This shows that \odot is associative. Hence $(\mathrm{C} 2)$ holds.
(C3) If $x \odot y \leq z$, by Lemma 3.2(3) we have $(x \odot y) \leadsto z=1$, i.e., $\neg(y \leadsto \sim x) \sim z=1$. Using (PR1) we have $\neg(y \leadsto \sim x) \leadsto z=\sim z \rightarrow \sim \neg(y \leadsto \sim x)=\sim z \rightarrow(y \leadsto \sim x)$, and so $\sim z \rightarrow(y \leadsto \sim x)=1$. From (PR4), it follows that $y \leadsto(x \leadsto z)=y \leadsto(\sim$ $z \rightarrow \sim x)=\sim z \rightarrow(y \sim \sim x)=1$. This implies that $y \leq x \leadsto z$. Conversely, if $y \leq x \leadsto z$, then $y \leq \sim z \rightarrow \sim x$, thus $y \leadsto(\sim z \rightarrow \sim x)=1$. By (PR1) and (PR4) we have, $x \odot y \leadsto z=\neg(y \leadsto \sim x) \leadsto z=\sim z \rightarrow(y \leadsto \sim x)=y \leadsto(\sim z \rightarrow \sim x)=1$. Hence $x \odot y \leq z$. On the other hand, $y \leq x \leadsto z$ if and only if $y \rightarrow(x \leadsto z)=1$ if and only if $x \sim(y \rightarrow z)=y \rightarrow(x \sim z)=1$ if and only if $x \leq y \rightarrow z$. Thus (C3) holds.
(C4) Since $x \leq x \vee y$, then $x \rightarrow(x \vee y)=\neg(x \vee y) \leadsto \neg x=1$. By (PR3) we have $(\neg y \leadsto \neg(x \vee y)) \leadsto(\neg y \leadsto \neg x)=((\neg(x \vee y)) \leadsto \neg x) \vee((\neg y \leadsto \neg(x \vee y)) \leadsto(\neg y \leadsto \neg x))=1$, that is, $((x \vee y) \rightarrow y) \leadsto(x \rightarrow y)=1$. Therefore $x \vee y \rightarrow y \leq x \rightarrow y$. Similarly, $x \vee y \rightarrow x \leq y \rightarrow x$. Thus $((x \vee y) \rightarrow y) \vee((x \vee y) \rightarrow x) \leq(x \rightarrow y) \vee(y \rightarrow x)$. Since $1=(x \vee y) \rightarrow(x \vee y)=((x \vee y) \rightarrow x) \vee((x \vee y) \rightarrow y)$, we have $(x \rightarrow y) \vee(y \rightarrow x)=1$. Similarly, $(x \leadsto y) \vee(y \leadsto x)=1$. By Definition 2.5, L is a pseudo- $I M T L$ algebra.

Corollary 3.9. Let $L=(L, \vee, \wedge, \rightarrow, \leadsto, \neg, \sim, 0,1)$ be a pseudo- R_{0} algebra. For all $x, y \in L$, we define

$$
x \odot y=\neg(y \leadsto \sim x) .
$$

Then $L=(L, \wedge, \vee, \odot, \rightarrow, \sim, \neg, \sim, 0,1)$ is a pseudo- $N M$ algebra.
Proof. From Theorem 3.8, it follows that L is a pseudo- $I M T L$ algebra. Now we only prove that L satisfies (C6). Firstly, we prove

$$
x \odot y=\sim(x \rightarrow \neg y)
$$

Indeed, from Theorem 3.8, it follows that $x \odot y \leq t$ if and only if $x \leq y \rightarrow t=\neg t \leadsto \neg y$ if and only if $\neg t \leq x \rightarrow \neg y$ if and only if $\sim(x \rightarrow \neg y) \leq \sim \neg t=t$. Consequently, $x \odot y=\sim(x \rightarrow \neg y)$.
(C6) Since $x \odot y=\sim(x \rightarrow \neg y)$, we have $(x \odot y) \rightarrow 0=x \rightarrow \neg y$. Then $((x \odot y) \rightarrow$ $0) \vee((x \wedge y) \rightarrow(x \odot y))=(x \rightarrow \neg y) \vee(\neg(x \odot y) \sim \neg(x \wedge y))=(x \rightarrow \neg y) \vee((x \rightarrow$ $\neg y) \leadsto(\neg x \vee \neg y))$. By (PR6) we have $(x \rightarrow \neg y) \vee((x \rightarrow \neg y) \leadsto(\neg x \vee \neg y))=1$. Thus $((x \odot y) \rightarrow 0) \vee((x \wedge y) \rightarrow(x \odot y))=1$. On the other hand, since $x \odot y=\neg(y \sim \sim x)$, then $(x \odot y) \leadsto 0=y \leadsto \sim x$. Hence $((x \odot y) \leadsto 0) \vee((x \wedge y) \leadsto(x \odot y))=(y \leadsto \sim x) \vee(\sim$ $(x \odot y) \rightarrow \sim(x \wedge y))=(y \leadsto \sim x) \vee((y \sim \sim x) \rightarrow(\sim x \vee \sim y))=1$. By Definition 2.6, L is a pseudo- $N M$ algebra.

Corollary 3.10. Each weak R_{0} algebra is an $I M T L$ algebra. Further, each R_{0} algebra is a $N M$ algebra.

Remark 3.11. Theorems 3.5 and 3.8 show that pseudo- $I M T L$ algebras are equivalent to weak pseudo- R_{0} algebras. Corollaries 3.6 and 3.9 show that pseudo- $N M$ algebras are equivalent to pseudo- R_{0} algebras.

Acknowledgement. We thank G. Georgescu, A.Iorgulescu and A.Popescu for sending us their papers.

References

[1] A.Di.Nola, G.Georgescu and A.Iorgulescu, Pseudo-BL algebras:part I, Mult.Val.Logic, 8(2002), 673-716.
[2] A.Di.Nola, G.Georgescu and A.Iorgulescu, Pseudo-BL algebras:part II, Mult.Val.Logic, 8(2002), 717-750.
[3] F.Esteva and L.Godo, Monoidal t-norm-based logic:towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124(2001), 271-288.
[4] G.Georgescu and L.Leustean, Some classes of pseudo-BL algebras, J.Austral.Math.Soc. 73(2002), 127-153.
[5] G.Georgescu and A.Popescu, Non-commutative fuzzy structures and pairs of weak negations, Fuzzy Sets and Systems, 143(2004), 129-155.
[6] P.Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
[7] L.Z.Liu and K.T.Li, Pseudo-R algebras, submitted.
[8] G.J.Wang, Non-classical Mathematical Logic and Approximate Reasoning, Science Press, BeiJing, 2000.
Liu Lianzhen ${ }^{1,2}$, 1. College of Science, Xi'an Jiaotong University, 710049 Xi'an, China 2. College of Science, Southern Yangtze University, 214036 Wuxi, China E-mail address: lian712000@yahoo.com
Li Kaitai ${ }^{1}$, College of Science, Xi'an Jiaotong University, 710049 Xi'an, China

[^0]: 2000 Mathematics Subject Classification. 06D99, 03G25.
 Key words and phrases. MTL algebra, pseudo- $M T L$ algebra, pseudo- R_{0} algebra.

