HOMOMORPHIC IMAGE OF A FUZZY IDEAL OF A BCH-ALGEBRA

HAO JIANG AND XUELI CHEN

Received August 10, 2004

ABSTRACT. In 1991 Professor Xi Ougen put forward the proposition that the homomorphic image of a fuzzy ideal with sup property of a BCK-algebra is also a fuzzy ideal.(cf. Proposition 5 of [1].) It is pointed out that there is a mistake in its proof presented in [1], although the proposition itself is correct. In this paper the proposition is generalized to BCH-algebras and a new correct proof is given. Moreover, the condition of sup property is removed.

§1. Introduction.

In 1991, Xi Ougen put forward the following propositon:

Proposition 5 of [1]. Suppose that f is a homomorphism from BCK-algebra X = (X; *, 0) onto BCK-algebra (X'; *', 0'), μ is a fuzzy ideal of X with sup property, then the homomorphic image ν of μ under f is a fuzzy ideal of X'.

This proposition itself is correct, but there is a mistake in its proof presented in [1].

In order to show that $\nu = f(\mu)$ is a fuzzy ideal of X', one must prove that $\nu(x') \ge \min\{\nu(x' *' y'), \nu(y')\}, \forall x', y' \in X'$. It is proved in [1] in this way:

For any $x', y' \in X$, there exist $x, y \in X$ such that x' = f(x), y' = f(y) since X' = f(X). Noticing that μ has the sup property, there is a $x_0 \in f^{-1}(f(x))$ such that $\mu(x_0) = \sup_{z \in f^{-1}(f(x))} \mu(z)$. Then

$$\begin{split} \nu(x') &= \nu(f(x)) = \sup_{z \in f^{-1}(f(x))} \mu(z) \\ &= \mu(x_0) \ge \min(\mu(x_0 * y), \mu(y)) \ (\mu \text{ is a fuzzy ideal}) \\ \stackrel{?}{=} \min(\nu(f(x_0 * y)), \nu(f(y))) \\ &= \min(\nu(f(x_0) *' f(y)), \nu(f(y))) \\ &= \min(\nu(f(x) *' f(y)), \nu(f(y))) \\ &= \min(\nu(x' *' y'), \nu(y')). \end{split}$$

The problem is : How can one get the equation

 $\min(\mu(x_0 * y), \mu(y)) = \min(\nu(f(x_0 * y)), \nu(f(y))) ?$

²⁰⁰⁰ Mathematics Subject Classification. 06F35.

Key Words and Phrases.BCH(BCI,BCK)-algebra, ideal, fuzzy ideal, homomorphic image. Project 102028 supported by Natural Science Foundation of Zhejiang Province, P.R. China.

In fact

$$\begin{split} \nu(f(x_0*y)) &= \sup_{\substack{z \in f^{-1}(f(x_0*y))\\ \mu(f(y)) = \sup_{\substack{t \in f^{-1}(f(y))\\ \text{therefore we can only obtain}}} \mu(t) \geq \mu(y), \end{split}$$

The equation may not hold. However, the proposition itself holds for BCK- algebras. In this paper we generalize this proposition for BCH-algebras and give a new proof. Moreover, the condition of sup property of μ in Proposition 5 of [1] is removed.

\S **2.** Preliminaries.

Definition 1^[2]. A (2, 0) type algebra (X; *, 0) is called a BCH- algebra if it satisfies the following conditions: $\forall x, y, z \in X$

 $\begin{array}{ll} ({\rm H-1}) & x*x=0, \\ ({\rm H-2}) & x*y=y*x=0 \Rightarrow x=y, \\ ({\rm H-3}) & (x*y)*z=(x*z)*y. \end{array}$

A binary relation \leq is defined on X as follows: for any $x, y \in X$, $x \leq y \Leftrightarrow x * y = 0$. A BCH-algebra (X; *, 0) has the following properties:

$$\begin{split} (\mathbf{P}\text{-}1)^{[3]} & x*0 = x, \; \forall x \in X. \\ (\mathbf{P}\text{-}2)^{[3]} & x*(x*y) \leq y, \; \forall x,y \in X. \end{split}$$

Definition $2^{[3]}$. Let (X; *, 0) be a BCH-algebra. A nonempty subset $I \subseteq X$ is called an ideal of X if

(i)
$$0 \in I$$
,
(ii) $x * y \in I, y \in I$ imply $x \in I, \forall x, y \in X$.

Definition $3^{[4],[5]}$. A (2, 0) type algebra (X; *, 0) is called a BCI-algebra if it satisfies the following conditions: for any $x, y, z \in X$

- (I1) ((x*y)*(x*z))*(z*y) = 0;
- (I2) (x * (x * y)) * y = 0;
- (I3) x * x = 0;
- (I4) $x * y = y * x = 0 \Rightarrow x = y$.

Proposition 1^[6]. A BCI-algebra is a BCH-algebra, but a BCH-algebra need not be a BCI-algebra.

Definition 4^[7]. A BCI-algebra is called a BCK-algebra if it satisfies:

(K) $0 * x = 0, \forall x \in X.$

Proposition $2^{[3]}$. A BCK-algebra is a BCI-algebra, but a BCI-algebra need not be a BCK-algebra.

An ideal in a BCI(BCK)-algebra is defined in the same way as in Definition 2.

340

Definition $5^{[8]}$. Let X be a set, a fuzzy subset of X is a function μ from X into [0, 1].

Definition $6^{[10]}$. Let μ be a fuzzy subset of X. For $\lambda \in [0, 1]$, define $\mu_{\lambda} = \{x \in X | \mu(x) \ge \lambda\}$. μ_{λ} is called the λ -level-set of μ .

 $\mu'_{\lambda} = \{x \in X | \mu(x) > \lambda\}. \ \mu'_{\lambda} \text{ is called the strong } \lambda \text{-level-set (or strong } \lambda \text{-cut) of } \mu.$

In this paper we use μ'_{λ} instead of μ_{λ} , because we find that μ'_{λ} has better properties than μ_{λ} . (cf. Theorem 3 of [1])

Definition $7^{[9]}$. A fuzzy subset μ of a BCH-algebra (X; *, 0) is called a fuzzy ideal of X if it satisfies the following conditions:

- (i) $\mu(0) \ge \mu(x), \forall x \in X;$
- (ii) $\mu(x) \ge \mu(x * y) \land \mu(y), \ \forall x, y \in X.$

(Here, $\mu(x * y) \land \mu(y) = \min\{\mu(x * y), \mu(y)\}.$)

The concept of a fuzzy ideal in a BCI(BCK)-algebra is defined in the same way. (cf. Definition 3 of [1].)

Definition $8^{[10]}$. Let X, Y be sets and $f: X \to Y$ be a surjection. Suppose that μ is a fuzzy subset in X. Define a fuzzy subset ν in Y as follows:

$$\nu(y) = \sup_{x \in f^{-1}(y)} \mu(x), \ \forall y \in Y.$$

 ν is called the image of μ under f and is denoted by $\nu = f(\mu)$.

Here $f^{-1}(y) = \{x \in X | f(x) = y\}.$

Definition $9^{[3]}$. Let X = (X; *, 0) and X' = (X'; *', 0') be BCH- algebras and $f : X \to X'$ be a mapping from X to X'. f is called a homomorphism if

$$f(x * y) = f(x) *' f(y), \ \forall x, y \in X.$$

Homomorphism for BCI(BCK)-algebras is defined in the same way.

For brief of symbols, we adopt the convection : the operation \ast' in X' is also denoted by $\ast.$

A homomorphism f is called an epimorphism if it is a surjection, f is called a monomorphism if it is an injection. f is called an isomorphism if it is both an epimorphism and also a monomorphism.

Definition 10^[9]. Suppose that X, Y are BCH-algebras and $f: X \to Y$ is an epimorphism. If μ is a fuzzy ideal of X, then $\nu = f(\mu)$ is called the homomorphic image of μ under f.

Proposition $3^{[2]}$. Let X = (X; *, 0) and X' = (X'; *, 0') be BCH-algebras and $f : X \to X'$ be a homomorphism. Then (i) f(0) = 0'; (ii) $x \le y \Rightarrow f(x) \le f(y)$.

Proposition $4^{[3]}$. An ideal I of a BCH-algebra X has the property: for any $x, y \in X$ (P-3) $x \leq y, y \in I \Rightarrow x \in I$.

As to basic theory of BCH(BCI,BCK)-algebras, the reader is referred to [2]-[7], [11] and [12].

§3. Homomorphic image of a fuzzy ideal of a BCH-algebra.

The main theorem of this paper is

Theorem 1. If $f : X \to Y$ is a BCH-epimorphism, μ is a fuzzy ideal of X, then $\nu = f(\mu)$ is also a fuzzy ideal of Y.

(Here, by BCH-epimorphism we mean that both X and Y are BCH-algebras and $f : X \to Y$ is an epimorphism. Similarly for BCI or BCK-algebras.)

To prove the main theorem we need first to prove three lemmas.

Lemma 1. A fuzzy subset μ of a BCH-algebra X is a fuzzy ideal if and only if $\forall \lambda \in [0, 1]$, μ'_{λ} is an ideal of X when $\mu'_{\lambda} \neq \emptyset$.

Proof. " \Rightarrow ": Suppose that μ is a fuzzy ideal of X. Then by Definition 7 (i) we have $\mu(0) \ge \mu(x), \ \forall x \in X$. For any $\lambda \in [0, 1]$, if $\mu'_{\lambda} \ne \emptyset$, then there exists $x_0 \in \mu'_{\lambda}$, so $\mu(x_0) > \lambda$. It follows that $\mu(0) \ge \mu(x_0) > \lambda \Rightarrow 0 \in \mu'_{\lambda}$.

Moreover, suppose $x * y \in \mu'_{\lambda}$, $y \in \mu'_{\lambda}$, then $\mu(x * y) > \lambda$, $\mu(y) > \lambda$. By Definition 7(ii) we have $\mu(x) \ge \mu(x * y) \land \mu(y) > \lambda$, so $x \in \mu'_{\lambda}$. Hence μ'_{λ} is an ideal of X by Definition 2.

"
"
": We only need to prove that (i) and (ii) of Definition 7 are true.

If (i) isn't true, then there exists $x_0 \in X$ such that $\mu(0) < \mu(x_0)$. Because of the density of real numbers, there is a real number r such that $0 \le \mu(0) < r < \mu(x_0) \le 1$. It follows that $x_0 \in \mu'_r \Rightarrow \mu'_r \neq \emptyset$. Hence μ'_r is an ideal of X, so $0 \in \mu'_r$, this means $\mu(0) > r$, a contradiction.

Moreover, if (ii) isn't true, then there exist $x_0, y_0 \in X$ such that

$$\mu(x_0) < \mu(x_0 * y_0) \land \mu(y_0).$$

Once more using the density of real numbers, we have r such that

$$\mu(x_0) < r < \mu(x_0 * y_0) \land \mu(y_0).$$
(1)

(5)

It is clear that
$$\mu(x_0 * y_0) \wedge \mu(y_0) \le \mu(x_0 * y_0), \tag{2}$$

and
$$\mu(x_0 * y_0) \land \mu(y_0) \le \mu(y_0)$$
 (3)

From (1) and (2) it follows that
$$\mu(x_0 * y_0) > r \Rightarrow x_0 * y_0 \in \mu'_r$$
. (4)

From (1) and (3) it follows that
$$\mu(y_0) > r \Rightarrow y_0 \in \mu'_r$$
.

Since μ'_r is an ideal of X, so by (4) and (5) we get $x_0 \in \mu'_r \Rightarrow \mu(x_0) > r$, this contradicts (1). \Box

Lemma 2. Let (X; *, 0), (X'; *, 0') be BCH-algebras, $f : X \to X'$ be an epimorphism. If I is an ideal of X, then f(I) is an ideal of X'.

Proof. Since I is an ideal of X, we have $0 \in I$. So $0' = f(0) \in f(I)$ by Proposition 3 (i). If $x' * y', y' \in f(I)$, where $x', y' \in X'$, then there exists $x \in X$ such that x' = f(x) since

f is surjective. From $y' \in f(I)$ there exists $y \in I$ such that y' = f(y). Then

$$x' * y' = f(x) * f(y) = f(x * y).$$

Note that $x' * y' \in f(I)$, so there exists $z \in I$ such that

$$f(z) = x' * y' = f(x * y).$$

Hence by (H-1) we have

(6)
$$f(x * y) * f(z) = 0'.$$

Because X is a BCH-algebra, using (P-2) we get

$$(x*z)*((x*z)*y) \le y.$$

Noticing $y \in I$, I is an ideal of X, by (P-3) and (H-3) it follows that

$$(x * ((x * z) * y)) * z = (x * z) * ((x * z) * y) \in I.$$

Now $z \in I$ and I is an ideal of X, making use of (H-3) and Definition 2 we have

$$x * ((x * y) * z) = x * ((x * z) * y) \in I$$

Therefore

$$x' \stackrel{(\rm P-1)}{=} f(x) * 0' \stackrel{(6)}{=} f(x) * (f(x * y) * f(z)) = f(x * ((x * y) * z)) \in f(I).$$

This shows that $x' * y' \in f(I), y' \in f(I) \Rightarrow x' \in f(I)$. Combining $0' \in f(I)$ it is clear that f(I) is an ideal of X' by Definition 2. \Box

Lemma 3. Let X, Y be sets. If $f : X \to Y$ is a surjection, μ is a fuzzy subset of X. Let $\nu = f(\mu)$, then $\nu'_{\lambda} = f(\mu'_{\lambda}), \forall \lambda \in [0, 1].$

(For $A \subseteq X$, we define $f(A) = \{f(a) | a \in A\}$.)

Proof. Let λ be any fixed element in [0, 1]. For any $y \in f(\mu'_{\lambda})$ there exists $b \in \mu'_{\lambda}$ such that y = f(b). So $b \in f^{-1}(y)$ and $\mu(b) > \lambda$. It follows that $\nu(y) \stackrel{\text{Def.8}}{=} \sup_{t \in f^{-1}(y)} \mu(t) \ge \mu(b) > \lambda \Rightarrow y \in \nu'_{\lambda}$, therefore

(7)
$$f(\mu'_{\lambda}) \subseteq \nu'_{\lambda}.$$

On the other hand, for any $y \in \nu'_{\lambda} \Rightarrow \nu(y) > \lambda$. By Definition 8 $\nu(y) = \sup_{t \in f^{-1}(y)} \mu(t)$, so we obtain $\sup_{t \in f^{-1}(y)} \mu(t) > \lambda$. This means that λ is not an upper bound of the set $\{\mu(t) | t \in f^{-1}(y)\}$, hence there exists $t_0 \in f^{-1}(y)$ such that $\mu(t_0) > \lambda$. It follows that $y = f(t_0)$ and $t_0 \in \mu'_{\lambda} \Rightarrow y \in f(\mu'_{\lambda})$, therefore

(8)
$$\nu'_{\lambda} \subseteq f(\mu'_{\lambda})$$

From (7) and (8) we get $\nu'_{\lambda} = f(\mu'_{\lambda})$. \Box

Now we are ready to prove the main theorem.

Proof of Theorem 1. By the known conditions and Lemma 3 we have $\nu'_{\lambda} = f(\mu'_{\lambda}), \forall \lambda \in [0, 1]$. If $\nu'_{\lambda} \neq \emptyset$, then $\mu'_{\lambda} \neq \emptyset$ since $\nu'_{\lambda} = f(\mu'_{\lambda})$. As μ is a fuzzy ideal of X, from Lemma 1 we know that μ'_{λ} is an ideal of X. Making use of Lemma 2 we have $f(\mu'_{\lambda})$ is an ideal of Y. Since $\nu'_{\lambda} = f(\mu'_{\lambda})$, we get that ν'_{λ} is an ideal of Y when $\nu'_{\lambda} \neq \emptyset, \forall \lambda \in [0, 1]$. Thus by Lemma 1 ν is a fuzzy ideal of Y. \Box

Theorem 2. If $f : X \to Y$ is a BCI-epimorphism, μ is a fuzzy ideal of X and $\nu = f(\mu)$, then ν is a fuzzy ideal of Y.

Proof. By Proposition 1 and Theorem 1. \Box

Theorem 3. If $f : X \to Y$ is a BCK-epimorphism, μ is a fuzzy ideal of X and $\nu = f(\mu)$, then ν is a fuzzy ideal of Y.

Proof. By Proposition 2 and Theorem 2. \Box

Remark. Theorem 3 is just the Proposition 5 of [1], but here we have removed the condition of sup property of μ .

References

- [1] Xi Ougen, Fuzzy BCK-algebra, Math. Japon., 36(1991), 935-942.
- [2] Hu Qingping, Li Xin, On BCH-algebras, Math. Sem. Notes 11(1983)313-320.
- [3] Hu Qingping, BCI-algebras, Shănxi Science and Technolog Press, Xi'an, China, 1987.
- [4] K. Iseki, On BCI-algebras, Math.Sem.Notes,8(1980),125-130.
- [5] Jiang Hao and Tian Zhengping, On the independence of axioms of BCK- and BCIalgebras, J.of Hangzhou Normal College (Nat.Sci.Edi.), 1985,2,23-26.
- [6] Hu Qingping, Li Xin, On proper BCH-algebras, Math.Japon., 30 (1985), 659-661.
- [7] K.Iseki and S.Tanaka, An introduction to the theory of BCK-algebras, Math.Japon., 23(1978),1-26.
- [8] L.A. Zadeh, Fuzzy Sets, Information and Control, 8(1965),338-353.
- [9] Jiang Hao, Fuzzy BCH-algebras, J. of Lanzhou University (Nat.Sci.Edi.), Special issue on fuzzy mathematics and systems, 32(1996),32-38.
- [10] H. -J. Zimmermann, Fuzzy Set Theory and its Application, Kluwer-Nijhoff Publishing, Hingham, 1985.
- [11] J.Meng and Y.B.Jun, BCK-algebras, Kyung Moon Sa Co., Soul. Korea, 1994.
- [12] J.Meng and Y.L.Liu, An introduction to BCI-algebras, Shănxi Science and Technolog Press, Xi'an, China, 2001.

DEPARTMENT OF MATHEMATICS, XIXI CAMPUS OF ZHEJIANG UNIVERSITY, HANGZHOU 310028 P.R. CHINA

E-mail address: jmhty@mail.hz.zj.cn