DUAL POSITIVE IMPLICATIVE HYPER K-IDEALS OF TYPE 1

L. TORKZADEH AND M.M ZAHEDI

Received March 5, 2004; revised June 12, 2004

ABSTRACT. In this note first we define the notion of dual positive implicative hyper K-ideal of type 1, where for simplicity is written by DPIHKI - T1. Then we obtain some basic related results. After that we determine hyper K-algebras of order 3, which have $D_1 = \{1\}, D_2 = \{1, 2\}$ and $D_3 = \{0, 1\}$ as a DPIHKI - T1. Finally we give some connections between the notions of dual positive implicative hyper K-ideals of types 1, 2, 3 and 4.

Introduction The hyperalgebraic structure theory was introduced by F. Marty [6] in 1 1934. Imai and Iseki [6] in 1966 introduced the notion of a BCK-algebra. Borzooei, Jun and Zahedi et.al. [2,3,10] applied the hyperstructure to BCK-algebras and introduced the concept of hyper K-algebra which is a generalization of BCK-algebra. Recently in [8,9,11]we introduced the notions of dual positive implicative hyper K-ideals of types 2, 3 and 4 and then we characterized them. Now in this note first we define the notion of dual positive implicative hyper K-ideal of type 1, then we obtain some results which have been mentioned in the abstract.

$\mathbf{2}$ Preliminaries

Definition 2.1. [2] Let H be a nonempty set and " \circ " be a hyperoperation on H, that is " \circ " is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$. Then H is called a hyper K-algebra if it contains a constant "0" and satisfies the following axioms:

(HK1) $(x \circ z) \circ (y \circ z) < x \circ y$ (HK2) $(x \circ y) \circ z = (x \circ z) \circ y$ $z) \circ y$

$$(\mathrm{HK2}) \ (x \circ y) \circ z = (x \circ$$

(HK3) x < x

(HK4) $x < y, y < x \Rightarrow x = y$

(HK5) 0 < x.

for all $x, y, z \in H$, where x < y is defined by $0 \in x \circ y$ and for every $A, B \subseteq H, A < B$ is defined by $\exists a \in A, \exists b \in B$ such that a < b.

Note that if $A, B \subseteq H$, then by $A \circ B$ we mean the subset $\bigcup_{\substack{a \in A \\ b \in B}} a \circ b$ of H.

Theorem 2.2. [2] Let $(H, \circ, 0)$ be a hyper K-algebra. Then for all $x, y, z \in H$ and for all non-empty subsets A, B and C of H the following hold:

(i) $x \circ y < z \Leftrightarrow x \circ z < y$,	(ii) $(x \circ z) \circ (x \circ y) < y \circ z$,
(iii) $x \circ (x \circ y) < y$,	(iv) $x \circ y < x$,
(v) $A \subseteq B$ implies $A < B$,	(vi) $x \in x \circ 0$,
(vii) $(A \circ C) \circ (A \circ B) < B \circ C$,	(viii) $(A \circ C) \circ (B \circ C) < A \circ B$
(ix) $A \circ B < C \Leftrightarrow A \circ C < B$,	(x) $A \circ B < A$.

Definition 2.3. [2] Let $(H, \circ, 0)$ be a hyper K-algebra. If there exists an element $1 \in H$ such that x < 1 for all $x \in H$, then H is called a bounded hyper K-algebra and 1 is said to

²⁰⁰⁰ Mathematics Subject Classification. 03B47, 06F35, 03G25.

Key words and phrases. (bounded) hyper K-algebra, dual positive implicative hyper K-ideal.

be the unit of H.

In a bounded hyper K-algebra, we denote $1 \circ x$ by Nx.

Theorem 2.4. [9] In *H* we have $1 \circ 0 = \{1\}$.

Definition 2.5. [11] Let H be a bounded hyper K-algebra with unit 1. Then a non-empty subset D of H is called a *dual positive implicative hyper K-ideal of type 2 (DPIHKI-T2)* if it satisfies:

$$(i)1 \in D$$

 $(\mathrm{ii})N((Nx \circ Ny) \circ Nz) < D \text{ and } N(Ny \circ Nz) \subseteq D \text{ imply that } N(Nx \circ Nz) \subseteq D, \forall x, y, z \in H.$

Theorem 2.6. [11] Let H be a bounded hyper K-algebra with unit 1 and let D be a subset of H containing 1. Then D is a DPIHKI - T2 if and only if $N(Ny \circ Nz) \subseteq D$ implies that $N(Nx \circ Nz) \subseteq D, \forall x, y, z \in H$.

Theorem 2.7. [11] Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_1 = \{1\}$ be a subset of H. Then the following statements hold:

(i) Let $1 \circ 2 = \{1\}$. Then D_1 is a DPIHKI - T2 if and only if $1 \in 1 \circ 1$.

(ii) Let $1 \circ 2 = \{2\}$. Then D_1 is a DPIHKI - T2 if and only if $2 \circ 2 \neq \{0\}$ and $1 \circ 1 \neq \{0\}$. (iii) Let $1 \circ 2 = \{1, 2\}$. Then:

(a) If $1 \circ 1 = \{0\}$, then D_1 is not a DPIHKI - T2.

(b) If $1 \in 1 \circ 1$, then D_1 is a DPIHKI - T2.

(c) If $1 \circ 1 = \{0, 2\}$, then D_1 is a DPIHKI - T2 if and only if $2 \circ 1 \neq \{0\}$ or $0 \circ 1 \neq \{0\}$.

Theorem 2.8. [11] Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_2 = \{1, 2\}$ be a subset of H. Then D_2 is a DPIHKI - T2 if and only if $1 \in (1 \circ 1) \cap (1 \circ 2)$.

Theorem 2.9. [11] Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_3 = \{0, 1\}$ be a subset of H. Then the following statements hold:

(i) Let $1 \circ 2 = \{1\}$. Then D_3 is a DPIHKI - T2 if and only if $1 \circ 1 \neq \{0, 2\}$.

(ii) Let $1 \circ 2 = \{2\}$. Then D_3 is a DPIHKI - T2 if and only if $2 \circ 2 \neq \{0\}$ and $2 \in 1 \circ 1$. (iii) Let $1 \circ 2 = \{1, 2\}$. Then:

(a) If $1 \circ 1 \subseteq \{0, 1\}$, then D_3 is not a DPIHKI - T2.

(b) If $1 \circ 1 = \{0, 1, 2\}$, then D_3 is a DPIHKI - T2.

(c) If $1 \circ 1 = \{0, 2\}$, then D_3 is a DPIHKI - T2 if and only if $2 \circ 1 \neq \{0\}$ or $0 \circ 1 \neq \{0\}$.

Definition 2.10. [8] Let H be a bounded hyper K-algebra. Then a non-empty subset D of H is called *a dual positive implicative hyper K-ideal of type 3 (DPIHKI-T3)* if it satisfies:

 $(i)1 \in D$

 $(\mathrm{ii})N((Nx \circ Ny) \circ Nz) < D \text{ and } N(Ny \circ Nz) < D \text{ imply } N(Nx \circ Nz) \subseteq D, \, \forall x, y, z \in H.$

Theorem 2.11. [8] Let H be a bounded hyper K-algebra and let be a subset of H containing 1. Then D is a DPIHKI - T3 if and only if $N(Nx \circ Nz) \subseteq D$, for all $x, z \in H$.

Theorem 2.12. [8] Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D = \{0, 1\}$ in H. Then D is a DPIHKI - T3 if and only if $2 \notin 1 \circ 2$ and $2 \notin 1 \circ 1$.

Definition 2.13. [9] Let H be a bounded hyper K-algebra. Then a non-empty subset D of H is called a dual positive implicative hyper K-ideal of type 4 (DPIHKI - T4) if it

316

satisfies: (i)1 $\in D$ (ii) $N((Nx \circ Ny) \circ Nz) \subseteq D$ and $N(Ny \circ Nz) < D$ imply that $N(Nx \circ Nz) \subseteq D, \forall x, y, z \in H$.

Theorem 2.14. [9] Let H be a bounded hyper K-algebra and let D be a subset of H containing 1. Then D is a DPIHKI - T4 if and only if $N((Nx \circ Ny) \circ Nz) \subseteq D$ implies that $N(Nx \circ Nz) \subseteq D, \forall x, y, z \in H$.

Theorem 2.15. (See [9]) Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_1 = \{1\}$ be a subset of H. Then the following statements hold: (i) Let $1 \circ 2 = \{1\}$. Then D_1 is a DPIHKI - T4 if and only if $1 \in 1 \circ 1$. (ii) Let $1 \circ 2 = \{2\}$. Then D_1 is a DPIHKI - T4 if and only if $2 \circ 2 \neq \{0\}$ and $1 \circ 1 \neq \{0\}$. (iii) Let $1 \circ 2 = \{1, 2\}$. Then: (a) If $1 \circ 1 = \{0\}$, then D_1 is not a DPIHKI - T4. (b) If $1 \in 1 \circ 1$, then D_1 is a DPIHKI - T4. (c) If $1 \circ 1 = \{0, 2\}$, then D_1 is a DPIHKI - T4 if and only if $0 \circ 1 \neq \{0\}$ or $2 \circ 1 \neq \{0\}$. **Theorem 2.16.** (See [9]) Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_2 = \{1, 2\}$ be a subset of H. Then the following statements hold: (i) Let $1 \circ 2 = \{1\}$. Then D_2 is a DPIHKI - T4 if and only if $1 \in 1 \circ 1$. (ii) Let $1 \circ 2 = \{2\}$. Then: (a) If $1 \circ 1 = \{0\}$, then D_2 is not a DPIHKI - T4. (b) If $1 \circ 1 = \{0, 1\}$, then D_2 is a DPIHKI - T4 if and only if $1 \in 2 \circ 1$. (c) If $1 \circ 1 = \{0, 2\}$, then: (c_1) If $2 \circ 2 \subseteq \{0, 2\}$, then D_2 is not a DPIHKI - T4. (c_2) If $2 \circ 2 = \{0, 1, 2\}$, then D_2 is a DPIHKI - T4. (c_3) If $2 \circ 2 = \{0, 1\}$, then D_2 is a DPIHKI - T4 if and only if $1 \in 0 \circ 2$. (d) If $1 \circ 1 = \{0, 1, 2\}$, then D_2 is a DPIHKI - T4 if and only if $1 \in (0 \circ 2)$ or $(2 \circ 2) = \{0, 1, 2\}.$ (iii) Let $1 \circ 2 = \{1, 2\}$. Then: (a) If $1 \in 1 \circ 1$, then D_2 is a DPIHKI - T4. (b) If $1 \circ 1 = \{0\}$, then D_2 is not a DPIHKI - T4. (c) If $1 \circ 1 = \{0, 2\}$, then: (c_1) If $2 \circ 2 = \{0, 1\}$, then D_2 is a DPIHKI - T4. (c_2) If $2 \circ 2 = \{0, 1, 2\}$, then D_2 is a DPIHKI - T4 if and only if $2 \circ 1 \neq \{0, 1\}$ or $0 \circ 1 \neq \{0\}.$ (c_3) If $2 \circ 2 \subseteq \{0, 2\}$, then D_2 is a DPIHKI - T4 if and only if $1 \in 0 \circ 2$. **Theorem 2.17.** (See [9]) Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_3 = \{0, 1\}$ be a subset of H. Then the following statements hold: (i) Let $1 \circ 2 = \{1\}$. Then D_3 is a DPIHKI - T4 if and only if $1 \circ 1 \neq \{0, 2\}$.

(ii) Let $1 \circ 2 = \{2\}$. Then:

(a) If $2 \in 1 \circ 1$, then D_3 is a DPIHKI - T4 if and only if $2 \circ 2 \neq \{0\}$.

(b) If $1 \circ 1 = \{0, 1\}$, then D_3 is a DPIHKI - T4 if and only if $2 \in 2 \circ 2$.

(c) If $1 \circ 1 = \{0\}$, then D_3 is a DPIHKI - T4 if and only if $2 \in (2 \circ 2) \bigcap (2 \circ 1)$.

(iii) Let $1 \circ 2 = \{1, 2\}$. Then:

(a) If $1 \in 1 \circ 1$, then D_3 is a DPIHKI - T4.

(b) If $1 \circ 1 = \{0\}$, then D_3 is a DPIHKI - T4 if and only if $2 \in (2 \circ 2) \cap (2 \circ 1)$.

(c) If $1 \circ 1 = \{0, 2\}$, then D_3 is a DPIHKI - T4 if and only if $0 \circ 1 \neq \{0\}$ or $2 \circ 1 \neq \{0\}$.

Theorem 2.18. [11] Let $1 \in 1 \circ x$; $\forall x \in H$. If $0 \notin D$, then D is a DPIHKI - T2.

Theorem 2.19. [11] Let $1 \circ y = \{1\}$; $\forall y \in H - \{1\}$, $1 \circ 1 = \{0\}$. Then *D* is a *DPIHKI*-*T*2 if and only if $0 \in D$

Theorem 2.20. [11] Let $1 \in 1 \circ x$; $\forall x \in H$ and $x' \in 1 \circ 1$ for some $x' \in H - \{0, 1\}$. If $x' \notin D$, then D is a DPIHKI - T2.

3 Dual positive Implicative Hyper *K*-Ideals of Type 1

From now on H is a bounded hyper K-algebra with unit 1.

Definition 3.1. A non-empty subset D of H is called a dual positive implicative hyper K-ideal of type 1 (DPIHKI - T1) if it satisfies: (i) $1 \in D$

 $(\mathrm{ii})N((Nx\circ Ny)\circ Nz)\subseteq D \text{ and } N(Ny\circ Nz)\subseteq D \text{ imply that } N(Nx\circ Nz)\subseteq D, \forall x,y,z\in H.$

Example 3.2. The following tables show some hyper K-algebra structures on $\{0, 1, 2\}$.

H_1	0	1	2	H_2	0	1	2
0	{0}	$\{0\}$	$\{0\}$	0	$\{0\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0\}$	$\{1\}$	1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0\}$	$\{0, 1\}$	2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 2\}$

Then 1 is the unit of H_1 and H_2 , also $D_1 = \{1\}$ and $D_3 = \{0, 1\}$ are DPIHKI - T1 in H_1 and H_2 , while $D_2 = \{1, 2\}$ is a DPIHKI - T2 in H_1 and it is not of type 2 in H_2 .

In the sequel we let D be a non-empty subset of H containing 1.

Theorem 3.3. If D is a DPIHKI - T2, T3 or T4, then D is a DPIHKI - T1.

Proof. The proof follows from Theorems 2.6, 2.11 and 2.14, respectively.

The following example shows that the converse of Theorem 3.3 is not true in general. **Example 3.4.** Let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H with unit 1.

0	0	1	2
0	$\{0\}$	$\{0\}$	$\{0, 2\}$
1	$\{1\}$	$\{0, 2\}$	$\{1\}$
2	$\{2\}$	$\{0, 2\}$	$\{0, 2\}$

Then we will see that $D_1 = \{1\}$, $D_2 = \{1, 2\}$ and $D_3 = \{0, 1\}$ are DPIHKI - T1, but they are not DPIHKI - T2, T3 and T4.

Theorem 3.5. Let $1 \in 1 \circ x$; $\forall x \in H$. Then: (i) If $0 \notin D$, then D is a DPIHKI - T1. (ii) If $x \in 1 \circ 1$ for some $x \in H - \{0, 1\}$ and $x \notin D$, then D is a DPIHKI - T1. Proof. The proof follows from Theorems 2.18, 2.20 and 3.3.

Example 3.6. Let $H = \{0, 1, 2, 3\}$. Then the following table shows a hyper K-algebra structure on H with unit 1.

0	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0, 1, 2\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$
2	$\{2\}$	$\{0, 3\}$	$\{0, 3\}$	$\{3\}$
3	$\{3\}$	$\{0\}$	$\{0\}$	$\{0\}$

Also $D_1 = \{1\}, D_2 = \{1, 2\}, D_3 = \{1, 3\}, D_4 = \{1, 2, 3\}, D_5 = \{0, 1\}$ and $D_6 = \{0, 1, 3\}$ are DPIHKI - T1, by Theorem 3.5.

Theorem 3.7. Let $x \in H$ and $1 \circ x = \{x\}$. If $x \circ x = \{0\}$ and $x \notin D$, then D is not a DPIHKI - T1.

Proof. By hypothesis and Theorem 2.4 we get that $1 \circ (((1 \circ 0) \circ (1 \circ x)) \circ (1 \circ x)) =$ $1 \circ ((1 \circ x) \circ (1 \circ x)) = 1 \circ (x \circ x) = 1 \circ 0 = \{1\} \subseteq D \text{ and } 1 \circ ((1 \circ x) \circ (1 \circ x)) = \{1\} \subseteq D,$ while $1 \circ ((1 \circ 0) \circ (1 \circ x)) = 1 \circ (1 \circ x) = 1 \circ x = \{x\} \not\subseteq D$. Thus D is not a DPIHKI - T1.

Example 3.8. Let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H with unit 1.

0	0	1	2
0	$\{0\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0, 2\}$	$\{2\}$
2	$\{2\}$	$\{0, 1, 2\}$	$\{0\}$

Then $D_1 = \{1\}$ and $D_2 = \{0, 1\}$ are not DPIHKI - T1.

Theorem 3.9. Let $1 \circ x = \{1\}$; $\forall x \in H - \{1\}$ and $1 \circ 1 = \{0\}$. Then *D* is a *DPIHKI*-*T*1.

Proof. We consider two cases: (i) $0 \in D$ (ii) $0 \notin D$. (i) If $0 \in D$, then by Theorems 2.19 and 3.3 we conclude that D is a DPIHKI - T1. (ii) Let $0 \notin D$ and on the contrary let D does not be a DPIHKI - T1. Then there are $x, y, z \in H$ such that

$$1 \circ \left(\left((1 \circ x) \circ (1 \circ y) \right) \circ (1 \circ z) \right) \subseteq D, \tag{1}$$

and

$$1 \circ ((1 \circ y) \circ (1 \circ z)) \subseteq D, \tag{2}$$

(3)

while

$$|\circ((1\circ x)\circ(1\circ z)) \not\subset D.$$

 $1 \circ ((1 \circ x) \circ (1 \circ z)) \not\subseteq D.$ If x and $z \in H - \{1\}$ or x = z = 1, then by some manipulations we conclude that (3) does not hold, which is a contradiction.

If $x \in H - \{1\}$ and z = 1, then for y = 1, the inclusion (1) does not hold and for $y \in H - \{1\}$, (2) does not hold. So this case is impossible.

If x = 1 and $z \in H - \{1\}$. Then we consider two cases: (a) $1 \in 0 \circ 1$, (b) $1 \notin 0 \circ 1$. (a) If $1 \in 0 \circ 1$, then (1) does not hold, which is a contradiction.

(b) If $1 \notin 0 \circ 1$, then (3) does not hold, which is not true.

Therefore in this case also D is a DPIHKI - T1.

Example 3.10. Let $H = \{0, 1, 2, 3\}$. Then the following table shows a hyper *K*-algebra structure on *H* with unit 1 such that *D* is a *DPIHKI* – *T*1, where $D = \{1\}, \{0, 1\}, \{1, 2\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}$ or $\{1, 2, 3\}$.

0	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{0\}$	$\{0\}$	$\{0\}$
3	$\{3\}$	$\{0, 1\}$	$\{3\}$	$\{0, 1, 3\}$

4 DPIHKI – T1 of Hyper K-algebras of Order 3

Henceforth we let $H = \{0, 1, 2\}$ be a bounded hyper K-algebra of order 3 with unit 1 and $D_1 = \{1\}$, $D_2 = \{1, 2\}$ and $D_3 = \{0, 1\}$ be subsets of H.

Theorem 4.1. Let $1 \circ 1 = \{0\}$ and $1 \circ 2 = \{1\}$. Then D_1, D_2 and D_3 are DPIHKI - T1.

Proof. The proof follows from Theorem 3.9.

Example 4.2. Let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H such that D_1 , D_2 and D_3 are DPIHKI - T1.

0	0	1	2
0	{0}	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{0,2\}$	$\{0\}$

Theorem 4.3. Let $1 \circ 1 = \{0\}$ and $1 \circ 2 = \{2\}$. Then the following statements hold: (i) D_1 is a DPIHKI - T1 if and only if $2 \circ 2 \neq \{0\}$.

(ii) D_2 is not a DPIHKI - T1.

(iii) D_3 is a DPIHKI - T1 if and only if $2 \in (2 \circ 2) \cap (2 \circ 1)$.

Proof. (i) Let D_1 be a DPIHKI - T1. We prove that $2 \circ 2 \neq \{0\}$. On the contrary let $2 \circ 2 = \{0\}$. Then $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 2)) = 1 \circ ((1 \circ 2) \circ (1 \circ 2)) = 1 \circ ((1 \circ 2) \circ (1 \circ 2)) = D_1$, while $1 \circ ((1 \circ 0) \circ (1 \circ 2)) = 1 \circ (1 \circ 2) = 1 \circ 2 = \{2\} \not\subseteq D_1$. Thus D_1 is not a DPIHKI - T1, which is a contradiction. Therefore $2 \circ 2 \neq \{0\}$. Conversely, let $2 \circ 2 \neq \{0\}$. On the contrary let D_1 do not be DPIHKI - T1. Then there are $x, y, z \in H$ such that

$$1 \circ \left(\left((1 \circ x) \circ (1 \circ y) \right) \circ (1 \circ z) \right) \subseteq D_1, \tag{1}$$

and

$$1 \circ ((1 \circ y) \circ (1 \circ z)) \subseteq D_1, \tag{2}$$

while

$$1 \circ ((1 \circ x) \circ (1 \circ z)) \not\subseteq D_1.$$
(3)

If x = z = 1 or x = z = 0, then (3) does not hold, which is not true. If x = 0 and z = 1, x = 0 and z = 2, x = 2 and z = 2 or x = 2 and z = 1, then by some manipulations we can see that (1) or (2) does not hold, which is a contradiction.

If x = 2 and z = 0 we consider two cases: (a) $2 \circ 1 = \{0\}$, (b) $2 \circ 1 \neq \{0\}$.

In (a) we can see that (3) does not hold. In (b) we can check that one of (1)or (2) does not hold. So this case is impossible.

If x = 1 and z = 0, then by considering two cases $0 \circ 1 = \{0\}$ or $0 \circ 1 \neq \{0\}$, and by some arguments similar as above , we get a contradiction.

If x = 1 and z = 2, then by considering two cases $0 \circ 2 = \{0\}$ or $0 \circ 2 \neq \{0\}$ we will obtain a contradiction. Therefore D_1 is a DPIHKI - T1.

(ii) By hypothesis, (HK2) and Theorem 2.4 we have $2 \circ 0 = (1 \circ 2) \circ 0 = (1 \circ 0) \circ 2 = 1 \circ 2 = \{2\}$. Thus $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 1)) = 1 \circ ((1 \circ 2) \circ 0) = 1 \circ (2 \circ 0) = 1 \circ 2 = \{2\} \subseteq D_2$ and $1 \circ ((1 \circ 2) \circ (1 \circ 1)) = 1 \circ (2 \circ 0) = 1 \circ 2 = \{2\} \subseteq D_2$, while $1 \circ ((1 \circ 0) \circ (1 \circ 1)) = 1 \circ (1 \circ 0) = 1 \circ 1 = \{0\} \not\subseteq D_2$. Therefore D_2 is not a DPIHKI - T1.

(iii) Let $2 \in (2 \circ 2) \cap (2 \circ 1)$. Then by Theorems 2.17 (ii-c) and 3.3 we get that D_3 is a DPIHKI-T1. Conversely, let D_3 be a DPIHKI-T1. On the contrary let $2 \notin (2 \circ 2)$ or $2 \notin 2 \circ 1$. If $2 \notin 2 \circ 2$, then $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 2)) = 1 \circ ((1 \circ 2) \circ 2) = 1 \circ (2 \circ 2) \subseteq 1 \circ (\{0, 1\}) = \{0, 1\} = D_3$ and $1 \circ (((1 \circ 2) \circ (1 \circ 2)) \subseteq D_3$, while $1 \circ (((1 \circ 0) \circ (1 \circ 2)) = 1 \circ (1 \circ 2) = 1 \circ 2 = \{2\} \not\subseteq D_3$. Thus D_3 is not a DPIHKI-T1, which is a contradiction.

If $2 \notin 2 \circ 1$, then $1 \circ (((1 \circ 2) \circ (1 \circ 0)) \circ (1 \circ 1)) = 1 \circ ((2 \circ 1) \circ 0) \subseteq 1 \circ (\{0, 1\} \circ 0) = \{0, 1\} = D_3$ and $1 \circ ((1 \circ 0) \circ (1 \circ 1)) = \{0\} \subseteq D_3$, but $1 \circ (((1 \circ 2) \circ (1 \circ 1))) = 1 \circ (2 \circ 0) = \{2\} \not\subseteq D_3$. Thus D_3 is not a DPIHKI - T1, which is a contradiction. Therefore $2 \in (2 \circ 2) \cap (2 \circ 1)$.

Now we give some examples about the above theorem. **Example 4.4.** Consider the following tables :

H_1	0	1	2		H_2	0	1	2
0	$\{0\}$	$\{0, 1\}$	$\{0, 1, 2\}$		0	{0}	$\{0, 1, 2\}$	$\{0, 2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$		1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 2\}$		2	$\{2\}$	$\{0, 2\}$	$\{0, 1\}$
						•		
H_3	0	1	2		H_4	0	1	2
0	{0}	$\{0, 1, 2\}$	$\{0, 1\}$	-	0	{0}	$\{0, 1, 2\}$	$\{0, 2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$		1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0, 1\}$	$\{0\}$		2	$\{2\}$	$\{0, 1\}$	$\{0, 2\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0, 1, 2\}$. Moreover: (a) In H_1 , H_2 , H_3 and H_4 , D_2 is not a DPIHKI - T1, by Theorem 4.3 (ii)

(b) In H_1 , D_1 and D_3 are DPIHKI - T1.

(c) In H_3 , D_1 and D_3 are not DPIHKI - T1.

(d) In H_2 and H_4 , D_1 is a DPIHKI - T1, while D_3 is not.

Theorem 4.5. Let $1 \circ 1 = \{0\}$ and $1 \circ 2 = \{1, 2\}$. Then:

(i) D_1 and D_2 are DPIHKI - T1.

(ii) D_3 is a DPIHKI - T1 if and only if $2 \in 2 \circ 1$.

Proof. By (HK2) and hypothesis we have $0 \circ 2 = (1 \circ 1) \circ 2 = (1 \circ 2) \circ 1 = \{1, 2\} \circ 1 = (1 \circ 1) \bigcup (2 \circ 1) = \{0\} \bigcup (2 \circ 1)$. Since $0 \in (2 \circ 1) \bigcap (0 \circ 2)$, then we conclude that $2 \circ 1 = 0 \circ 2$. Now we prove (i) for D_1 , the proof of D_2 is similar to D_1 . On the contrary let D_1 does not be a DPIHKI - T1. Then there are $x, y, z \in H$ such that

$$1 \circ \left(\left((1 \circ x) \circ (1 \circ y) \right) \circ (1 \circ z) \right) \subseteq D_1, \tag{1}$$

L. TORKZADEH AND M.M ZAHEDI

while

$$1 \circ ((1 \circ y) \circ (1 \circ z)) \subseteq D_1, \tag{2}$$

(3)

$$1 \circ ((1 \circ x) \circ (1 \circ z)) \not\subseteq D_1.$$

If x = z = 0 or x = z = 1, then (3) does not hold, which is a contradiction.

If $x \in \{0, 2\}$ and $z \in \{1, 2\}$ or x = 1 and z = 2, then by some calculations we conclude that (1) or (2) does not hold. So this case is impossible.

If x = 1 and z = 0, then by considering two cases $0 \circ 1 \neq \{0\}$ or $0 \circ 1 = \{0\}$, we see that (1) or (3) does not hold, respectively, which is a contradiction.

If x = 2 and z = 0, then by considering two cases $2 \circ 1 = \{0\}$ or $2 \circ 1 \neq \{0\}$, and by some calculations we obtain a contradiction, by (3) or (1), respectively. Note that for the case $2 \circ 1 \neq \{0\}$, we need some calculations.

(ii) The proof is similar to Theorem 4.3 (i).

Now we give some examples about the above theorem. **Example 4.6.** Consider the following tables :

H_1	0	1	2	H_2	0	1	2
0	{0}	$\{0, 2\}$	$\{0, 2\}$	0	$\{0\}$	$\{0, 1, 2\}$	$\{0,1\}$
1	$\{1\}$	$\{0\}$	$\{1, 2\}$	1	$\{1\}$	$\{0\}$	$\{1, 2\}$
2	$\{2\}$	$\{0, 2\}$	$\{0, 2\}$	2	$\{2\}$	$\{0, 1\}$	{0}

Then each of the above tables gives a hyper K-algebra structure on $\{0, 1, 2\}$. Moreover: (a) In H_1 and H_2 , D_1 and D_2 are DPIHKI - T1. (b) In H_1 , D_3 is DPIHKI - T1, while it is not a DPIHKI - T1 in H_2 .

Theorem 4.7. Let $1 \in (1 \circ 1) \cap (1 \circ 2)$. Then D_1 , D_2 and D_3 are DPIHKI - T1.

Proof. The proof follows from Theorems 3.5 (i), 2.17(i), (iii-a) and 3.3.

Now we give some examples about the above theorem.

Example 4.8. Let $H = \{0, 1, 2\}$. Then the following tables show some hyper K-algebra structures on H such that D_1 , D_2 and D_3 are DPIHKI - T1.

E	$I_1 = 0$	1	2	H_2	0		1	2
(0 {0}	{0}	{0}	0	{0}	$\{0,$	$1, 2\}$	$\{0,1\}$
-	$1 \{1\}$	$\{0, 1\}$	$\{1\}$	1	$\{1\}$	{($, 1 \}$	$\{1, 2\}$
-	$2 \{2\}$	{0}	{0}	2	$\{2\}$	{0,	1, 2	$\{0, 2\}$
						-	-	
H_3	0	1	2	I	I_4	0	1	2
0	$\{0, 2\}$	$\{0, 1, 2\}$	$\{0,1\}$	() {	0, 1	$\{0, 2\}$	$\{0,2\}$
1	$\{1\}$	$\{0, 1, 2\}$	$\{1\}$		1 .	$\{1\}$	$\{0, 1, 2\}$	$\{1,2\}$
2	$\{2\}$	$\{0, 2\}$	$\{0, 2\}$:	2	$\{2\}$	$\{0, 1\}$	$\{0,1\}$

Theorem 4.9. Let $1 \circ 1 = \{0, 1\}$ and $1 \circ 2 = \{2\}$. Then: (i) D_1 is a DPIHKI - T1 if and only if $2 \circ 2 \neq \{0\}$. (ii) D_2 is a DPIHKI - T1 if and only if $1 \in 2 \circ 1$.

(iii) D_3 is a DPIHKI - T1 if and only if $2 \in 2 \circ 2$.

322

Proof. (i) Let $2 \circ 2 \neq \{0\}$. Then by Theorems 2.15 (ii) and 3.3 we conclude that D_1 is a DPIHKI - T1. Conversely, let D_1 be a DPIHKI - T1. We prove that $2 \circ 2 \neq \{0\}$. On the contrary let $2 \circ 2 = \{0\}$. Then we have $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 2)) = 1 \circ ((1 \circ 2) \circ (1 \circ 2)) = 1 \circ (2 \circ 2) = 1 \circ 0 = \{1\} = D_1$ and $1 \circ (((1 \circ 2) \circ (1 \circ 2)) = D_1$, while $1 \circ (((1 \circ 0) \circ (1 \circ 2)) = 1 \circ (1 \circ 2) = \{2\} \not\subseteq D_1$. Thus D_1 is not a DPIHKI - T1, which is a contradiction.

(ii) Let $1 \in 2 \circ 1$. Then by Theorems 2.16 (ii-b) and 3.3 we conclude that D_2 is a DPIHKI - T1. Conversely, let D_2 be a DPIHKI - T1. We prove that $1 \in 2 \circ 1$. On the contrary let $1 \notin 2 \circ 1$. Then $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 0)) = 1 \circ ((1 \circ 2) \circ 1)) = 1 \circ (2 \circ 1) \subseteq 1 \circ \{0,2\} = \{1,2\} = D_2$ and $1 \circ ((1 \circ 2) \circ (1 \circ 0)) = 1 \circ (2 \circ 1) \subseteq 1 \circ \{0,2\} = \{1,2\} = D_2$ while $1 \circ ((1 \circ 0) \circ (1 \circ 0)) = 1 \circ \{0,1\} = \{0,1\} \not\subseteq D_2$. Thus D_2 is not a DPIHKI - T1, which is a contradiction. Therefore $1 \in 2 \circ 1$. (iii) The proof is similar to (i).

Now we give some examples about the above theorem. **Example 4.10.** Consider the following tables :

H_1	0	1	2		H_2	0	1	2
0	$\{0\}$	$\{0, 2\}$	$\{0,1\}$		0	$\{0\}$	$\{0, 2\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0, 1\}$	$\{2\}$		1	$\{1\}$	$\{0, 1\}$	$\{2\}$
2	{2}	$\{0, 1, 2\}$	$\{0, 1, 2\}$		2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 1\}$
	. 1					1		
H_{i}	$_{3} = 0$	1	2		H_4	0	1	2
0	{0}	$\{0, 1, 2\}$	$\{0,1\}$	_	0	{0}	$\{0, 1, 2\}$	$\{0, 2\}$
1	{1}	$\{0,1\}$	$\{2\}$		1	$\{1\}$	$\{0, 1\}$	$\{2\}$
2	$\{2\}$	$\{0, 1, 2\}$	{0}		2	$\{2\}$	$\{0, 2\}$	$\{0, 1\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0, 1, 2\}$. Moreover: (a) In H_1 , D_1 , D_2 and D_3 are DPIHKI - T1.

- (b) In H_2 , D_1 and D_2 are DPIHKI T1, while D_3 is not.
- (c) In H_3 , D_2 is a DPIHKI T1, while D_1 and D_3 are not.
- (d) In H_4 , D_1 is a DPIHKI T1, while D_2 and D_3 are not.

Theorem 4.11. Let $1 \circ 1 = \{0, 1, 2\}$ and $1 \circ 2 = \{2\}$. Then: (i) $D_1(D_3)$ is a DPIHKI - T1 if and only if $2 \circ 2 \neq \{0\}$. (ii) D_2 is a DPIHKI - T1 if and only if $1 \in 2 \circ 1$.

Proof. (i) We prove theorem for D_1 , the proof of D_3 is the same as D_1 . Let $2 \circ 2 \neq \{0\}$. Then by Theorems 2.15 (ii) and 3.3 we conclude that D_1 is a DPIHKI - T1. Conversely, on the contrary let $2 \circ 2 = \{0\}$. Then $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 2)) = 1 \circ ((1 \circ 2) \circ 2) = 1 \circ (2 \circ 2) = 1 \circ 0 =$ $\{1\} = D_1$ and $1 \circ ((1 \circ 2) \circ (1 \circ 2)) = D_1$, while $1 \circ ((1 \circ 0) \circ (1 \circ 2)) = 1 \circ (1 \circ 2) = 1 \circ 2 = \{2\} \not\subseteq D_1$. Thus D_1 is not a DPIHKI - T1, which is a contradiction. Therefore $2 \circ 2 \neq \{0\}$. (ii) Let D_2 be a DPIHKI - T1. We prove that $1 \in 2 \circ 1$. On the contrary, let $1 \notin 2 \circ 1$. Then $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 0)) = 1 \circ ((1 \circ 2) \circ 1) = 1 \circ (2 \circ 1) \subseteq 1 \circ \{0, 2\} = \{1, 2\} = D_2$ and $1 \circ ((1 \circ 2) \circ (1 \circ 0)) = 1 \circ (2 \circ 1) \subseteq \{1, 2\} = D_2$, while $1 \circ ((1 \circ 0) \circ (1 \circ 0)) = 1 \circ \{0, 1, 2\} =$ $\{0, 1, 2\} \not\subseteq D_2$. Thus D_2 is not a DPIHKI - T1, which is a contradiction. So $1 \in 2 \circ 1$. Conversely, let $1 \in 2 \circ 1$. Then by (HK2) we have $2 \circ 1 = (1 \circ 2) \circ 1 = (1 \circ 1) \circ 2 =$ $\{0, 1, 2\} \circ 2 = (0 \circ 2) \bigcup (2 \circ 2) \bigcup \{2\}$. So $1 \in 0 \circ 2$ or $1 \in 2 \circ 2$ and $2 \in 2 \circ 1$. If $1 \in 0 \circ 2$, then

by Theorems 2.16 (ii-d) and 3.3, we conclude that D_2 is a DPIHKI - T1. If $1 \in 2 \circ 2$, we

prove that D_2 is a DPIHKI - T1. On the contrary let D_2 does not be a DPIHKI - T1. Then there are $x, y, z \in H$ such that

$$1 \circ \left(\left((1 \circ x) \circ (1 \circ y) \right) \circ (1 \circ z) \right) \subseteq D_2, \tag{1}$$

and

$$1 \circ ((1 \circ y) \circ (1 \circ z)) \subseteq D_2, \tag{2}$$

(3)

 $(\mathbf{2})$

while

1

$$\circ \left((1 \circ x) \circ (1 \circ z) \right) \not\subseteq D_2.$$

If y = 0 and z = 2, then (1) does not hold for all $x \in H$, which is a contradiction. For the other $y, z \in H$, by some manipulations, we see that (2) does not hold, which is a contradiction.

Now we give some examples about the above theorem. Example 4.12. Consider the following tables :

H_1	0	1	2	H_2	0	1	2
0	$\{0, 2\}$	$\{0, 1\}$	$\{0, 1\}$	0	$\{0\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0, 1, 2\}$	$\{2\}$	1	$\{1\}$	$\{0, 1, 2\}$	$\{2\}$
2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	2	$\{2\}$	$\{0, 1, 2\}$	$\{0\}$
11		1	0	ττ	0	1	0
Π	3 0	1	2	Π_4	0	1	2
0	$\{0,2$	$\{0\}$	$\{0\}$	0	$\{0\}$	$\{0, 2\}$	$\{0, 2\}$
1	$\{1\}$	$\{0, 1, 2\}$	$\{2\}$	1	$\{1\}$	$\{0, 1, 2\}$	$\{2\}$
2	$\{2\}$	$\{0, 2\}$	$\{0, 2\}$	2	$\{2\}$	$\{0, 2\}$	$\{0\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0, 1, 2\}$. Moreover: (a) In H_1 , D_1 , D_2 and D_3 are DPIHKI - T1.

(b) In H_2 , D_2 is a DPIHKI - T1, while D_1 and D_3 are not.

(c) In H_3 , D_1 and D_3 are DPIHKI - T1, while D_2 is not.

(d) In H_4 , D_1 , D_2 and D_3 are not DPIHKI - T1.

Theorem 4.13. Let $1 \circ 1 = \{0, 2\}$ and $1 \circ 2 = \{1\}$. Then $D_1(D_2, D_3)$ is a DPIHKI - T1if and only if $2 \circ 1 \neq \{0, 1\}$ or $0 \circ 1 \neq \{0\}$.

Proof. We prove theorem for D_1 the proofs of D_2 and D_3 are similar to D_1 . Let D_1 be a DPIHKI - T1. We prove that $2 \circ 1 \neq \{0,1\}$ or $0 \circ 1 \neq \{0\}$. On the contrary let $2 \circ 1 = \{0,1\}$ and $0 \circ 1 = \{0\}$. Then $1 \circ (((1 \circ 1) \circ (1 \circ 0)) \circ (1 \circ 0)) = 1 \circ ((\{0,2\} \circ 1) \circ 1) = 1$ $1 \circ (\{0,1\} \circ 1) = 1 \circ \{0,2\} = \{1\} = D_1 \text{ and } 1 \circ ((1 \circ 0) \circ (1 \circ 0)) = 1 \circ \{0,2\} = D_1 \text{ ,while}$ $1 \circ ((1 \circ 1) \circ (1 \circ 0)) = 1 \circ (\{0, 2\} \circ 1) = 1 \circ \{0, 1\} = \{0, 1, 2\} \not\subseteq D_1$. Thus D_1 is not a DPIHKI - T1, which is a contradiction. Conversely, let $2 \circ 1 \neq \{0, 1\}$ or $0 \circ 1 \neq \{0\}$ and on the contrary let D_1 do not be a DPIHKI - T1. Then there are $x, y, z \in H$ such that $1 \circ (((1 \circ x) \circ (1 \circ y)) \circ (1 \circ z)) \subseteq D_1,$ (1)

and

$$1 \circ ((1 \circ y) \circ (1 \circ z)) \subseteq D_1, \tag{2}$$

while

$$1 \circ ((1 \circ x) \circ (1 \circ z)) \not\subseteq D_1.$$
Now similar to the proof of Theorem 4.3 (i), we will see that one of (l), (2) or (3) does not hold, which is a contradiction. Therefore D_1 is a $DPIHKI - T1$.
(3)

Now we give some examples about the above theorem.

H_1	0	1	2	H_2	0	1	2
0	{0}	$\{0\}$	$\{0, 2\}$	0	{0}	$\{0, 2\}$	$\{0, 2\}$
1	$\{1\}$	$\{0, 2\}$	$\{1\}$	1	$\{1\}$	$\{0, 2\}$	$\{1\}$
2	$\{2\}$	$\{0, 2\}$	$\{0, 2\}$	2	$\{2\}$	$\{0\}$	$\{0\}$
	-						
H_3	0	1	2	H_4	0	1	2
0	{0}	$\{0, 1, 2\}$	$\{0, 2\}$	0	{0}	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0, 2\}$	$\{1\}$	1	{1}	$\{0, 2\}$	$\{1\}$
2	$\{2\}$	$\{0, 1\}$	$\{0\}$	2	$\{2\}$	$\{0,1\}$	$\{0,2\}$

Example 4.14. Consider the following tables :

Then each of the above tables gives a hyper K-algebra structure on $\{0, 1, 2\}$. Moreover: (a) In H_1 , H_2 and H_3 , D_1 , D_2 and D_3 are DPIHKI - T1. (b) In H_4 , D_1 , D_2 and D_3 are not DPIHKI - T1.

Theorem 4.15. Let $1 \circ 1 = \{0, 2\}$ and $1 \circ 2 = \{2\}$. Then: (i) $D_1(D_3)$ is a DPIHKI - T1 if and only if $2 \circ 2 \neq \{0\}$. (ii) If $1 \notin 2 \circ 2$, then D_2 is not a DPIHKI - T1. (iii) If $2 \circ 2 = \{0, 1, 2\}$, then D_2 is a DPIHKI - T1. (iv) If $2 \circ 2 = \{0, 1\}$, then D_2 is a DPIHKI - T1 if and only if $1 \in 0 \circ 1$.

Proof. (i) We prove theorem for D_1 , the proof of D_3 is similar to D_1 . Let $2 \circ 2 \neq \{0\}$. Then by Theorems 2.15 (ii) and 3.3 we conclude that D_1 is a DPIHKI - T1. Conversely, let D_1 be a DPIHKI - T1. We prove that $2 \circ 2 \neq \{0\}$. On the contrary let $2 \circ 2 = \{0\}$. Then $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 2)) = 1 \circ ((1 \circ 2) \circ 2) = 1 \circ (2 \circ 2) = 1 \circ 0 = \{1\}$ and $1 \circ (((1 \circ 2) \circ (1 \circ 2)) = 1 \circ (2 \circ 2) = \{1\} = D_1$, while $1 \circ ((1 \circ 0) \circ (1 \circ 2)) = 1 \circ (2 \circ 2) = 1 \circ 2 = \{2\} \not\subseteq D_1$. Thus D_1 is not a DPIHKI - T1, which is a contradiction.

(ii) Let $1 \notin 2 \circ 2$. Then $1 \circ (((1 \circ 0) \circ (1 \circ 2)) \circ (1 \circ 1)) = 1 \circ ((1 \circ 2) \circ \{0, 2\}) = 1 \circ \{0, 2\} = \{1, 2\} = D_2$ and $1 \circ ((1 \circ 2) \circ (1 \circ 1)) = D_2$, while $1 \circ ((1 \circ 0) \circ (1 \circ 1)) = 1 \circ (\{1, 2\}) = \{0, 2\} \not\subseteq D_2$. Thus D_2 is not a DPIHKI - T1.

(iii) Let $2 \circ 2 = \{0, 1, 2\}$. Then by Theorems 2.16 (ii- c_2) and 3.3 we have D_2 is a DPIHKI - T1.

(iv) The proof is similar to the proof of Theorem 4.3 (i).

Now we give some examples about the above theorem. **Example 4.16.** Consider the following tables :

H_1	0	1	2		H_2	0	1	2
0	$\{0\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	-	0	$\{0\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0, 2\}$	$\{2\}$		1	$\{1\}$	$\{0, 2\}$	$\{2\}$
2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 2\}$		2	$\{2\}$	$\{0, 1, 2\}$	$\{0\}$
H_3	0	1	2		H_4	0	1	2
0	$\{0\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	-	0	{0}	$\{0, 2\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0, 2\}$	$\{2\}$		1	$\{1\}$	$\{0, 2\}$	$\{2\}$
2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 2\}$		2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$

H_5	0	1	2
0	{0}	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0, 2\}$	$\{2\}$
2	$\{2\}$	$\{0, 1\}$	$\{0, 1\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0, 1, 2\}$. Also: (a) In H_1 , H_3 and H_5 , D_1 and D_3 are DPIHKI - T1, while D_2 is not. (b) In H_2 , D_1 , D_2 and D_3 are not DPIHKI - T1. (c) In H_4 , D_1 , D_2 and D_3 are DPIHKI - T1.

Theorem 4.17. Let $1 \circ 1 = \{0, 2\}$ and $1 \circ 2 = \{1, 2\}$. Then: (i) D_1 and D_3 are DPIHKI - T1. (ii) D_2 is a DPIHKI - T1 if and only if $0 \circ 1 \neq \{0\}$ or $2 \circ 1 \neq \{0, 1\}$.

Proof. We prove theorem for D_1 the proof of D_3 is the same as D_1 . If $2 \circ 1 \neq \{0\}$ or $0 \circ 1 \neq \{0\}$, then by Theorems 2.15 (iii-c) and 3.3 we conclude that D_1 is a DPIHKI - T1. If $2 \circ 1 = \{0\}$ and $0 \circ 1 = \{0\}$, then $(0 \circ 2) \bigcup (2 \circ 2) = (1 \circ 1) \circ 2 = (1 \circ 2) \circ 1 = \{1, 2\} \circ 1 = \{0, 2\} \bigcup (2 \circ 1) = \{0, 2\}.$ (1)

Now we prove that D_1 is a DPIHKI-T1. On the contrary, let D_1 do not be a DPIHKI-T1. Then there are $x, y, z \in H$ such that

$$1 \circ \left(\left(\left(1 \circ x \right) \circ \left(1 \circ y \right) \right) \circ \left(1 \circ z \right) \right) \subseteq D_1, \tag{2}$$

and

$$1 \circ ((1 \circ y) \circ (1 \circ z)) \subseteq D_1, \tag{3}$$

while

$$1 \circ ((1 \circ x) \circ (1 \circ z)) \not\subseteq D_1.$$

$$\tag{4}$$

If x = 1 and z = 0, then (4) does not hold, which is a contradiction.

If $x \in \{0, 1, 2\}$ and $z \in \{1, 2\}$ or $x \in \{0, 2\}$ and z = 0, then by some calculations and using (1), we can see that (2) or (3) does not hold, which is not true.

(ii) Let D_2 be a DPIHKI-T1. We prove that $0 \circ 1 \neq \{0\}$ or $2 \circ 1 \neq \{0,1\}$. On the contrary let $0 \circ 1 = \{0\}$ and $2 \circ 1 = \{0,1\}$. Then $1 \circ (((1 \circ 1) \circ (1 \circ 0)) \circ (1 \circ 0)) = 1 \circ (\{0,1\} \circ 1) = 1 \circ \{0,2\} = \{1,2\} = D_2$ and $1 \circ ((1 \circ 0) \circ (1 \circ 0)) = D_2$, while $1 \circ (((1 \circ 1) \circ (1 \circ 0)) = 1 \circ \{0,1\} = \{0,1,2\} \not\subseteq D_2$. Thus D_2 is not a DPIHKI-T1, which is a contradiction. The proof of the converse is similar to the proof of (i).

Now we give some examples about the above theorem. **Example 4.18.** Consider the following tables :

H_1	0	1	2		H_2	0	1	2
0	$\{0\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	_	0	{0}	$\{0\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0, 2\}$	$\{1, 2\}$		1	{1}	$\{0, 2\}$	$\{1, 2\}$
2	$\{2\}$	$\{0, 1\}$	$\{0\}$		2	$\{2\}$	$\{0, 1\}$	$\{0, 1, 2\}$
H_3	0	1	2		H_4	0	1	2
0	$\{0, 2$	$2\} \{0\}$	{0}		0	$\{0\}$	$\{0, 1, 2\}$	$\{0,1\}$
1	{1]	$\{0,2\}$	$\{1, 2\}$		1	$\{1\}$	$\{0, 2\}$	$\{1, 2\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$		2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 2\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0, 1, 2\}$. Moreover: (a) In H_1 , H_3 and H_4 , D_1 , D_2 and D_3 are DPIHKI - T1.

326

(b) In H_2 , D_1 and D_3 are DPIHKI - T1, while D_2 is not.

Remark 4.19. Note that Theorems 4.1, 4.3, 4.5, 4.7, 4.9, 4.11, 4.13, 4.15 and 4.17 give a classification of hyper K-algebras of order 3 in which D_1 , D_2 or D_3 is a DPIHKI - T1.

5 Some Relations Between DPIHKI - T1, T2, T3 And T4

Theorem 5.1. Let $1 \circ 1 \neq \{0\}$ and $1 \circ 2 = \{2\}$. Then D_1 is a DPIHKI - T1 if and only if it is a DPIHKI - T2.

Proof. The proof follows from Theorems 2.7(ii), 4.9(i), 4.11(i) and 4.15(i).

Theorem 5.2. Consider the following statements : (i) $1 \circ 1 = \{0\}$ and $1 \in 1 \circ 2$, (ii) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{1, 2\}, 2 \circ 1 = \{0\}$ and $0 \circ 1 = \{0\}$. Then under each of the above statements D_1 is a DPIHKI - T1, while it is not a DPIHKI - T2.

Proof. D_1 is a DPIHKI - T1, by Theorems 4.1, 4.5 and 4.17(i). And it is not of type 2, by Theorems 2.7(i,iii-a,c),

Example 5.3. The following tables show some hyper K-algebra structures on $\{0, 1, 2\}$, such that D_1 is a DPIHKI - T1, but it is not a DPIHKI - T2.

H_1	0	1	2		H_2	0	1	2
0	{0}	$\{0\}$	$\{0\}$	-	0	$\{0\}$	$\{0\}$	$\{0, 1, 2\}$
1	$\{1\}$	$\{0, 2\}$	$\{1, 2\}$		1	$\{1\}$	$\{0\}$	$\{1, 2\}$
2	$\{2\}$	$\{0\}$	$\{0, 2\}$		2	$\{1, 2\}$	$\{0, 1, 2\}$	$\{0, 2\}$
	-							
			H_3	0	1	2		
			0	{0}	$\{0\}$	$\{0\}$		
			1	$\{1\}$	$\{0\}$	$\{1\}$		
			2	$\{2\}$	$\{0, 2\}$	{0}		

Theorem 5.4. Consider the following statements : (i) $1 \circ 1 = \{0\}$ and $1 \in 1 \circ 2$,

(i) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{2\}, 2 \circ 2 = \{0, 1, 2\},$

(iii) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{2\}, 2 \circ 2 = \{0, 1\}$ and $1 \in 0 \circ 1$,

(iv) $1 \circ 1 = \{0, 1, 2\}, 1 \circ 2 = \{2\}$ and $1 \in 2 \circ 1$.

Then under each of the above statements D_2 is a DPIHKI - T1, while it is not a DPIHKI - T2.

Proof. D_2 is a DPIHKI - T1, by Theorems 4.1, 4.5, 4.15(iii,iv) and 4.11 ii), respectively. While it is not type 2, by Theorem 2.8.

Example 5.5. The following tables show some hyper K-algebra structures on $\{0, 1, 2\}$, such that D_2 is a DPIHKI - T1, but it is not a DPIHKI - T2.

H_1	0	1		2		H_2	0	1	2
0	$\{0\}$	$\{0, 1, 2$	2} {	$\{0, 1\}$	_	0	{0}	$\{0, 1, 2\}$	$\{0, 2\}$
1	$\{1\}$	$\{0, 2\}$	4	$\{1, 2\}$		1	$\{1\}$	$\{0, 2\}$	$\{2\}$
2	$\{2\}$	$\{0, 1\}$		{0}		2	$\{2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
							_		
			H_3	0	1		2		
		-	0	{0}	$\{0,1\}$		$\{0, 1, 2\}$		
			1	$\{1\}$	{0}		{1}		
			2	$\{2\}$	$\{0, 1, 2$	2}	$\{0, 1\}$		
					-	-			

Theorem 5.6. Let $1 \circ 2 = \{2\}$ and $2 \in 1 \circ 1$. Then D_3 is a DPIHKI - T1 if and only if it is a DPIHKI - T2.

Proof. The proof follows from Theorems 2.9(ii), 4.11(i) and 4.15(i).

Theorem 5.7. Consider the following statements : (i) $1 \circ 1 = \{0, 1\}, 1 \circ 2 = \{2\}$ and $2 \in 2 \circ 2$, (ii) $1 \circ 1 = \{0\}, 1 \circ 2 = \{2\}, 2 \in (2 \circ 2) \bigcap (2 \circ 1),$ (iii) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{1\}$ and $2 \circ 1 \neq \{0, 1\}$ or $0 \circ 1 \neq \{0\}$, (iv) $1 \circ 2 = \{1, 2\}, 1 \circ 1 \subseteq \{0, 1\}$ and $2 \in 2 \circ 1$, (v) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{1, 2\}$ and $(2 \circ 1) \bigcup (0 \circ 1) = \{0\}$, Then under each of the above statements D_3 is a DPIHKI - T1, while it is not a DPIHKI - T2.

Proof. Theorem 4.9(iii) (4.3(iii), 4.13) together with the statement (i) ((ii), (iii)) implies that D_3 is a DPIHKI - T1, while Theorem 2.9(ii)(Theorem 2.9(i)) implies that it is not a DPIHKI - T2 in the cases of (i) and (ii)(case of(iii)). Also by using Theorems 4.7 and 4.5(ii) together with the statement (iv) we get that D_3 is a DPIHKI - T1, while Theorem 2.9(iii-a) implies that it is not a DPIHKI - T2. Finally Theorem 4.17(i) and statement (v) imply that D_3 is a DPIHKI - T1, while Theorem 2.9(iii-c) implies that it is not a DPIHKI - T1.

Theorem 5.8. Let $1 \circ 1 = \{0, 1\}$ or $1 \circ 1 = \{0, 1, 2\}$. Then D_1 is a DPIHKI - T1 if and only if it is a DPIHKI - T4.

Proof. The proof follows from Theorems 2.15, 4.7, 4.9(i) and 4.11(i).

Theorem 5.9. Consider the following statements : (i) $1 \circ 1 = \{0\}$ and $1 \in 1 \circ 2$, (ii) $1 \circ 1 = \{0\}, 1 \circ 2 = \{2\}, 2 \circ 2 \neq \{0\},$ (iii) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{1, 2\}, (2 \circ 1) \bigcup (0 \circ 1) = \{0\}.$ Then under each of the above statements D_1 is a DPIHKI - T1, while it is not a DPIHKI - T4.

Proof. Theorems 4.1, 4.5(i) and statement (i) imply that D_1 is a DPIHKI - T1, while Theorem 2.15(i,iii-a) implies that it is not a DPIHKI - T4. By using Theorem 4.3(i) and statement (ii) we get that D_1 is a DPIHKI - T1, while Theorem 2.15(ii) implies that it is not a DPIHKI - T4. Finally Theorem 4.17(i) and statement (iii) imply that D_1 is a

DPIHKI - T1, while Theorem 2.15(iii-c) implies that it is not a DPIHKI - T4.

Theorem 5.10. Let $1 \circ 1 = \{0, 1\}$. Then D_2 is a DPIHKI - T1 if and only if it is a DPIHKI - T4.

Proof. The proof follows from Theorems 2.16(i,ii-b,iii-a), 4.7 and 4.9(ii).

Theorem 5.11. Consider the following statements : (i) $1 \circ 1 = \{0\}$ and $1 \in 1 \circ 2$, (ii) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{1\}, 2 \circ 1 \neq \{0, 1\}$ and $0 \circ 1 \neq \{0\}$. Then under each of the above statements D_2 is a DPIHKI - T1, while it is not a DPIHKI - T4.

Proof. D_2 is a DPIHKI - T1, by Theorems 4.1, 4.5 and 4.13, respectively and it is not of type 4, by Theorems 2.16(i,iii-b)

Theorem 5.12. Let $1 \circ 2 = \{2\}$. Then D_3 is a DPIHKI - T1 if and only if it is a DPIHKI - T4.

Proof. The proof follows from Theorems 2.17(ii), 4.15(i), 4.11(i), 4.9(iii) and 4.3(iii).

Theorem 5.13. Consider the following statements : (i) $1 \circ 1 = \{0, 2\}$ and $1 \circ 2 = \{1\}, 2 \circ 1 \neq \{0, 1\}$ or $0 \circ 1 \neq \{0\}$, (ii) $1 \circ 1 = \{0\}, 1 \circ 2 = \{1, 2\}, 2 \in 2 \circ 1$ and $2 \notin 2 \circ 2$, (iii) $1 \circ 1 = \{0, 2\}, 1 \circ 2 = \{1, 2\}, (0 \circ 1) \bigcup (2 \circ 1) = \{0\}$. Then under each of the above statements D_3 is a DPIHKI - T1, while it is not a DPIHKI - T4.

Proof. D_3 is a DPIHKI - T1, by Theorems 4.13, 4.5(ii) and 4.17(i), while D_3 it is not of type 4, by Theorem 2.17(i,iii-b,c).

References

- R.A. Borzooei, P. Corsini and M.M. Zahedi, "Some kinds of positive Implicative hyper K-ideals," J. Discrete Mathematics and Cryptography, 6(2003), 97-108.
- [2] R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, "On hyper K-algebras" Math. Japon. Vol. 52, No. 1 (2000), 113-121.
- [3] R.A. Borzooei and M.M. Zahedi, "Positive Implicative hyper K-ideals," Scientiae Mathematicae Japonicae, Vol. 53, No. 3 (2001), 525-533.
- [4] Y. Imai and K. Iseki, "On axiom systems of propositional calculi" XIV Proc. Japan Academy, 42 (1966), 19-22.
- [5] K. Iseki and S. Tanaka, "An introduction to the theory of BCK-algebras", Math. Japon, 23 (1978), 1-26.
- [6] F. Marty, "Sur une generalization de la notion de groups", 8th congress Math. Scandinaves, Stockholm, (1934), 45-49.
- [7] J. Meng and Y.B. Jun, "BCK-algebras", Kyung Moonsa, Seoul, Korea, (1994).

L. TORKZADEH AND M.M ZAHEDI

- [8] L. Torkzadeh and M.M. Zahedi, "Dual Positive Implicative Hyper K-Ideals of Type 3", J. Quasigroups and Related Systems, 9(2002), 85-106.
- [9] L. Torkzadeh and M.M. Zahedi, "Dual Positive Implicative Hyper K-Ideals of Type 4", Scientiae Mathematicae Japonicae, 59 No.3(2004), 591-603, e9, 583-595.
- [10] M.M. Zahedi, R.A. Borzooei, Y.B. Jun and A. Hasankhani, "Some results on hyper K-algebras", Scientiae Mathematicae, Vol. 3, No. 1 (2000), 53-59.
- [11] M.M. Zahedi, L. Torkzadeh and R.A. Borzooei "Dual Positive Implicative Hyper K-Ideals of Type 2", Submitted.

Dept. of Math., Islamic Azad University of Kerman, Kerman, Iran *e-mail: ltorkzadeh@yahoo.com* Dept. of Math., Shahid Bahonar University of Kerman, Kerman, Iran *e-mail: zahedi_mm@mail.uk.ac.ir*