DUAL POSITIVE IMPLICATIVE HYPER K-IDEALS OF TYPE 1

L. Torkzadeh and M.M Zahedi

Received March 5, 2004; revised June 12, 2004

Abstract

In this note first we define the notion of dual positive implicative hyper K-ideal of type 1 , where for simplicity is written by DPIHKI $-T 1$. Then we obtain some basic related results. After that we determine hyper K-algebras of order 3, which have $D_{1}=\{1\}, D_{2}=\{1,2\}$ and $D_{3}=\{0,1\}$ as a DPIHKI-T1. Finally we give some connections between the notions of dual positive implicative hyper K-ideals of types 1, 2, 3 and 4 .

1 Introduction The hyperalgebraic structure theory was introduced by F. Marty [6] in 1934. Imai and Iseki [6] in 1966 introduced the notion of a BCK-algebra. Borzooei, Jun and Zahedi et.al. [2,3,10] applied the hyperstructure to BCK-algebras and introduced the concept of hyper K-algebra which is a generalization of BCK-algebra. Recently in [8,9,11] we introduced the notions of dual positive implicative hyper K-ideals of types 2,3 and 4 and then we characterized them. Now in this note first we define the notion of dual positive implicative hyper K-ideal of type 1 , then we obtain some results which have been mentioned in the abstract.

2 Preliminaries

Definition 2.1. [2] Let H be a nonempty set and " \circ " be a hyperoperation on H, that is "○" is a function from $H \times H$ to $\mathcal{P}^{*}(H)=\mathcal{P}(H) \backslash\{\emptyset\}$. Then H is called a hyper K-algebra if it contains a constant " 0 " and satisfies the following axioms:
(HK1) $(x \circ z) \circ(y \circ z)<x \circ y$
(HK2) $(x \circ y) \circ z=(x \circ z) \circ y$
(HK3) $x<x$
(HK4) $x<y, y<x \Rightarrow x=y$
(HK5) $0<x$,
for all $x, y, z \in H$, where $x<y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H, A<B$ is defined by $\exists a \in A, \exists b \in B$ such that $a<b$.

Note that if $A, B \subseteq H$, then by $A \circ B$ we mean the subset $\bigcup_{\substack{a \in A \\ b \in B}} a \circ b$ of H.
Theorem 2.2. [2] Let $(H, \circ, 0)$ be a hyper K-algebra. Then for all $x, y, z \in H$ and for all non-empty subsets A, B and C of H the following hold:
(i) $x \circ y<z \Leftrightarrow x \circ z<y$,
(ii) $(x \circ z) \circ(x \circ y)<y \circ z$,
(iii) $x \circ(x \circ y)<y$,
(iv) $x \circ y<x$,
(v) $A \subseteq B$ implies $A<B$,
(vi) $x \in x \circ 0$,
(vii) $(A \circ C) \circ(A \circ B)<B \circ C$,
(viii) $(A \circ C) \circ(B \circ C)<A \circ B$,
(ix) $A \circ B<C \Leftrightarrow A \circ C<B$,
(x) $A \circ B<A$.

Definition 2.3. [2] Let $(H, \circ, 0)$ be a hyper K-algebra. If there exists an element $1 \in H$ such that $x<1$ for all $x \in H$, then H is called a bounded hyper K-algebra and 1 is said to

[^0]be the unit of H.
In a bounded hyper K-algebra, we denote $1 \circ x$ by $N x$.
Theorem 2.4. [9] In H we have $1 \circ 0=\{1\}$.
Definition 2.5. [11] Let H be a bounded hyper K-algebra with unit 1 . Then a non-empty subset D of H is called a dual positive implicative hyper K-ideal of type 2 (DPIHKI-T2) if it satisfies:
(i) $1 \in D$
(ii) $N((N x \circ N y) \circ N z)<D$ and $N(N y \circ N z) \subseteq D$ imply that $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Theorem 2.6. [11] Let H be a bounded hyper K-algebra with unit 1 and let D be a subset of H containing 1. Then D is a $D P I H K I-T 2$ if and only if $N(N y \circ N z) \subseteq D$ implies that $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Theorem 2.7. [11] Let $H=\{0,1,2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_{1}=\{1\}$ be a subset of H. Then the following statements hold:
(i) Let $1 \circ 2=\{1\}$. Then D_{1} is a DPIHKI -T2 if and only if $1 \in 1 \circ 1$.
(ii) Let $1 \circ 2=\{2\}$. Then D_{1} is a DPIHKI $-T 2$ if and only if $2 \circ 2 \neq\{0\}$ and $1 \circ 1 \neq\{0\}$.
(iii) Let $1 \circ 2=\{1,2\}$. Then:
(a) If $1 \circ 1=\{0\}$, then D_{1} is not a DPIHKI $-T 2$.
(b) If $1 \in 1 \circ 1$, then D_{1} is a DPIHKI-T2.
(c) If $1 \circ 1=\{0,2\}$, then D_{1} is a DPIHKI-T2 if and only if $2 \circ 1 \neq\{0\}$ or $0 \circ 1 \neq\{0\}$.

Theorem 2.8. [11] Let $H=\{0,1,2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_{2}=\{1,2\}$ be a subset of H. Then D_{2} is a DPIHKI-T2 if and only if $1 \in(1 \circ 1) \cap(1 \circ 2)$.

Theorem 2.9. [11] Let $H=\{0,1,2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_{3}=\{0,1\}$ be a subset of H. Then the following statements hold:
(i) Let $1 \circ 2=\{1\}$. Then D_{3} is a DPIHKI-T2 if and only if $1 \circ 1 \neq\{0,2\}$.
(ii) Let $1 \circ 2=\{2\}$. Then D_{3} is a $D P I H K I-T 2$ if and only if $2 \circ 2 \neq\{0\}$ and $2 \in 1 \circ 1$.
(iii) Let $1 \circ 2=\{1,2\}$. Then:
(a) If $1 \circ 1 \subseteq\{0,1\}$, then D_{3} is not a DPIHKI-T2.
(b) If $1 \circ 1=\{0,1,2\}$, then D_{3} is a DPIHKI $-T 2$.
(c) If $1 \circ 1=\{0,2\}$, then D_{3} is a DPIHKI-T2 if and only if $2 \circ 1 \neq\{0\}$ or $0 \circ 1 \neq\{0\}$.

Definition 2.10. [8] Let H be a bounded hyper K-algebra. Then a non-empty subset D of H is called a dual positive implicative hyper K-ideal of type 3 (DPIHKI-T3) if it satisfies:
(i) $1 \in D$
(ii) $N((N x \circ N y) \circ N z)<D$ and $N(N y \circ N z)<D$ imply $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Theorem 2.11. [8] Let H be a bounded hyper K-algebra and let be a subset of H containing 1. Then D is a $D P I H K I-T 3$ if and only if $N(N x \circ N z) \subseteq D$, for all $x, z \in H$.

Theorem 2.12. [8] Let $H=\{0,1,2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D=\{0,1\}$ in H. Then D is a $D P I H K I-T 3$ if and only if $2 \notin 1 \circ 2$ and $2 \notin 1 \circ 1$.

Definition 2.13. [9] Let H be a bounded hyper K-algebra. Then a non-empty subset D of H is called a dual positive implicative hyper K-ideal of type 4 (DPIHKI-T4) if it
satisfies:
(i) $1 \in D$
(ii) $N((N x \circ N y) \circ N z) \subseteq D$ and $N(N y \circ N z)<D$ imply that $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Theorem 2.14. [9] Let H be a bounded hyper K-algebra and let D be a subset of H containing 1. Then D is a DPIHKI-T4 if and only if $N((N x \circ N y) \circ N z) \subseteq D$ implies that $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Theorem 2.15. (See [9]) Let $H=\{0,1,2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_{1}=\{1\}$ be a subset of H. Then the following statements hold:
(i) Let $1 \circ 2=\{1\}$. Then D_{1} is a DPIHKI -T4 if and only if $1 \in 1 \circ 1$.
(ii) Let $1 \circ 2=\{2\}$. Then D_{1} is a DPIHKI - T4 if and only if $2 \circ 2 \neq\{0\}$ and $1 \circ 1 \neq\{0\}$.
(iii) Let $1 \circ 2=\{1,2\}$. Then:
(a) If $1 \circ 1=\{0\}$, then D_{1} is not a DPIHKI $-T 4$.
(b) If $1 \in 1 \circ 1$, then D_{1} is a $D P I H K I-T 4$.
(c) If $1 \circ 1=\{0,2\}$, then D_{1} is a DPIHKI-T4 if and only if $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0\}$.

Theorem 2.16. (See [9]) Let $H=\{0,1,2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_{2}=\{1,2\}$ be a subset of H. Then the following statements hold:
(i) Let $1 \circ 2=\{1\}$. Then D_{2} is a DPIHKI $-T 4$ if and only if $1 \in 1 \circ 1$.
(ii) Let $1 \circ 2=\{2\}$. Then:
(a) If $1 \circ 1=\{0\}$, then D_{2} is not a DPIHKI $-T 4$.
(b) If $1 \circ 1=\{0,1\}$, then D_{2} is a $D P I H K I-T 4$ if and only if $1 \in 2 \circ 1$.
(c) If $1 \circ 1=\{0,2\}$, then:
$\left(c_{1}\right)$ If $2 \circ 2 \subseteq\{0,2\}$, then D_{2} is not a DPIHKI -T4.
$\left(c_{2}\right)$ If $2 \circ 2=\{0,1,2\}$, then D_{2} is a DPIHKI $-T 4$.
$\left(c_{3}\right)$ If $2 \circ 2=\{0,1\}$, then D_{2} is a DPIHKI $-T 4$ if and only if $1 \in 0 \circ 2$.
(d) If $1 \circ 1=\{0,1,2\}$, then D_{2} is a DPIHKI - T4 if and only if $1 \in(0 \circ 2)$ or $(2 \circ 2)=\{0,1,2\}$.
(iii) Let $1 \circ 2=\{1,2\}$. Then:
(a) If $1 \in 1 \circ 1$, then D_{2} is a DPIHKI-T4.
(b) If $1 \circ 1=\{0\}$, then D_{2} is not a $D P I H K I-T 4$.
(c) If $1 \circ 1=\{0,2\}$, then:
$\left(c_{1}\right)$ If $2 \circ 2=\{0,1\}$, then D_{2} is a DPIHKI $-T 4$.
(c_{2}) If $2 \circ 2=\{0,1,2\}$, then D_{2} is a DPIHKI - T4 if and only if $2 \circ 1 \neq\{0,1\}$ or $0 \circ 1 \neq\{0\}$.
$\left(c_{3}\right)$ If $2 \circ 2 \subseteq\{0,2\}$, then D_{2} is a DPIHKI $-T 4$ if and only if $1 \in 0 \circ 2$.
Theorem 2.17. (See [9]) Let $H=\{0,1,2\}$ be a hyper K-algebra of order 3 with unit 1 and let $D_{3}=\{0,1\}$ be a subset of H. Then the following statements hold:
(i) Let $1 \circ 2=\{1\}$. Then D_{3} is a DPIHKI -T4 if and only if $1 \circ 1 \neq\{0,2\}$.
(ii) Let $1 \circ 2=\{2\}$. Then:
(a) If $2 \in 1 \circ 1$, then D_{3} is a DPIHKI -T4 if and only if $2 \circ 2 \neq\{0\}$.
(b) If $1 \circ 1=\{0,1\}$, then D_{3} is a DPIHKI -T4 if and only if $2 \in 2 \circ 2$.
(c) If $1 \circ 1=\{0\}$, then D_{3} is a DPIHKI -T4 if and only if $2 \in(2 \circ 2) \bigcap(2 \circ 1)$.
(iii) Let $1 \circ 2=\{1,2\}$. Then:
(a) If $1 \in 1 \circ 1$, then D_{3} is a DPIHKI-T4.
(b) If $1 \circ 1=\{0\}$, then D_{3} is a DPIHKI-T4 if and only if $2 \in(2 \circ 2) \bigcap(2 \circ 1)$.
(c) If $1 \circ 1=\{0,2\}$, then D_{3} is a DPIHKI-T4 if and only if $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0\}$.

Theorem 2.18. [11] Let $1 \in 1 \circ x ; \forall x \in H$. If $0 \notin D$, then D is a $D P I H K I-T 2$.
Theorem 2.19. [11] Let $1 \circ y=\{1\} ; \forall y \in H-\{1\}, 1 \circ 1=\{0\}$. Then D is a DPIHKI-T2 if and only if $0 \in D$

Theorem 2.20. [11] Let $1 \in 1 \circ x ; \forall x \in H$ and $x^{\prime} \in 1 \circ 1$ for some $x^{\prime} \in H-\{0,1\}$. If $x \notin D$, then D is a DPIHKI -T2.

3 Dual positive Implicative Hyper K-Ideals of Type 1

From now on H is a bounded hyper K-algebra with unit 1 .
Definition 3.1. A non-empty subset D of H is called a dual positive implicative hyper K-ideal of type 1 (DPIHKI -T1) if it satisfies:
(i) $1 \in D$
(ii) $N((N x \circ N y) \circ N z) \subseteq D$ and $N(N y \circ N z) \subseteq D$ imply that $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Example 3.2. The following tables show some hyper K-algebra structures on $\{0,1,2\}$.

H_{1}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{0\}$	$\{0,1\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,2\}$

Then 1 is the unit of H_{1} and H_{2}, also $D_{1}=\{1\}$ and $D_{3}=\{0,1\}$ are DPIHKI-T1 in H_{1} and H_{2}, while $D_{2}=\{1,2\}$ is a DPIHKI $-T 2$ in H_{1} and it is not of type 2 in H_{2}.

In the sequel we let D be a non-empty subset of H containing 1 .
Theorem 3.3. If D is a $D P I H K I-T 2, T 3$ or $T 4$, then D is a $D P I H K I-T 1$.
Proof. The proof follows from Theorems 2.6, 2.11 and 2.14, respectively.
The following example shows that the converse of Theorem 3.3 is not true in general.
Example 3.4. Let $H=\{0,1,2\}$. Then the following table shows a hyper K-algebra structure on H with unit 1.

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{0,2\}$
1	$\{1\}$	$\{0,2\}$	$\{1\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$

Then we will see that $D_{1}=\{1\}, D_{2}=\{1,2\}$ and $D_{3}=\{0,1\}$ are DPIHKI-T1, but they are not DPIHKI -T2, T3 and T4.

Theorem 3.5. Let $1 \in 1 \circ x ; \forall x \in H$. Then:
(i) If $0 \notin D$, then D is a $D P I H K I-T 1$.
(ii) If $x \in 1 \circ 1$ for some $x \in H-\{0,1\}$ and $x \notin D$, then D is a $D P I H K I-T 1$.

Proof. The proof follows from Theorems 2.18, 2.20 and 3.3.
Example 3.6. Let $H=\{0,1,2,3\}$. Then the following table shows a hyper K-algebra structure on H with unit 1 .

\circ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1,2\}$	$\{1,2,3\}$	$\{1,2,3\}$
2	$\{2\}$	$\{0,3\}$	$\{0,3\}$	$\{3\}$
3	$\{3\}$	$\{0\}$	$\{0\}$	$\{0\}$

Also $D_{1}=\{1\}, D_{2}=\{1,2\}, D_{3}=\{1,3\}, D_{4}=\{1,2,3\}, D_{5}=\{0,1\}$ and $D_{6}=\{0,1,3\}$ are DPIHKI $-T 1$, by Theorem 3.5.

Theorem 3.7. Let $x \in H$ and $1 \circ x=\{x\}$. If $x \circ x=\{0\}$ and $x \notin D$, then D is not a DPIHKI -T1.

Proof. By hypothesis and Theorem 2.4 we get that $1 \circ(((1 \circ 0) \circ(1 \circ x)) \circ(1 \circ x))=$ $1 \circ((1 \circ x) \circ(1 \circ x))=1 \circ(x \circ x)=1 \circ 0=\{1\} \subseteq D$ and $1 \circ((1 \circ x) \circ(1 \circ x))=\{1\} \subseteq D$, while $1 \circ((1 \circ 0) \circ(1 \circ x))=1 \circ(1 \circ x)=1 \circ x=\{x\} \nsubseteq D$. Thus D is not a DPIHKI-T1.

Example 3.8. Let $H=\{0,1,2\}$. Then the following table shows a hyper K-algebra structure on H with unit 1.

\circ	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0\}$

Then $D_{1}=\{1\}$ and $D_{2}=\{0,1\}$ are not DPIHKI $-T 1$.
Theorem 3.9. Let $1 \circ x=\{1\} ; \forall x \in H-\{1\}$ and $1 \circ 1=\{0\}$. Then D is a DPIHKI $-T 1$.
Proof. We consider two cases: (i) $0 \in D \quad$ (ii) $0 \notin D$.
(i) If $0 \in D$, then by Theorems 2.19 and 3.3 we conclude that D is a DPIHKI $-T 1$.
(ii) Let $0 \notin D$ and on the contrary let D does not be a $D P I H K I-T 1$. Then there are $x, y, z \in H$ such that

$$
\begin{equation*}
1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)) \subseteq D \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \circ((1 \circ y) \circ(1 \circ z)) \subseteq D \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
1 \circ((1 \circ x) \circ(1 \circ z)) \nsubseteq D \tag{3}
\end{equation*}
$$

If x and $z \in H-\{1\}$ or $x=z=1$, then by some manipulations we conclude that (3) does not hold, which is a contradiction.
If $x \in H-\{1\}$ and $z=1$, then for $y=1$, the inclusion (1) does not hold and for $y \in H-\{1\}$, (2) does not hold. So this case is impossible.

If $x=1$ and $z \in H-\{1\}$. Then we consider two cases: (a) $1 \in 0 \circ 1, \quad$ (b) $1 \notin 0 \circ 1$.
(a) If $1 \in 0 \circ 1$, then (1) does not hold, which is a contradiction.
(b) If $1 \notin 0 \circ 1$, then (3) does not hold, which is not true.

Therefore in this case also D is a $D P I H K I-T 1$.
Example 3.10. Let $H=\{0,1,2,3\}$. Then the following table shows a hyper K-algebra structure on H with unit 1 such that D is a DPIHKI-T1, where $D=\{1\},\{0,1\},\{1,2\}$, $\{1,3\},\{0,1,2\},\{0,1,3\}$ or $\{1,2,3\}$.

\circ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{0\}$	$\{0\}$	$\{0\}$
3	$\{3\}$	$\{0,1\}$	$\{3\}$	$\{0,1,3\}$

4 DPIHKI - T1 of Hyper K-algebras of Order 3

Henceforth we let $H=\{0,1,2\}$ be a bounded hyper K-algebra of order 3 with unit 1 and $D_{1}=\{1\}, D_{2}=\{1,2\}$ and $D_{3}=\{0,1\}$ be subsets of H.

Theorem 4.1. Let $1 \circ 1=\{0\}$ and $1 \circ 2=\{1\}$. Then D_{1}, D_{2} and D_{3} are DPIHKI-T1.
Proof. The proof follows from Theorem 3.9.
Example 4.2. Let $H=\{0,1,2\}$. Then the following table shows a hyper K-algebra structure on H such that D_{1}, D_{2} and D_{3} are DPIHKI - T1.

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{0,2\}$	$\{0\}$

Theorem 4.3. Let $1 \circ 1=\{0\}$ and $1 \circ 2=\{2\}$. Then the following statements hold:
(i) D_{1} is a $D P I H K I-T 1$ if and only if $2 \circ 2 \neq\{0\}$.
(ii) D_{2} is not a DPIHKI-T1.
(iii) D_{3} is a DPIHKI-T1 if and only if $2 \in(2 \circ 2) \bigcap(2 \circ 1)$.

Proof. (i) Let D_{1} be a $D P I H K I-T 1$. We prove that $2 \circ 2 \neq\{0\}$. On the contrary let $2 \circ 2=\{0\}$. Then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((1 \circ 2) \circ(1 \circ 2))=1 \circ(2 \circ 2)=1 \circ 0=\{1\}=D_{1}$ and $1 \circ((1 \circ 2) \circ(1 \circ 2))=D_{1}$, while $1 \circ((1 \circ 0) \circ(1 \circ 2))=1 \circ(1 \circ 2)=1 \circ 2=\{2\} \nsubseteq D_{1}$. Thus D_{1} is not a DPIHKI-T1, which is a contradiction. Therefore $2 \circ 2 \neq\{0\}$. Conversely, let $2 \circ 2 \neq\{0\}$. On the contrary let D_{1} do not be DPIHKI-T1. Then there are $x, y, z \in H$ such that

$$
\begin{equation*}
1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)) \subseteq D_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \circ((1 \circ y) \circ(1 \circ z)) \subseteq D_{1} \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
1 \circ((1 \circ x) \circ(1 \circ z)) \nsubseteq D_{1} . \tag{3}
\end{equation*}
$$

If $x=z=1$ or $x=z=0$, then (3) does not hold, which is not true.
If $x=0$ and $z=1, x=0$ and $z=2, x=2$ and $z=2$ or $x=2$ and $z=1$, then by some
manipulations we can see that (1) or (2) does not hold, which is a contradiction.
If $x=2$ and $z=0$ we consider two cases: (a) $2 \circ 1=\{0\}, \quad$ (b) $2 \circ 1 \neq\{0\}$.
In (a) we can see that (3) does not hold. In (b) we can check that one of (1)or (2) does not hold. So this case is impossible.
If $x=1$ and $z=0$, then by considering two cases $0 \circ 1=\{0\}$ or $0 \circ 1 \neq\{0\}$, and by some arguments similar as above, we get a contradiction.
If $x=1$ and $z=2$, then by considering two cases $0 \circ 2=\{0\}$ or $0 \circ 2 \neq\{0\}$ we will obtain a contradiction. Therefore D_{1} is a $D P I H K I-T 1$.
(ii) By hypothesis, $(H K 2)$ and Theorem 2.4 we have $2 \circ 0=(1 \circ 2) \circ 0=(1 \circ 0) \circ 2=1 \circ 2=\{2\}$. Thus $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 1))=1 \circ((1 \circ 2) \circ 0)=1 \circ(2 \circ 0)=1 \circ 2=\{2\} \subseteq D_{2}$ and $1 \circ((1 \circ 2) \circ(1 \circ 1))=1 \circ(2 \circ 0)=1 \circ 2=\{2\} \subseteq D_{2}$, while $1 \circ((1 \circ 0) \circ(1 \circ 1))=1 \circ(1 \circ 0)=$ $1 \circ 1=\{0\} \nsubseteq D_{2}$. Therefore D_{2} is not a DPIHKI-T1.
(iii) Let $2 \in(2 \circ 2) \cap(2 \circ 1)$. Then by Theorems 2.17 (ii-c) and 3.3 we get that D_{3} is a $D P I H K I-T 1$. Conversely, let D_{3} be a $D P I H K I-T 1$. On the contrary let $2 \notin(2 \circ 2)$ or $2 \notin 2 \circ 1$. If $2 \notin 2 \circ 2$, then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((1 \circ 2) \circ 2)=1 \circ(2 \circ 2) \subseteq 1 \circ(\{0,1\})=$ $\{0,1\}=D_{3}$ and $1 \circ((1 \circ 2) \circ(1 \circ 2)) \subseteq D_{3}$, while $1 \circ((1 \circ 0) \circ(1 \circ 2))=1 \circ(1 \circ 2)=1 \circ 2=\{2\} \nsubseteq D_{3}$. Thus D_{3} is not a DPIHKI-T1, which is a contradiction.
If $2 \notin 2 \circ 1$, then $1 \circ(((1 \circ 2) \circ(1 \circ 0)) \circ(1 \circ 1))=1 \circ((2 \circ 1) \circ 0) \subseteq 1 \circ(\{0,1\} \circ 0)=\{0,1\}=D_{3}$ and $1 \circ((1 \circ 0) \circ(1 \circ 1))=\{0\} \subseteq D_{3}$, but $1 \circ((1 \circ 2) \circ(1 \circ 1))=1 \circ(2 \circ 0)=\{2\} \nsubseteq D_{3}$. Thus D_{3} is not a DPIHKI-T1, which is a contradiction. Therefore $2 \in(2 \circ 2) \bigcap(2 \circ 1)$.

Now we give some examples about the above theorem.
Example 4.4. Consider the following tables :

H_{1}	0	1	2
0	$\{0\}$	$\{0,1\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,2\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0,2\}$	$\{0,1\}$

H_{3}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1\}$
1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0,1\}$	$\{0\}$

H_{4}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0,1\}$	$\{0,2\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0,1,2\}$. Moreover:
(a) In H_{1}, H_{2}, H_{3} and H_{4}, D_{2} is not a DPIHKI -T1, by Theorem 4.3 (ii)
(b) In H_{1}, D_{1} and D_{3} are DPIHKI-T1.
(c) In H_{3}, D_{1} and D_{3} are not DPIHKI-T1.
(d) In H_{2} and H_{4}, D_{1} is a DPIHKI -T1, while D_{3} is not.

Theorem 4.5. Let $1 \circ 1=\{0\}$ and $1 \circ 2=\{1,2\}$. Then:
(i) D_{1} and D_{2} are DPIHKI -T1.
(ii) D_{3} is a $D P I H K I-T 1$ if and only if $2 \in 2 \circ 1$.

Proof. By (HK2) and hypothesis we have $0 \circ 2=(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=\{1,2\} \circ 1=$ $(1 \circ 1) \bigcup(2 \circ 1)=\{0\} \bigcup(2 \circ 1)$. Since $0 \in(2 \circ 1) \bigcap(0 \circ 2)$, then we conclude that $2 \circ 1=0 \circ 2$. Now we prove (i) for D_{1}, the proof of D_{2} is similar to D_{1}. On the contrary let D_{1} does not be a DPIHKI -T1. Then there are $x, y, z \in H$ such that

$$
\begin{equation*}
1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)) \subseteq D_{1}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \circ((1 \circ y) \circ(1 \circ z)) \subseteq D_{1} \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
1 \circ((1 \circ x) \circ(1 \circ z)) \nsubseteq D_{1} . \tag{3}
\end{equation*}
$$

If $x=z=0$ or $x=z=1$, then (3) does not hold, which is a contradiction.
If $x \in\{0,2\}$ and $z \in\{1,2\}$ or $x=1$ and $z=2$, then by some calculations we conclude that (1) or (2) does not hold. So this case is impossible.

If $x=1$ and $z=0$, then by considering two cases $0 \circ 1 \neq\{0\}$ or $0 \circ 1=\{0\}$, we see that (1) or (3) does not hold, respectively, which is a contradiction.
If $x=2$ and $z=0$, then by considering two cases $2 \circ 1=\{0\}$ or $2 \circ 1 \neq\{0\}$, and by some calculations we obtain a contradiction, by (3) or (1), respectively. Note that for the case $2 \circ 1 \neq\{0\}$, we need some calculations.
(ii) The proof is similar to Theorem 4.3 (i).

Now we give some examples about the above theorem.
Example 4.6. Consider the following tables:

H_{1}	0	1	2
0	$\{0\}$	$\{0,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0\}$	$\{1,2\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1\}$
1	$\{1\}$	$\{0\}$	$\{1,2\}$
2	$\{2\}$	$\{0,1\}$	$\{0\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0,1,2\}$. Moreover:
(a) In H_{1} and H_{2}, D_{1} and D_{2} are DPIHKI -T1.
(b) In H_{1}, D_{3} is DPIHKI - T1, while it is not a DPIHKI $-T 1$ in H_{2}.

Theorem 4.7. Let $1 \in(1 \circ 1) \bigcap(1 \circ 2)$. Then D_{1}, D_{2} and D_{3} are $D P I H K I-T 1$.
Proof. The proof follows from Theorems 3.5 (i), 2.17(i), (iii-a) and 3.3.
Now we give some examples about the above theorem.
Example 4.8. Let $H=\{0,1,2\}$. Then the following tables show some hyper K-algebra structures on H such that D_{1}, D_{2} and D_{3} are DPIHKI -T1.

H_{1}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$
2	$\{2\}$	$\{0\}$	$\{0\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{1,2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,2\}$

H_{3}	0	1	2
0	$\{0,2\}$	$\{0,1,2\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1,2\}$	$\{1\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$

H_{4}	0	1	2
0	$\{0,1\}$	$\{0,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0,1,2\}$	$\{1,2\}$
2	$\{2\}$	$\{0,1\}$	$\{0,1\}$

Theorem 4.9. Let $1 \circ 1=\{0,1\}$ and $1 \circ 2=\{2\}$. Then:
(i) D_{1} is a DPIHKI $-T 1$ if and only if $2 \circ 2 \neq\{0\}$.
(ii) D_{2} is a $D P I H K I-T 1$ if and only if $1 \in 2 \circ 1$.
(iii) D_{3} is a $D P I H K I-T 1$ if and only if $2 \in 2 \circ 2$.

Proof. (i) Let $2 \circ 2 \neq\{0\}$. Then by Theorems 2.15 (ii) and 3.3 we conclude that D_{1} is a DPIHKI - T1. Conversely, let D_{1} be a DPIHKI $-T 1$. We prove that $2 \circ 2 \neq\{0\}$. On the contrary let $2 \circ 2=\{0\}$. Then we have $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2))=$ $1 \circ((1 \circ 2) \circ(1 \circ 2))=1 \circ(2 \circ 2)=1 \circ 0=\{1\}=D_{1}$ and $1 \circ((1 \circ 2) \circ(1 \circ 2))=D_{1}$, while $1 \circ((1 \circ 0) \circ(1 \circ 2))=1 \circ(1 \circ 2)=\{2\} \nsubseteq D_{1}$. Thus D_{1} is not a DPIHKI-T1, which is a contradiction.
(ii) Let $1 \in 2 \circ 1$. Then by Theorems 2.16 (ii-b) and 3.3 we conclude that D_{2} is a $D P I H K I-T 1$. Conversely, let D_{2} be a DPIHKI $-T 1$. We prove that $1 \in 2 \circ 1$. On the contrary let $1 \notin 2 \circ 1$. Then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 0))=1 \circ((1 \circ 2) \circ 1))=1 \circ(2 \circ 1) \subseteq$ $1 \circ\{0,2\}=\{1,2\}=D_{2}$ and $1 \circ((1 \circ 2) \circ(1 \circ 0))=1 \circ(2 \circ 1) \subseteq 1 \circ\{0,2\}=\{1,2\}=D_{2}$ while $1 \circ((1 \circ 0) \circ(1 \circ 0))=1 \circ\{0,1\}=\{0,1\} \nsubseteq D_{2}$. Thus D_{2} is not a DPIHKI-T1, which is a contradiction. Therefore $1 \in 2 \circ 1$.
(iii) The proof is similar to (i).

Now we give some examples about the above theorem.
Example 4.10. Consider the following tables:

H_{1}	0	1	2
0	$\{0\}$	$\{0,2\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,1,2\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,1\}$

H_{3}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0\}$

H_{4}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{0,2\}$	$\{0,1\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0,1,2\}$. Moreover:
(a) In H_{1}, D_{1}, D_{2} and D_{3} are DPIHKI -T1.
(b) In H_{2}, D_{1} and D_{2} are DPIHKI -T1, while D_{3} is not.
(c) In H_{3}, D_{2} is a DPIHKI-T1, while D_{1} and D_{3} are not.
(d) In H_{4}, D_{1} is a DPIHKI-T1, while D_{2} and D_{3} are not.

Theorem 4.11. Let $1 \circ 1=\{0,1,2\}$ and $1 \circ 2=\{2\}$. Then:
(i) $D_{1}\left(D_{3}\right)$ is a $D P I H K I-T 1$ if and only if $2 \circ 2 \neq\{0\}$.
(ii) D_{2} is a $D P I H K I-T 1$ if and only if $1 \in 2 \circ 1$.

Proof. (i) We prove theorem for D_{1}, the proof of D_{3} is the same as D_{1}. Let $2 \circ 2 \neq\{0\}$. Then by Theorems 2.15 (ii) and 3.3 we conclude that D_{1} is a DPIHKI-T1. Conversely, on the contrary let $2 \circ 2=\{0\}$. Then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((1 \circ 2) \circ 2)=1 \circ(2 \circ 2)=1 \circ 0=$ $\{1\}=D_{1}$ and $1 \circ((1 \circ 2) \circ(1 \circ 2))=D_{1}$, while $1 \circ((1 \circ 0) \circ(1 \circ 2))=1 \circ(1 \circ 2)=1 \circ 2=\{2\} \nsubseteq D_{1}$. Thus D_{1} is not a DPIHKI-T1, which is a contradiction. Therefore $2 \circ 2 \neq\{0\}$.
(ii) Let D_{2} be a $D P I H K I-T 1$. We prove that $1 \in 2 \circ 1$. On the contrary, let $1 \notin 2 \circ 1$. Then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 0))=1 \circ((1 \circ 2) \circ 1)=1 \circ(2 \circ 1) \subseteq 1 \circ\{0,2\}=\{1,2\}=D_{2}$ and $1 \circ((1 \circ 2) \circ(1 \circ 0))=1 \circ(2 \circ 1) \subseteq\{1,2\}=D_{2}$, while $1 \circ((1 \circ 0) \circ(1 \circ 0))=1 \circ\{0,1,2\}=$ $\{0,1,2\} \nsubseteq D_{2}$. Thus D_{2} is not a $D P I H K I-T 1$, which is a contradiction. So $1 \in 2 \circ 1$. Conversely, let $1 \in 2 \circ 1$. Then by $(H K 2)$ we have $2 \circ 1=(1 \circ 2) \circ 1=(1 \circ 1) \circ 2=$ $\{0,1,2\} \circ 2=(0 \circ 2) \bigcup(2 \circ 2) \bigcup\{2\}$. So $1 \in 0 \circ 2$ or $1 \in 2 \circ 2$ and $2 \in 2 \circ 1$. If $1 \in 0 \circ 2$, then by Theorems 2.16 (ii-d) and 3.3 , we conclude that D_{2} is a DPIHKI-T1. If $1 \in 2 \circ 2$, we
prove that D_{2} is a DPIHKI-T1. On the contrary let D_{2} does not be a DPIHKI-T1. Then there are $x, y, z \in H$ such that

$$
\begin{equation*}
1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)) \subseteq D_{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \circ((1 \circ y) \circ(1 \circ z)) \subseteq D_{2}, \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
1 \circ((1 \circ x) \circ(1 \circ z)) \nsubseteq D_{2} . \tag{3}
\end{equation*}
$$

If $y=0$ and $z=2$, then (1) does not hold for all $x \in H$, which is a contradiction.
For the other $y, z \in H$, by some manipulations, we see that (2) does not hold, which is a contradiction.

Now we give some examples about the above theorem.
Example 4.12. Consider the following tables :

H_{1}	0	1	2
0	$\{0,2\}$	$\{0,1\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,1,2\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,1,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0\}$

H_{3}	0	1	2
0	$\{0,2\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1,2\}$	$\{2\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$

H_{4}	0	1	2
0	$\{0\}$	$\{0,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0,1,2\}$	$\{2\}$
2	$\{2\}$	$\{0,2\}$	$\{0\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0,1,2\}$. Moreover:
(a) In H_{1}, D_{1}, D_{2} and D_{3} are DPIHKI - T1.
(b) In H_{2}, D_{2} is a DPIHKI -T1, while D_{1} and D_{3} are not.
(c) In H_{3}, D_{1} and D_{3} are DPIHKI -T1, while D_{2} is not.
(d) In H_{4}, D_{1}, D_{2} and D_{3} are not DPIHKI -T1.

Theorem 4.13. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{1\}$. Then $D_{1}\left(D_{2}, D_{3}\right)$ is a DPIHKI $-T 1$ if and only if $2 \circ 1 \neq\{0,1\}$ or $0 \circ 1 \neq\{0\}$.

Proof. We prove theorem for D_{1} the proofs of D_{2} and D_{3} are similar to D_{1}. Let D_{1} be a $D P I H K I-T 1$. We prove that $2 \circ 1 \neq\{0,1\}$ or $0 \circ 1 \neq\{0\}$. On the contrary let $2 \circ 1=\{0,1\}$ and $0 \circ 1=\{0\}$. Then $1 \circ(((1 \circ 1) \circ(1 \circ 0)) \circ(1 \circ 0))=1 \circ((\{0,2\} \circ 1) \circ 1)=$ $1 \circ(\{0,1\} \circ 1)=1 \circ\{0,2\}=\{1\}=D_{1}$ and $1 \circ((1 \circ 0) \circ(1 \circ 0))=1 \circ\{0,2\}=D_{1}$, while $1 \circ((1 \circ 1) \circ(1 \circ 0))=1 \circ(\{0,2\} \circ 1)=1 \circ\{0,1\}=\{0,1,2\} \nsubseteq D_{1}$. Thus D_{1} is not a DPIHKI -T1, which is a contradiction. Conversely, let $2 \circ 1 \neq\{0,1\}$ or $0 \circ 1 \neq\{0\}$ and on the contrary let D_{1} do not be a DPIHKI-T1. Then there are $x, y, z \in H$ such that

$$
\begin{equation*}
1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)) \subseteq D_{1}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \circ((1 \circ y) \circ(1 \circ z)) \subseteq D_{1} \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
1 \circ((1 \circ x) \circ(1 \circ z)) \nsubseteq D_{1} . \tag{3}
\end{equation*}
$$

Now similar to the proof of Theorem 4.3 (i), we will see that one of (l), (2) or (3) does not hold, which is a contradiction. Therefore D_{1} is a $D P I H K I-T 1$.

Now we give some examples about the above theorem.

Example 4.14. Consider the following tables :

H_{1}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0,2\}$
1	$\{1\}$	$\{0,2\}$	$\{1\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0,2\}$	$\{1\}$
2	$\{2\}$	$\{0\}$	$\{0\}$

H_{3}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,2\}$
1	$\{1\}$	$\{0,2\}$	$\{1\}$
2	$\{2\}$	$\{0,1\}$	$\{0\}$

H_{4}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,2\}$	$\{1\}$
2	$\{2\}$	$\{0,1\}$	$\{0,2\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0,1,2\}$. Moreover:
(a) In H_{1}, H_{2} and H_{3}, D_{1}, D_{2} and D_{3} are DPIHKI - T1.
(b) In H_{4}, D_{1}, D_{2} and D_{3} are not DPIHKI $-T 1$.

Theorem 4.15. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{2\}$. Then:
(i) $D_{1}\left(D_{3}\right)$ is a DPIHKI -T1 if and only if $2 \circ 2 \neq\{0\}$.
(ii) If $1 \notin 2 \circ 2$, then D_{2} is not a $D P I H K I-T 1$.
(iii) If $2 \circ 2=\{0,1,2\}$, then D_{2} is a DPIHKI $-T 1$.
(iv) If $2 \circ 2=\{0,1\}$, then D_{2} is a DPIHKI $-T 1$ if and only if $1 \in 0 \circ 1$.

Proof. (i) We prove theorem for D_{1}, the proof of D_{3} is similar to D_{1}. Let $2 \circ 2 \neq\{0\}$. Then by Theorems 2.15 (ii) and 3.3 we conclude that D_{1} is a $D P I H K I-T 1$. Conversely, let D_{1} be a DPIHKI -T1. We prove that $2 \circ 2 \neq\{0\}$. On the contrary let $2 \circ 2=\{0\}$. Then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((1 \circ 2) \circ 2)=1 \circ(2 \circ 2)=1 \circ 0=\{1\}$ and $1 \circ((1 \circ 2) \circ(1 \circ 2))=1 \circ(2 \circ 2)=\{1\}=D_{1}$, while $1 \circ((1 \circ 0) \circ(1 \circ 2))=1 \circ(1 \circ 2)=1 \circ 2=$ $\{2\} \nsubseteq D_{1}$. Thus D_{1} is not a DPIHKI-T1, which is a contradiction.
(ii) Let $1 \notin 2 \circ 2$. Then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 1))=1 \circ((1 \circ 2) \circ\{0,2\})=1 \circ\{0,2\}=\{1,2\}=D_{2}$ and $1 \circ((1 \circ 2) \circ(1 \circ 1))=D_{2}$, while $1 \circ((1 \circ 0) \circ(1 \circ 1))=1 \circ(\{1,2\})=\{0,2\} \nsubseteq D_{2}$. Thus D_{2} is not a DPIHKI-T1.
(iii) Let $2 \circ 2=\{0,1,2\}$. Then by Theorems $2.16\left(\mathrm{ii}-c_{2}\right)$ and 3.3 we have D_{2} is a DPIHKI$T 1$.
(iv) The proof is similar to the proof of Theorem 4.3 (i).

Now we give some examples about the above theorem.
Example 4.16. Consider the following tables:

H_{1}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,2\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0\}$

H_{3}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,2\}$

H_{4}	0	1	2
0	$\{0\}$	$\{0,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,1,2\}$

H_{5}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,2\}$	$\{2\}$
2	$\{2\}$	$\{0,1\}$	$\{0,1\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0,1,2\}$. Also:
(a) In H_{1}, H_{3} and H_{5}, D_{1} and D_{3} are DPIHKI $-T 1$, while D_{2} is not.
(b) In H_{2}, D_{1}, D_{2} and D_{3} are not DPIHKI $-T 1$.
(c) In H_{4}, D_{1}, D_{2} and D_{3} are DPIHKI -T1.

Theorem 4.17. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{1,2\}$. Then:
(i) D_{1} and D_{3} are DPIHKI-T1.
(ii) D_{2} is a $D P I H K I-T 1$ if and only if $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0,1\}$.

Proof. We prove theorem for D_{1} the proof of D_{3} is the same as D_{1}. If $2 \circ 1 \neq\{0\}$ or $0 \circ 1 \neq\{0\}$, then by Theorems 2.15 (iii-c) and 3.3 we conclude that D_{1} is a DPIHKI-T1. If $2 \circ 1=\{0\}$ and $0 \circ 1=\{0\}$, then
$(0 \circ 2) \bigcup(2 \circ 2)=(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=\{1,2\} \circ 1=\{0,2\} \bigcup(2 \circ 1)=\{0,2\}$.
Now we prove that D_{1} is a DPIHKI-T1. On the contrary, let D_{1} do not be a DPIHKI$T 1$. Then there are $x, y, z \in H$ such that

$$
\begin{equation*}
1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)) \subseteq D_{1}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \circ((1 \circ y) \circ(1 \circ z)) \subseteq D_{1}, \tag{3}
\end{equation*}
$$

while

$$
\begin{equation*}
1 \circ((1 \circ x) \circ(1 \circ z)) \nsubseteq D_{1} . \tag{4}
\end{equation*}
$$

If $x=1$ and $z=0$, then (4) does not hold, which is a contradiction.
If $x \in\{0,1,2\}$ and $z \in\{1,2\}$ or $x \in\{0,2\}$ and $z=0$, then by some calculations and using (1), we can see that (2) or (3) does not hold, which is not true.
(ii) Let D_{2} be a $D P I H K I-T 1$. We prove that $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0,1\}$. On the contrary let $0 \circ 1=\{0\}$ and $2 \circ 1=\{0,1\}$. Then $1 \circ(((1 \circ 1) \circ(1 \circ 0)) \circ(1 \circ 0))=1 \circ(\{0,1\} \circ 1)=1 \circ\{0,2\}=$ $\{1,2\}=D_{2}$ and $1 \circ((1 \circ 0) \circ(1 \circ 0))=D_{2}$, while $1 \circ((1 \circ 1) \circ(1 \circ 0))=1 \circ\{0,1\}=\{0,1,2\} \nsubseteq D_{2}$. Thus D_{2} is not a DPIHKI -T1, which is a contradiction. The proof of the converse is similar to the proof of (i).

Now we give some examples about the above theorem.
Example 4.18. Consider the following tables:

H_{1}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,2\}$	$\{1,2\}$
2	$\{2\}$	$\{0,1\}$	$\{0\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,2\}$	$\{1,2\}$
2	$\{2\}$	$\{0,1\}$	$\{0,1,2\}$

H_{3}	0	1	2
0	$\{0,2\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,2\}$	$\{1,2\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$

H_{4}	0	1	2
0	$\{0\}$	$\{0,1,2\}$	$\{0,1\}$
1	$\{1\}$	$\{0,2\}$	$\{1,2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,2\}$

Then each of the above tables gives a hyper K-algebra structure on $\{0,1,2\}$. Moreover: (a) In H_{1}, H_{3} and H_{4}, D_{1}, D_{2} and D_{3} are DPIHKI - T1.
(b) In H_{2}, D_{1} and D_{3} are DPIHKI-T1, while D_{2} is not.

Remark 4.19. Note that Theorems 4.1, 4.3, 4.5, 4.7, 4.9, 4.11, 4.13, 4.15 and 4.17 give a classification of hyper K-algebras of order 3 in which D_{1}, D_{2} or D_{3} is a DPIHKI-T1.

5 Some Relations Between DPIHKI - T1, T2, T3 And T4

Theorem 5.1. Let $1 \circ 1 \neq\{0\}$ and $1 \circ 2=\{2\}$. Then D_{1} is a $D P I H K I-T 1$ if and only if it is a DPIHKI-T2.

Proof. The proof follows from Theorems 2.7(ii), 4.9(i), 4.11(i) and 4.15(i).
Theorem 5.2. Consider the following statements :
(i) $1 \circ 1=\{0\}$ and $1 \in 1 \circ 2$,
(ii) $1 \circ 1=\{0,2\}, 1 \circ 2=\{1,2\}, 2 \circ 1=\{0\}$ and $0 \circ 1=\{0\}$.

Then under each of the above statements D_{1} is a DPIHKI -T1, while it is not a DPIHKI - T2.

Proof. D_{1} is a $D P I H K I-T 1$, by Theorems 4.1, 4.5 and 4.17(i). And it is not of type 2, by Theorems 2.7(i,iii-a,c),

Example 5.3. The following tables show some hyper K-algebra structures on $\{0,1,2\}$, such that D_{1} is a DPIHKI-T1, but it is not a DPIHKI-T2.

H_{1}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,2\}$	$\{1,2\}$
2	$\{2\}$	$\{0\}$	$\{0,2\}$

H_{2}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0\}$	$\{1,2\}$
2	$\{1,2\}$	$\{0,1,2\}$	$\{0,2\}$

H_{3}	0	1	2
0	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{0,2\}$	$\{0\}$

Theorem 5.4. Consider the following statements :
(i) $1 \circ 1=\{0\}$ and $1 \in 1 \circ 2$,
(ii) $1 \circ 1=\{0,2\}, 1 \circ 2=\{2\}, 2 \circ 2=\{0,1,2\}$,
(iii) $1 \circ 1=\{0,2\}, 1 \circ 2=\{2\}, 2 \circ 2=\{0,1\}$ and $1 \in 0 \circ 1$,
(iv) $1 \circ 1=\{0,1,2\}, 1 \circ 2=\{2\}$ and $1 \in 2 \circ 1$.

Then under each of the above statements D_{2} is a DPIHKI -T1, while it is not a DPIHKI -T2.

Proof. D_{2} is a DPIHKI - T1, by Theorems 4.1, 4.5, 4.15 (iii,iv) and 4.11 ii), respectively. While it is not type 2, by Theorem 2.8.

Example 5.5. The following tables show some hyper K-algebra structures on $\{0,1,2\}$, such that D_{2} is a DPIHKI $-T 1$, but it is not a DPIHKI -T2.

H_{1}	0	1	2	H_{2}	0	1	2
0	\{0\}	$\{0,1,2\}$	\{0, 1\}	0	\{0\}	$\{0,1,2\}$	\{0, 2 \}
1	\{1\}	$\{0,2\}$	\{1, 2\}	1	\{1\}	$\{0,2\}$	\{2\}
2	\{2\}	$\{0,1\}$	\{0\}	2	\{2\}	$\{0,1,2\}$	\{0, 1, 2\}
		H_{3}	0	1	2		
		0	\{0\}	$\{0,1\}$	$\{0,1,2\}$		
		1	\{1\}	\{0\}	\{1\}		
		2	\{2\}	$\{0,1,2\}$	$\{0,1\}$		

Theorem 5.6. Let $1 \circ 2=\{2\}$ and $2 \in 1 \circ 1$. Then D_{3} is a $D P I H K I-T 1$ if and only if it is a DPIHKI - T2.

Proof. The proof follows from Theorems 2.9(ii), 4.11(i) and 4.15(i).
Theorem 5.7. Consider the following statements :
(i) $1 \circ 1=\{0,1\}, 1 \circ 2=\{2\}$ and $2 \in 2 \circ 2$,
(ii) $1 \circ 1=\{0\}, 1 \circ 2=\{2\}, 2 \in(2 \circ 2) \bigcap(2 \circ 1)$,
(iii) $1 \circ 1=\{0,2\}, 1 \circ 2=\{1\}$ and $2 \circ 1 \neq\{0,1\}$ or $0 \circ 1 \neq\{0\}$,
(iv) $1 \circ 2=\{1,2\}, 1 \circ 1 \subseteq\{0,1\}$ and $2 \in 2 \circ 1$,
(v) $1 \circ 1=\{0,2\}, 1 \circ 2=\{1,2\}$ and $(2 \circ 1) \bigcup(0 \circ 1)=\{0\}$,

Then under each of the above statements D_{3} is a DPIHKI -T1, while it is not a DPIHKI - T2.

Proof. Theorem 4.9(iii) (4.3(iii), 4.13) together with the statement (i) ((ii), (iii)) implies that D_{3} is a DPIHKI - T1, while Theorem 2.9(ii)(Theorem 2.9(i)) implies that it is not a DPIHKI - T2 in the cases of (i) and (ii)(case of(iii)). Also by using Theorems 4.7 and 4.5 (ii) together with the statement (iv) we get that D_{3} is a DPIHKI-T1, while Theorem 2.9(iii-a) implies that it is not a DPIHKI - T2. Finally Theorem 4.17(i) and statement (v) imply that D_{3} is a $D P I H K I-T 1$, while Theorem 2.9 (iii-c) implies that it is not a DPIHKI -T2.

Theorem 5.8. Let $1 \circ 1=\{0,1\}$ or $1 \circ 1=\{0,1,2\}$. Then D_{1} is a DPIHKI $-T 1$ if and only if it is a DPIHKI-T4.

Proof. The proof follows from Theorems 2.15, 4.7, 4.9(i) and 4.11(i).
Theorem 5.9. Consider the following statements:
(i) $1 \circ 1=\{0\}$ and $1 \in 1 \circ 2$,
(ii) $1 \circ 1=\{0\}, 1 \circ 2=\{2\}, 2 \circ 2 \neq\{0\}$,
(iii) $1 \circ 1=\{0,2\}, 1 \circ 2=\{1,2\},(2 \circ 1) \bigcup(0 \circ 1)=\{0\}$.

Then under each of the above statements D_{1} is a $D P I H K I-T 1$, while it is not a DPIHKI - T4.

Proof. Theorems 4.1, 4.5(i) and statement (i) imply that D_{1} is a DPIHKI - T1, while Theorem 2.15(i,iii-a) implies that it is not a DPIHKI-T4. By using Theorem 4.3(i) and statement (ii) we get that D_{1} is a $D P I H K I-T 1$, while Theorem 2.15(ii) implies that it is not a DPIHKI - T4. Finally Theorem 4.17(i) and statement (iii) imply that D_{1} is a

DPIHKI - T1, while Theorem 2.15(iii-c) implies that it is not a DPIHKI-T4.
Theorem 5.10. Let $1 \circ 1=\{0,1\}$. Then D_{2} is a $D P I H K I-T 1$ if and only if it is a DPIHKI-T4.

Proof. The proof follows from Theorems 2.16(i,ii-b,iii-a), 4.7 and 4.9(ii).
Theorem 5.11. Consider the following statements :
(i) $1 \circ 1=\{0\}$ and $1 \in 1 \circ 2$,
(ii) $1 \circ 1=\{0,2\}, 1 \circ 2=\{1\}, 2 \circ 1 \neq\{0,1\}$ and $0 \circ 1 \neq\{0\}$.

Then under each of the above statements D_{2} is a DPIHKI -T1, while it is not a DPIHKI - T4.

Proof. D_{2} is a DPIHKI - T1, by Theorems 4.1, 4.5 and 4.13, respectively and it is not of type 4 , by Theorems 2.16(i,iii-b)

Theorem 5.12. Let $1 \circ 2=\{2\}$. Then D_{3} is a $D P I H K I-T 1$ if and only if it is a DPIHKI - T4.

Proof. The proof follows from Theorems 2.17(ii), 4.15(i), 4.11(i), 4.9(iii) and 4.3(iii).
Theorem 5.13. Consider the following statements :
(i) $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{1\}, 2 \circ 1 \neq\{0,1\}$ or $0 \circ 1 \neq\{0\}$,
(ii) $1 \circ 1=\{0\}, 1 \circ 2=\{1,2\}, 2 \in 2 \circ 1$ and $2 \notin 2 \circ 2$,
(iii) $1 \circ 1=\{0,2\}, 1 \circ 2=\{1,2\},(0 \circ 1) \bigcup(2 \circ 1)=\{0\}$.

Then under each of the above statements D_{3} is a DPIHKI - T1, while it is not a DPIHKI - T4.

Proof. D_{3} is a DPIHKI - T1, by Theorems 4.13, 4.5(ii) and 4.17(i), while D_{3} it is not of type 4 , by Theorem $2.17(\mathrm{i}, \mathrm{iii}-\mathrm{b}, \mathrm{c})$.

References

[1] R.A. Borzooei, P. Corsini and M.M. Zahedi, "Some kinds of positive Implicative hyper K-ideals," J. Discrete Mathematics and Cryptography, 6(2003), 97-108.
[2] R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, "On hyper K-algebras" Math. Japon. Vol. 52, No. 1 (2000), 113-121.
[3] R.A. Borzooei and M.M. Zahedi, " Positive Implicative hyper K-ideals," Scientiae Mathematicae Japonicae, Vol. 53, No. 3 (2001), 525-533.
[4] Y. Imai and K. Iseki, "On axiom systems of propositional calculi" XIV Proc. Japan Academy, 42 (1966), 19-22.
[5] K. Iseki and S. Tanaka, "An introduction to the theory of BCK-algebras", Math. Japon, 23 (1978), 1-26.
[6] F. Marty, "Sur une generalization de la notion de groups", 8th congress Math. Scandinaves, Stockholm, (1934), 45-49.
[7] J. Meng and Y.B. Jun, "BCK-algebras", Kyung Moonsa, Seoul, Korea, (1994).
[8] L. Torkzadeh and M.M. Zahedi, " Dual Positive Implicative Hyper K-Ideals of Type 3", J. Quasigroups and Related Systems, 9(2002), 85-106.
[9] L. Torkzadeh and M.M. Zahedi, " Dual Positive Implicative Hyper K-Ideals of Type 4", Scientiae Mathematicae Japonicae, 59 No.3(2004), 591-603, e9, 583-595.
[10] M.M. Zahedi, R.A. Borzooei, Y.B. Jun and A. Hasankhani, "Some results on hyper K-algebras", Scientiae Mathematicae, Vol. 3, No. 1 (2000), 53-59.
[11] M.M. Zahedi, L. Torkzadeh and R.A. Borzooei "Dual Positive Implicative Hyper KIdeals of Type 2", Submitted.

Dept. of Math., Islamic Azad University of Kerman, Kerman, Iran e-mail:ltorkzadeh@yahoo.com
Dept. of Math., Shahid Bahonar University of Kerman, Kerman, Iran e-mail: zahedi_mm@mail.uk.ac.ir

[^0]: 2000 Mathematics Subject Classification. 03B47, 06F35, 03G25.
 Key words and phrases. (bounded) hyper K-algebra, dual positive implicative hyper K-ideal.

