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ON WEAKLY REFINABLE SPACES

Nurettin Ergun & Takashi Noiri
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Abstract. We first prove in this paper that a bounded weak κθ-cover of any space
has a B(D, ω0)-refinement for any infinite cardinal number κ. The special case κ =
ℵ0 had already been proved by R.H.Price and J.C.Smith in [7]. Thus we obtain a
characterization of B(D, ω0)-refinability via bounded weak κθ-cover refinements. We
also prove that the set of all those points in any space having positive and finite order
with respect to a given open family is covered by a σ-discrete closed refinement of that
family. Thus a theorem of Bennett and Lutzer on subparacompactness is obtained as
a corollary. We finally give a healthy proof of the fact that every weakly θ-refinable
space is B(D, ω2

0)-refinable.

0. Introduction The generalized covering properties have been extensively studied in the
past. Metacompactness and subparacompactness, the two most widely known weak forms of
paracompactness for instance had been defined respectively in the historical papers [1] and
[3]. In their well known paper [10], J.M.Worrell and H.H.Wicke, on the other hand, have
proved several interesting characterizations of developable spaces via another weak covering
property θ-refinability. For instance they proved I) A topological space is paracompact and
T2 iff it is collectionwise normal, θ-refinable and T1; II) A topological space is developable
iff it is essentially T1 (i.e. the closures of any two singletons are either equal or disjoint),
θ-refinable and has a base of countable order.

A sequence {Gn}∞n=1 of open covers of a topological space X is called a θ-cover iff
for each point x ∈ X there exists an nx ∈ N such that ord(x,Gnx) = card{G ∈ Gnx :
x ∈ G} < ω0. The space X is called θ-refinable iff each open cover of X has a θ-
cover refinement. Spaces that are θ-refinable are also known as submetacompact in
the literature, since every metacompact and every subparacompact space is evidently θ-
refinable. The two generalizations of this concept have been defined as weakly θ-refinable
and weakly θ-refinable spaces respectively in [2] and [8]. A cover G =

⋃∞
n=1 Gn is called

a weak θ-cover in X iff the following three conditions hold: i) each Gn is an open family
(which is not necessarily a cover), ii) for each x ∈ X there exists an nx ∈ N such that
0 < ord(x,Gnx) < ω0, iii) the countable open cover {⋃Gn}∞n=1 is point-finite, see [8]. G is
called a weak θ-cover on the other hand if it satisfies solely the two conditions i) and ii).
In this note we briefly write

⋃A instead of
⋃{A : A ∈ A} for any family A of subsets of X .

The space X is called weakly θ-refinable (resp. weakly θ-refinable) iff every open cover
of X has a weak θ-cover (resp. weak θ-cover). H.R. Bennett and D.J. Lutzer have shown
in [2] that quasi-developable spaces are weakly θ-refinable. J.C. Smith has proved in [8]
that every θ-refinable space is weakly θ-refinable and there exists a weakly θ-refinable non
θ-refinable T2 space. Some several related examples and knowledges can also be found in the
survey chapter [4] of D.Burke. J.Chaber and H.Junnila on the other hand have observed in
[5] that every open cover of any θ-refinable space has a refinement K =

⋃∞
n=1 Kn such that
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each Kn is a locally finite collection of closed subsets in the subspace X −⋃1≤k<n(
⋃Kk).

Then it is straightforward to observe by induction that the union set
⋃

k<n(
⋃Kk) is closed

in X for each n ∈ N; thus it is understood that every θ-refinable space is B(LF, ω0)-
refinable, (they were actually called the property b1 for B(LF, ω0)-refinability), see below
for the definition:

Definition 1: Let λ be an ordinal number. A topological space X is called B(D, λ)-
refinable (resp. B(LF, λ)-refinable), iff every open cover of X has a refinement K =⋃

α<λ Kα such that i) each Kα is a discrete (resp. locally finite) family of closed subsets in
the subspace X −⋃β<α(

⋃Kβ), ii) the union set
⋃

β<α(
⋃Kβ) is closed for each α < λ, see

[9] and [6]. Then K is called as the B(D, λ)-refinement of that open cover.
J.Chaber and H.Junnila have proved in the above mentioned paper that a space X

is metacompact (resp. submetacompact ≡ θ-refinable) iff X is almost expandable (resp.
almost θ-expandable) and B(LF, ω0)-refinable. Every B(D, λ)-refinable space is evidently
B(LF, λ)-refinable.

R.H.Price and J.C.Smith, on the other hand have proved in [7] that every bounded weak
θ-cover of any space has a B(D, ω0)-refinement. We prove first in this paper that even any
bounded weak κθ-cover of any space has a B(D, ω0)-refinement for any infinite cardinal
number κ. The following concept has been recently defined by N.Ergun and T.Noiri as a
natural generalization of weak θ-cover, see [12]:
Definition 2: Let κ be an infinite cardinal number. An open cover G =

⋃
α<κ Gα of a

topological space X is called a weak κθ-cover iff i) G∗ = {⋃Gα}α<κ is a point-finite open
cover of X and ii) for each x ∈ X there exists an index αx < κ such that 0 < ord(x,Gαx ) <
ω0.

Thus weak θ-covers are nothing but weak ℵ0θ-covers. Bounded weak κθ-covers, on
the other hand, will be defined before Proposition 1 in the sequel. Weakly κθ-refinable
spaces are investigated in [12]. The purpose of this paper is expressed in the abstract. No
separation axiom is assumed in this note unless explicitly stated. [A]n will denote, as is
well known, the set of all special finite subsets of A having cardinality n. The first infinite
ordinal number will be denoted by ω0 as usual. N denotes the set of all positive integers
whereas Nn denotes the finite set {1, 2, . . . , n} for each n ∈ N. A ≺ B simply means
throughout the paper that for each A ∈ A there exists a BA ∈ B such that A ⊆ BA.

1. Results Let G be any nonempty family of open subsets in the topological space X .
Then it is known that the sets Hn(G) = {x ∈ X : ord(x,G) ≤ n} and Un(G) = {x ∈ X : n ≤
ord(x,G)} are respectively closed and open in X . These symbols will be utilized throughout
the note. Note that Hn(G) ⊆ Hn+1(G).

Let G =
⋃

α<κ Gα be a weak κθ-cover of X . Then for each x ∈ X there exists a
finite set κ(x) = {α < κ : 0 < ord(x,Gα)} and at least one element αx ∈ κ(x) such that
0 < ord(x,Gαx ) < ω0. Thus we have

1 ≤ min
α∈κ(x)

ord(x,Gα) < ω0 (∀x ∈ X).

We briefly write min ordG(x) (or min ord(x) if there is no possibility of confusion) for
this minimum. Then G will be called a bounded weak κθ-cover of X if there exists a
positive integer n0 such that

max
x∈X

min ord(x) = n0,

i.e. min ord(x) ≤ n0 for each x ∈ X and there exists at least one point x0 ∈ X satisfying
min ord(x0) = n0.



ON WEAKLY REFINABLE SPACES 307

Now we start with the following result. The notations and concepts which are introduce
now will be used throughout this proposition.

Proposition 1 A bounded weak κθ-cover of any space has a B(D, ω0)-refinements for any
infinite cardinal number κ.

Proof: Let G =
⋃

α<κ Gα be a bounded weak κθ-cover of X . Let us write Gα = {Gα,β :
β ∈ Iα} for each α < κ. We divide the whole proof in two steps.

Step 1: Suppose there exists a fixed positive integer n0 such that min ord(x) = n0 holds
for each x ∈ X , i.e. n0 ≤ ord(x,Gα) for each α ∈ κ(x) and there exists an αx ∈ κ(x) such
that n0 = ord(x,Gαx ) for each x ∈ X . Define then

Uα = {
⋂
β∈Λ

Gα,β : Λ ∈ [Iα]n0} (α < κ)

and write U =
⋃

α<κ Uα and U∗ = {⋃Uα}α<κ. Let Uα = {U (α, β) : β ∈ Λα} as an indexed
family for each α < κ. We evidently suppose in here that each Uα family is faithfully indexed,
i.e. U(α, β1) �= U(α, β2) whenever β1 �= β2, β1, β2 ∈ Λα. Notice that ord(x,Uαx) = 1 for
each x ∈ X and besides ord(x,Uα) = 0 whenever α ∈ κ − κ(x). Thus U∗ is a point-finite
open cover of X . Define now

An = {x ∈ X : ord(x,U∗) = n} (n ∈ N).

Note first that An ∩ Am = ∅ whenever n �= m and
⋃

1≤k≤n Ak = Hn(U∗). Besides for
any point x ∈ An there exists a unique set κ(x) = {αx(1), αx(2), . . . , αx(n)} ∈ [κ]n such
that αx(1) < αx(2) < · · · < αx(n) < κ and 1 ≤ ord(x,Uαx(k)) for each 1 ≤ k ≤ n and at
least one of these orders is certainly 1 and some of them may possibly greater or equal to
ω0. We are going to define now the families Kn,m for each n ∈ N and for each 1 ≤ m ≤ n
such that all conditions

1. Kn,m ≺ U ,

2. An =
⋃

1≤m≤n(
⋃Kn,m),

3.
⋃Kn,m ∩ (Hn−1(U∗) ∪⋃1≤k<m(

⋃Kn,k)) = ∅,
4. Kn,m is a closed-discrete family in the subspace X − (Hn−1(U∗)∪⋃1≤k<m(

⋃Kn,k)),

5. Hn−1(U∗) ∪⋃1≤k<m(
⋃Kn,k) =

⋃
j<i

⋃
i<n(

⋃Ki,j) ∪
⋃

1≤k<m

(
⋃Kn,k) is closed in X ;

hold for each n ∈ N and for each 1 ≤ m ≤ n. Define now for this purpose the subset An,m,α

of An, which is the set of the whole special points x ∈ An satisfying the following three
conditions:

i) ord(x,Uαx(m)) = min1≤k≤n ord(x,Uαx(k)) (= min ordU (x))

ii) 1 < min1≤k<m ord(x,Uαx(k)) if 1 < m,

iii) αx(m) = α.

We evidently have ord(x,Uα) = ord(x,Uαx(m)) = min ordU (x) = 1 for any x ∈ An,m,α

and besides X =
⋃∞

n=1

⋃n
m=1

⋃
α<κ An,m,α holds. Define then the families

K1,1 = {A1 ∩ U : U ∈ U},
Kn,m,α = {A(n, m, α) ∩ U(α, β) : β ∈ Λα},
Kn,m =

⋃
α<κ

Kn,m,α
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where 1 < n and 1 ≤ m ≤ n. Thus we first have
⋃Kn1,m1,α1 ∩ ⋃Kn2,m2,α2 = ∅ =⋃Kn1,m1 ∩ ⋃Kn2,m2 whenever the subindices of these families are different and X =⋃∞

n=1

⋃n
m=1(

⋃Kn,m). It is easy to observe that K1,1 is a discrete family of closed sub-
sets in X since A1 = H1(U∗) is closed, ord(x,Uαx) = 1 and ord(x,Uα) = 0 for each
x ∈ H1(U∗) and for each α �= αx. Similarly the members of each Kn,m,α family are pair-
wise disjoint since ord(x,Uα) = 1 for any x ∈ A(n,m, α). Therefore each U(α, β) ∈ Uα

intersects only one member of Kn,m,α. Notice additionally the basic fact that if the indices
αk satisfy α1 < α2 < . . . < αn then we necessarily have αx(1) = α1, . . . , αx(n) = αn for
any point x ∈ An ∩⋂1≤k≤n(

⋃Uαk
). Now let us first prove that Kn,m is a closed-discrete

family in the subspace X − (Hn−1(U∗) ∪⋃1≤k<m(
⋃Kn,k)). Suppose first 1 < m and let

us take any point x from this complementary set. Then we have n ≤ ord(x,U∗) = n′,
x ∈ ⋃Kn′,m′ and x ∈ An′,m′,β where m ≤ m′ ≤ n′. Now if n < n′ then we evidently
have x ∈ Un+1(U∗) and Un+1(U∗) ∩ ⋃Kn,m = ∅. Let us suppose now that n = n′. So
x ∈ ⋃Kn,m′ and x ∈ An,m′,γx and m ≤ m′ ≤ n. Thus we have 2 ≤ ord(x,Uαx(i))
for each 1 ≤ i < m′ and ord(x,Uαx(m′)) = 1. Thus by determining the finite subsets
Λx(i) ⊆ Λαx(i) with 2 ≤ card(Λx(i)) for each 1 ≤ i < m′ and the unique βx ∈ Λαx(m′) with
x ∈ U(αx(m′), βx) −⋃β �=βx

U(αx(m′), β) one can define the special open set

Wx =

⎛
⎝ ⋂

i<m′

⋂
β∈Λx(i)

U(αx(i), β)

⎞
⎠ ∩ U(αx(m′), βx) ∩

(
n⋂

i′=m′+1

(⋃
Uαx(i′)

))
.

Then Wx contains x and furthermore

Wx ∩
⎛
⎝Hn−1(U∗) ∪

⋃
i<m′

(⋃
Kn,i

)
∪
⋃

β �=γx

A(n,m′, β)

⎞
⎠ = ∅.

In fact notice that if there exists a point y ∈ An,m′′,α ∩ Wx where m′′ < m′, then we
have in particularly αy(m′′) = αx(m′′), y ∈ ⋂β∈Λx(m′) U(αx(m′′), β) and thus we would
have 2 ≤ cardΛx(m′′) ≤ ord(y,UNx(m′′)) = ord(y,UNy(m′′)) = 1. Additionally if a point
y ∈ An,m′,β∩Wx does exist then we easily have y ∈ An∩Wx and β = αy(m′) = αx(m′) = γx

which yields Wx ∩⋃β �=γx
An,m′,β = ∅. Therefore it is understood that the condition 4) in

above is satisfied whenever 1 < m ≤ n. Now let us examine the case m = 1. The
complementary set written at the right side of 4) would simply be X − Hn−1(U∗) in this
case and for any point x of this set we either have i) n < ord(x,U∗), i.e. x ∈ Un+1(U∗) or
ii) x ∈ An,1,αx(1) or iii) x ∈ An,m′,γ where 1 < m′ ≤ n and k ∈ N. In each of these cases
an open nbhd Wx of x missing all but (possibly) one member of Kn,1 can easily be defined.
We have for instance Un+1(U∗) ∩ ⋃1≤m≤n (

⋃Kn,m) = ∅ for the case i) and the case iii)
has already been proved a little while ago; if finally x ∈ An,1,αx(1) then the unique member
of Uαx(1) containing x can be taken as Wx. All these intermediate results easily verify the
conditions 3), 4) and 5). Observing the conditions 1) and 2) is just straightforward. We
also have X =

⋃∞
n=1 An =

⋃
1≤m≤n

⋃∞
n=1(

⋃Kn,m). By using lexicographic ordering now,
one can define the families K∗

1 = K1,1,K∗
2 = K2,1,K∗

3 = K2,2,K∗
4 = K3,1, . . . and in general

K∗
k = Knk,mk

where (nk, mk) is the kth couple (n, m) with respect to this ordering in which
n ∈ N and 1 ≤ m ≤ n. It is easy to see that now K∗ =

⋃∞
k=1 K∗

k is the required refinement
of U satisfying all the B(D, ω0)-refinability conditions.

Step 2: Suppose now there exists a positive integer n0 such that the boundedness
conditions written before this proposition holds for the weak κθ-cover G =

⋃
α<κ Gα. Then

the family G∗ =
⋃

n≤n0

⋃
α<κ Gα,n would be a bounded weak κθ-cover refinement of G
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whereas

Gα,n = {
⋂
β∈Λ

Gα,β : Λ ∈ [Iα]n} (α, n) ∈ κ × Nn0 ,

since if min ordG(x) = nx ≤ n0 and nx = ord(x,Gαx ) then we have ord(x,Gαx,nx) = 1 =
min ordG∗(x) for each x ∈ X and therefore the procedure of the previous step works. Thus
the proof is over now.

Corollary 1 (R.H.Price&J.C.Smith [7]) A bounded weak θ-cover of any space has a
B(D, ω0)-refinement.

Corollary 2 A space X is B(D, ω0)-refinable iff there exists an infinite cardinal number
κ = κ(G) for every open cover G of X such that G has a bounded weak κθ-cover refinement.

Proof: Sufficiency follows from the above proposition. Let X be any B(D, ω0)-refinable
space now and let an open cover G of X be given. It is actually known that G has a bounded
weak θ-cover refinement and we are going to give this proof for the sake of self containment,
see [7]. Let K =

⋃∞
n=1 Kn be a B(D, ω0)-refinement of G. Therefore

⋃
1≤k<n(

⋃Kk) is closed
in X for each n ∈ N and Kn is a closed-discrete family in the open subspace On = X −⋃

1≤k<n(
⋃Kk) for each n ∈ N. Thus we have

⋃Kn ⊆ On (n ∈ N). Now let Kn = {Kn,α :
α ∈ Λn} for each n ∈ N and determine a unique member G(Kn,α) from G for each couple
(n, α) ∈ N×Λn such that Kn,α ⊆ G(Kn,α) holds. Then, there exists a uniquely determined
couple (nx, αx) for any x ∈ X such that x ∈ ⋃Knx − ⋃1≤k<nx

(
⋃Kk) = Knx ∩ Onx and

x ∈ Knx,αx −⋃{Knx,α : α ∈ Λnx , α �= αx}. Let us briefly write Λ′
nx

for Λnx − {αx}. Since
Knx is a discrete family of closed sets in Onx we have clOnx

(
⋃

α∈Λ′
nx

Knx,α) =
⋃

α∈Λ′
nx

Knx,α

and thus

x ∈ (Knx,αx ∩ Onx) − clOnx

⎛
⎝ ⋃

α∈Λ′
nx

Knx,α

⎞
⎠ = Knx,αx −

⋃
α∈Λ′

nx

Knx,α.

Thus we have x ∈ G∗
nx,αx

where the open G∗
n,α sets are defined as

G∗
n,α = G(Kn,α) −

⎡
⎣ ⋃

1≤k<n

(⋃
Kk

)
∪

⋃
β∈Λn−{α}

Kn,β

⎤
⎦ , (n, α) ∈ N × Λn

and thus an open refinement G∗ of G could be defined as G∗ =
⋃∞

n=1 G∗
n, whereas G∗

n =
{G∗

n,α : α ∈ Λn} (n ∈ N). Notice that x �∈ G∗
nx,α for each α ∈ Λ′

nx
, i.e. ord(x,G∗

nx
) =

1 = min ordG∗(x) for each x ∈ X . Besides we evidently have x ∈ ⋃1≤k<n(
⋃Kk) for each

n > nx and therefore ord(x,
⋃

nx<n G∗
n) = 0. Thus G∗ is a bounded weak θ-cover of G.

Proposition 2 Let ω0 ≤ λ < ω1. Then every B(LF, λ)-refinable space is weak θ-refinable.

Proof: Let X be a B(LF, λ)-refinable space and let U be any open cover of X . Suppose
that the refinement K =

⋃
α<λ Kα of U satisfy the conditions i) (with locally finite property)

and ii) of the Definition. Write Kα = {Kα,β : β ∈ Λα} for each α < λ and define

Gα,n(Λ) = Uα(Λ) − (
⋃
β /∈Λ

Kα,β ∪
⋃

γ<α

(
⋃

Kγ))
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for each Λ ∈ [Λα]n. Note that first, this set is open in X since Xα = X − ⋃β<α(
⋃Kβ)

is open in X by the condition ii),
⋃

β /∈Λ Kα,β is closed in Xα and therefore Gα,n(Λ) =
(Uα(Λ)∩Xα)−⋃β /∈Λ Kα,β is open in Xα. We have supposed in above that a well determined
unique member Uα,β ∈ U have already been chosen for each α < λ and β ∈ Λα such that
Kα,β ⊆ Uα,β; we write above then

Uα(Λ) =
⋂

{Uα,β : β ∈ Λ} (Λ ∈ [Λα]n).

Define now the open families Gα,n = {Gα,n(Λ) : Λ ∈ [Λα]n} for each (α, n) ∈ [0, λ) × N.
Since [0, λ) is well ordered, X =

⋃
α<λ(

⋃Kα) and Kα is a locally finite family in Xα, it
is not difficult to observe that there exists an αx < λ and an nx ∈ N for each x ∈ X
such that ord(x,Gαx,nx) = 1. But since [0, λ) × N is countable, we can write the open
family

⋃∞
n=1

⋃
α<λ Gα,n as

⋃∞
k=1 Gαk,nk

and this family evidently constitutes a weak θ-cover
refinement of U . Thus proposition follows easily.

As is well known a topological space X is called perfect iff each open set in X is an
Fσ-set. We work now in the class of perfect spaces.

Proposition 3 Let G be any non empty open family in any perfect space X. Then the set
A(G) = {x ∈ X : 0 < ord(x,G) < ω0} is covered by a σ-discrete closed refinement of G in
X.

Proof: Let an open family G = {Gα : α ∈ Λ} in a perfect space X be given. We are
going to prove that A(G) can be covered by a σ-discrete family of closed sets in X . Notice
that A(G) =

⋃∞
n=1(U1(G)∩Hn(G)). We may naturally suppose that the index set Λ is well

ordered by <. Let Hn(G) =
⋂∞

k=1 Un,k for each n ∈ N and Gα =
⋃∞

i=1 Kα,i for each α ∈ Λ,
where each Un,k set is open and each Kα,i is closed in X . Define now

Fn,m,i(α) = (Kα,i ∩ Hn(G)) −
(⋃

β<αGβ ∪ Un−1,m

)
,

Kn,m,i = {Fn,m,i(α) : α ∈ Λ},

K =
∞⋃

n=1

∞⋃
m=1

∞⋃
i=1

Kn,m,i.

All U0,m sets are taken as the empty set. Note that Fn,m,i(α) ⊆ Kα,i ⊆ Gα ⊆ U1(G) and
K ≺ G. Let (n, m, i) ∈ N

3 be fixed. Notice that if x /∈ Hn(G)−Un−1,m then x has evidently
an open nbhd missing all members of Kn,m,i since Fn,m,i(α) ⊆ Hn(G) − Un−1,m. If on the
other hand x ∈ Hn(G)−Un−1,m then we have first ord(x,G) = n and thus there exists a set
Λx ∈ [Λ]n such that x ∈ Wx =

⋂
α∈Λx

Gα and so Wx∩Fn,m,i(α) ⊆ ⋂γ∈Λx
Gγ∩Gα∩Hn(G) =

∅ for any α < γx = minΛx and Wx ∩Fn,m,i(α) ⊆ Gγx −
⋃

β<α Gβ = ∅ for any γx < α. Thus
each family Kn,m,i is a closed-discrete family in X . Besides for any point x ∈ A(G), the
positive integers nx = ord(x,G) and mx in which x /∈ Unx−1,mx as well as the index αx ∈ Λ
in which x ∈ Gαx −

⋃
α<αx

Gα and the positive integer ix in which x ∈ Fnx,mx,ix(αx) holds,
are all well defined. Thus we have A(G) =

⋃∞
n=1

⋃∞
m=1

⋃∞
i=1(

⋃Kn,m,i).

Corollary 3 (H.R.Bennett and D.J.Lutzer, [2]) A weakly θ-refinable perfect space is
subparacompact.

Proof: This statement follows easily after the preceding result since if G =
⋃∞

n=1 Gn is a
weak θ-cover of X then X =

⋃∞
n=1 A(Gn) holds.

Corollary 4 (R.Hodel, [11]) Every perfect metacompact space is subparacompact.
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Remark: The following Corollary 5 has been given in [9], see Theorem 2.2 of [9]. But the
proof of it, given in that paper is unfortunately not correct. The family Fk defined in that
proof should be indexed with (i, j) and therefore should be written as Fk(i, j). This family is
closed and discrete in the open subspace X−P (i, j) but since

⋃∞
k=1

⋃∞
j=1

⋃∞
i=1(

⋃Fk(i, j)) ⊆
P (i, j+1) holds, one should also define all the families Fk(i, j+1) similarly for X−P (i, j+1);
that makes totaly ω3

0 families! We given here in this context a correct and healthy proof of
this interesting result.

Proposition 4 A weak θ-cover of any topological space has a B(D, ω2
0)-refinement.

Proof: Let G =
⋃∞

n=1 Gn be a weak θ-cover of X and let Gn = {G(n, α) : α ∈ Λn} for each
n ∈ N. We suppose in here that each Gn family is faithfully indexed, i.e. G(n, α) �= G(n, β)
whenever α �= β and α, β ∈ Λn. Notice that the open cover G∗ = {⋃Gn}∞n=1 is point-
finite in X . Thus we have X =

⋃∞
n=1 An where An = {x ∈ X : ord(x,G∗) = n} for

each n ∈ N. Then An ∩ Am = ∅ holds whenever n �= m and there exists a unique set
{Nx(k) : k ∈ Nn} ∈ [N]n for each x ∈ An such that Nx(1) < Nx(2) < · · · < Nx(n) and
1 ≤ ord(x,GNx(k)) for each k ∈ Nn and furthermore at least one of these orders is certainly
finite, i.e. ∃kx ∈ Nn, ord(x,GNx(kx)) < ω0 and some of them may possibly be ≥ ω0. Let us
define now the following sets for each four-tuples (n, m, N, k) ∈ N × Nn × N × N:

An,m,N,k = {x ∈ An : Con 1 , Con 2, Con 3 holds for x}

whereas our basic conditions for any x ∈ An are respectively

Con 1: ord(x,GNx(m)) = min ordG(x) = N ,

Con 2: ord(x,GNx(m)) < min1≤i<m ord(x,GNx(i)) if 1 < m,

Con 3: Nx(m) = k.

We will write from now on N = min ord(x) for each x ∈ An,m,N,k. Notice furthermore
that ord(x,Gk) = N holds for each x ∈ An,m,N,k and besides if the positive integers N1 <
N2 < · · · < Nn are given, then we necessarily have Nx(k) = Nk for each k ∈ Nn and for
any point x ∈ An ∩⋂1≤k≤n(

⋃GNk
).

Now let

Kn,m,N,k = {An,m,N,k ∩
⋂

α∈Λ

G(n, α) : Λ ∈ [Λn]N},

Kn,m,N =
∞⋃

k=1

Kn,m,N,k.

It is not difficult to see that, all the orders ord(x,GNx(k)) (k ∈ Nn) and the finite subsets
N(x) = {Nx(k) : k ∈ Nn} are uniquely determined for each x ∈ An and thus An1,m1,N1,k1 ∩
An2,m2,N2,k2 = ∅ iff (n1, m1, N1, k1) �= (n2, m2, N2, k2) and therefore⋃

Kn1,m1,N1,k1 ∩
⋃

Kn2,m2,N2,k2 = ∅ =
⋃

Kn1,m1,N1 ∩
⋃

Kn2,m2,N2

whenever the subindexes are different. Let us define finally an ordering among Kn,m,N

families as in the following: We will write Kn,m1,N1 < Kn,m2,N2 for any n ∈ N iff we either
have N1 < N2 or N1 = N2 and m1 < m2. Besides we define for all positive integers
m(≤ n1),m′(≤ n2), N, N ′: Kn1,m,N < Kn2,m′,N ′ whenever n1 < n2. Thus we have Kn,1,1 <
Kn,2,1 < · · · < Kn,n,1 < Kn,1,2 < Kn,2,2 < · · · and Kn,m,N < Kn+1,m′,N ′ for all n ∈ N
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and for all positive integers m ≤ n, m′ ≤ n + 1 and N, N ′. By using the refinement
notation ≺ we have now the following:

⋃∞
n=1

⋃∞
m=1

⋃∞
N=1 Kn,m,N ≺ G. Besides we have

An =
⋃∞

m=1

⋃∞
N=1(

⋃Kn,m,N ) (n ∈ N) and X =
⋃∞

n=1

⋃∞
m=1

⋃∞
N=1(

⋃Kn,m,N ). We
furthermore have

Hn(G∗) =
n⋃

k=1

Ak =
n⋃

k=1

∞⋃
m=1

∞⋃
N=1

(
⋃

Kk,m,N ) (n ∈ N),(1)

(An,m,N,k ∩
⋂

α∈Λ1

G(k, α)) ∩
⋂

α∈Λ2

G(k, α) if Λ1, Λ2 ∈ [Λα]N , Λ1 �= Λ2,(2)

⋃
Kn,m,N,k0 ∩

⋃
k �=k0

(
⋃

Kn,m,N,k) = ∅ (k0 ∈ N).(3)

Only the last assertion requires a proof. Let k0 ∈ N and the point x ∈ ⋃Kn,m,N,k0 be
given. Then x belongs to open Ox =

⋂
1≤i≤n(

⋃GNx(i)) and Ox ∩ ⋃k �=k0
(
⋃Kn,m,N,k) ⊆

Ox ∩ ⋃k �=k0
An,m,N,k = ∅ since, if there is a point y ∈ Ox ∩ An,m,N,k then we necessarily

have y ∈ Ox ∩ An and so α0 = αx(m) = αy(m) = α as we have observed in above. Besides
the following union ⋃

Kn,m,N≤Kn0,m0,N0

(
⋃

Kn,m,N )

is closed in X for any fixed triple (n0, m0, N0). After (1) in above this union is nothing but⋃
1≤n<n0

An ∪
⋃

Kn0,1,1 ∪
⋃

Kn0,2,1 ∪ · · · ∪
⋃

Kn0,m0,N0

and if we briefly write E0 for this union, we either have ord(x,G∗) < n0 or ord(x,G∗) = n0

and min ord(x) ≤ N0 for each x ∈ E0. Take now any point x0 ∈ X −E0. If n0 < ord(x,G∗)
then x0 ∈ Un0+1(G∗) and we evidently have Un0+1(G∗) ∩ E0 = ∅. If n0 = ord(x0,G∗)
and N0 < min ord(x), then, by determining the finite set {Nx(k) : k ∈ Nn0} ∈ [N]n0 where
1 ≤ ord(x0,GNx0(k)) for each k ∈ Nn0 and the subsets Λk(x0) ∈ [ΛNx0(k) ]

N0+1 such that x0 ∈⋂
α∈Λk(x0)

G(Nx0(k), α), we define the open set Ux0 =
⋂

1≤k≤n0
(
⋂

α∈Λk(x0)
G(Nx0(k), α))

which apparently satisfy x0 ∈ Ux0 and Ux0 ∩ E0 = ∅ since we would have n0 = ord(x,G∗)
and N0 + 1 ≤ min ord(x) ≤ N0 for any x ∈ Ux0 ∩ E0. Finally if n0 = ord(x,G∗) and
N0 = min ord(x), then, there exists a positive integer m > m0 such that x0 ∈ ⋃Kn0,m,N0

and therefore there exists an k0 ∈ N with x0 ∈ An0,m,N0,k0 and Nx0(i) ≤ Nx(m0) <
Nx(m), N0 = ord(x0,GNx0 (m)) < ord(x0,GNx0(i)) for each 1 ≤ i < m. Now by taking
Λi(x0) ∈ [ΛNx0(i)]N0+1 for each 1 ≤ i < m and Λj(x0) ∈ [ΛNj(x0)]

N0 for each m ≤ j ≤ n0,
one can define the open set

Vx0 =
⋂

1≤i<m

⎛
⎝ ⋂

β∈Λi(x0)

G(Nx0(i), β)

⎞
⎠ ∩

⋂
m≤j≤n0

⎛
⎝ ⋂

µ∈Λj(x0)

G(Nx0(j), µ)

⎞
⎠

which evidently satisfy x0 ∈ Vx0 and Vx0 ∩E0 = ∅, since if a point x ∈ Vx0 ∩E0 does exist,
then we first have n0 = ord(x,G∗) and N0 + 1 ≤ ord(x,GNx(i)) and Nx(i) = Nx0(i) for each
1 ≤ i ≤ m and since x ∈ ⋃Kn0,mx,Mx we would finally have N0 + 1 ≤ ord(x,GNx(mx))) =
Mx ≤ N0 by the aid of positive integers mx and Mx whereas mx ≤ m0 < m and Mx ≤ N0.
By repeating the same arguments, one can easily prove after (2) and (3) that, each Km0,n0,N0

is a closed and discrete family in the open subspace X−⋃Kn,m,N<Kn0,m0,N0
(
⋃Kn,m,N ). So it

is clearly understood now that, the family K =
⋃∞

n=1

⋃n
m=1

⋃∞
N=1 Kn,m,N with this ordering

is the required refinement of G satisfying all the B(D, ω2
0)-refinability conditions.
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Corollary 5 (J.C.Smith [9]) Every weakly θ-refinable space is B(D, ω2
0)-refinable.
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