INTUITIONISTIC FUZZY IDEALS OF NEAR-RINGS

Zhan Jianming \& Ma Xueling

Received August 24, 2004

Abstract

In this paper, we introduce the concept of intuitionistic fuzzy ideals of near-rings, and obtain some related properties.

1. Introduction and Preliminaries W.Liu ([1]) has studied fuzzy ideals of a ring, and many researchers are engaged in extending the concepts. S.Abou-Zaid([2]) introduced the notion of a fuzzy subnear-ring and studied fuzzy left(resp.right) ideals of a near-ring, and many followers ($[3,4,5,6]$) discussed further properties of fuzzy ideals in near-rings. The idea of " intuitionistic fuzzy set" was first published by Atanassov ($[7,8]$), as a generalization of the notion of fuzzy sets. In this paper, we introduce the concept of intuitionistic fuzzy ideals of near-rings and investigate some related properties.

By a near-ring we mean a non-empty set R with two binary operations "+" and "." satisfying the following axioms:
(i) $(R,+)$ is a group
(ii) (R, \cdot) is a semigroup
(iii) $x \cdot(y+z)=x \cdot y+x \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word " near-ring" instead of " left near-ring". We denote $x y$ instead of $x \cdot y$. An ideal of a near-ring R is a subset I of R such that
(i) $(I,+)$ is a normal subgroup of $(R,+)$
(ii) $R I \subseteq I$
(iii) $(x+i) y-x y \in I$ for all $i \in I$ and $x, y \in R$.

By a fuzzy set μ in a non-empty set X, we mean a function $\mu: X \rightarrow[0,1]$, and the complement of μ, denoted by $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x)=1-\mu(x)$ for all $x \in X$. For any $t \in[0,1]$, and a fuzzy set μ in a non-empty set X, the set $U(\mu ; t)=\{x \in X \mid \mu(x) \geq t\}$ is called an upper t-level cut of μ, and the set $L(\mu ; t)=\{x \in X \mid \mu(x) \leq t\}$ is called a lower t-level cut of μ.

An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having the form IFSA $=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}$, where the functions $\alpha_{A}: X \rightarrow[0,1]$ and $\beta_{A}:$ $X \rightarrow[0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and $0 \leq \alpha_{A}(x)+\beta_{A}(x) \leq 1, x \in X$.

An intuitionistic fuzzy set $\operatorname{IFSA}=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}$ in X can be identified to an order pair $\left(\alpha_{A}, \beta_{A}\right)$ in $I^{X} \times I^{X}$. For the sake of simplicity, we shall use the symbol $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ for the IFSA $=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}$.

Definition 1.1. ([5]) A fuzzy set μ in a near-ring R is called a fuzzy ideal of R if it satisfies:
(F1) $\mu(x-y) \geq \min \{\mu(x), \mu(y)\}$
(F2) $\mu(y+x-y) \geq \mu(x)$
(F3) $\mu(x y) \geq \mu(y)$

[^0](F4) $\mu((x+z) y-x y) \geq \mu(z)$
for all $x, y, z \in R$.

Definition 1.2. ([6]) A fuzzy set μ in a near-ring R is an anti fuzzy ideal of R if it satisfies:
(AF1) $\mu(x-y) \leq \max \{\mu(x), \mu(y)\}$
(AF2) $\mu(y+x-y) \leq \mu(x)$
(AF3) $\mu(x y) \leq \mu(y)$
(AF4) $\mu((x+z) y-x y) \leq \mu(z)$
for all $x, y, z \in R$.

2. Main Results

Definition 2.1. An $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in a near-ring R is called an intuitionistic fuzzy ideal of R if it satisfies:
(IF1) $\alpha_{A}(x-y) \geq \min \left\{\alpha_{A}(x), \alpha_{A}(y)\right\}$
(IF2) $\alpha_{A}(y+x-y) \geq \alpha_{A}(x)$
(IF3) $\alpha_{A}(x y) \geq \alpha_{A}(y)$
(IF4) $\alpha_{A}((x+z) y-x y) \geq \alpha_{A}(z)$
(IF5) $\beta_{A}(x-y) \leq \max \left\{\beta_{A}(x), \beta_{A}(y)\right\}$
(IF6) $\beta_{A}(y+x-y) \leq \beta_{A}(x)$
(IF7) $\beta_{A}(x y) \leq \beta_{A}(y)$
(IF8) $\beta_{A}((x+z) y-x y) \leq \beta_{A}(z)$
for all $x, y, z \in R$.

Example 2.2. Let $R=\{a, b, c, d\}$ be a set with two binary operation as follows:

+	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	b	a
d	d	c	a	b

\cdot	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	a	a
d	a	a	b	b

Then $(R,+, \cdot)$ is a near-ring. Let $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in R defined by $\alpha_{A}(a)=0.8, \alpha_{A}(b)=$ $0.6, \alpha_{A}(c)=\alpha_{A}(d)=0.3$ and $\beta_{A}(a)=0.2, \beta_{A}(b)=0.3, \beta_{A}(c)=\beta_{A}(d)=0.7$. It's easy to show that IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of R.

Proposition 2.3. Every intuitionistic fuzzy ideal $\operatorname{IFS} A=\left(\alpha_{A}, \beta_{A}\right)$ of a near-ring R, then $\alpha_{A}(0) \geq \alpha_{A}(x)$ and $\beta_{A}(0) \leq \beta_{A}(x)$ for all $x \in R$.

Proof. Straightforward.

Lemma 2.4. An $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of a near-right R if and only if α_{A} and $\bar{\beta}_{A}$ are fuzzy ideals of R.

Proof. Let $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy ideal of R. Clearly α_{A} is a fuzzy ideal. For every $x, y, z \in R$, we have (IF5) $\bar{\beta}_{A}(x-y)=1-\beta_{A}(x-y) \geq 1-$ $\max \left\{\beta_{A}(x), \beta_{A}(y)\right\}=\min \left\{1-\beta_{A}(x), 1-\beta_{A}(y)\right\}=\min \left\{\bar{\beta}_{A}(x), \bar{\beta}_{A}(y)\right\},(\operatorname{IF} 6) \bar{\beta}_{A}(y+x-$ $y)=1-\beta_{A}(y+x-y) \geq 1-\beta_{A}(x)=\bar{\beta}_{A}(x)$, (IF7) $\bar{\beta}_{A}(x y)=1-\beta_{A}(x y) \geq 1-\beta_{A}(y)=\bar{\beta}_{A}(y)$, (IF8) $\bar{\beta}_{A}((x+z) y-x y)=1-\beta_{A}((x+z) y-x y) \geq 1-\beta_{A}(z)=\bar{\beta}_{A}(z)$. Hence $\bar{\beta}_{A}$ is a fuzzy ideal of R.

Conversely, assume that α_{A} and $\bar{\beta}_{A}$ are fuzzy ideals of R. For every $x, y, z \in R$, we get $($ IF5 $) \bar{\beta}_{A}(x-y) \geq \min \left\{\bar{\beta}_{A}(x), \bar{\beta}_{A}(y)\right\}$, and that, $1-\beta_{A}(x-y) \geq \min \left\{1-\beta_{A}(x), 1-\beta_{A}(y)\right\}=$ $\underline{1}-\max \left\{\beta_{A}(x), \beta_{A}(y)\right\}$, that is, $\beta_{A}(x-y) \leq \max \left\{\beta_{A}(x), \beta_{A}(y)\right\},(\operatorname{IF} 6) \bar{\beta}_{A}(y+x-y) \geq$ $\bar{\beta}_{A}(x)$, and that, $1-\beta_{A}(y+x-y) \geq 1-\beta_{A}(x)$, that is $\beta_{A}(y+x-y) \leq \beta_{A}(x),(\operatorname{IF} 7) \bar{\beta}_{A}(x y) \geq$ $\bar{\beta}_{A}(y)$, and that, $1-\beta_{A}(x y) \geq 1-\beta_{A}(y)$, that is, $\beta_{A}(x y) \leq \beta_{A}(y)$, (IF8) $\bar{\beta}_{A}((x+z) y-x y) \geq$ $\bar{\beta}_{A}(z)$, and that, $1-\beta_{A}((x+z) y-x y) \geq 1-\beta_{A}(z)$, that is, $\beta_{A}((x+z) y-x y) \leq \beta_{A}(z)$. Hence $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of R.

Theorem 2.5. Let $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in R. Then $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of a near-ring R if and only if $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic fuzzy ideals of R.

Proof. If $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of R, then $\alpha_{A}=\overline{\bar{\alpha}}_{A}$ and $\bar{\beta}_{A}$ are fuzzy ideals of R from Lemma 2.4 , hence $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic fuzzy ideals of R. Conversely, if $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic fuzzy ideals of R, then the fuzzy sets α_{A} and $\bar{\beta}_{A}$ are fuzzy ideals of R. Hence $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of R.

Theorem 2.6. An $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of a near-ring R if and only if for all $s, t \in[0,1]$, the non-empty sets $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are ideals of R.

Proof. Let $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy ideal of R. First, for any $s, t \in[0,1]$, let $x, y \in U\left(\alpha_{A} ; t\right)$, then $\alpha_{A}(x) \geq t$ and $\alpha_{A}(y) \geq t$. Hence $\alpha_{A}(x-y) \geq$ $\min \left\{\alpha_{A}(x), \alpha_{A}(y)\right\} \geq t$ and so $x-y \in U\left(\alpha_{A} ; t\right)$. Second, for any $x \in U\left(\alpha_{A} ; t\right)$ and $y \in R$, we get $\alpha_{A}(y+x-y) \geq \alpha_{A}(x) \geq t$, and that $y+x-y \in U\left(\alpha_{A} ; t\right)$. Third, for any $r \in R$ and $x \in U\left(\alpha_{A} ; t\right)$, we have $\alpha_{A}(x r) \geq \alpha_{A}(x) \geq t$ and so $x r \in U\left(\alpha_{A} ; t\right)$. At last, for any $i \in U\left(\alpha_{A} ; t\right)$ and $x, y \in R$, then $\alpha_{A}((x+i) y-x y) \geq \alpha_{A}(i) \geq t$, and that $(x+i) y-x y \in U\left(\alpha_{A} ; t\right)$. Therefore $U\left(\alpha_{A} ; t\right)$ is an ideal of R. Now, let $x, y \in L\left(\beta_{A} ; s\right)$, then $\beta_{A}(x) \leq s$ and $\beta_{A}(y) \leq s$. Hence $\beta_{A}(x-y) \leq \max \left\{\beta_{A}(x), \beta_{A}(y)\right\} \leq s$, and so $x-y \in L\left(\beta_{A} ; s\right)$. Secondly, for any $x \in L\left(\beta_{A} ; s\right)$ and $y \in R$, we get $\beta_{A}(y+x-y) \leq \beta_{A}(x) \leq s$, and that $y+x-y \in L\left(\beta_{A} ; s\right)$. Moreover, for any $r \in R$ and $x \in L\left(\beta_{A} ; s\right)$, we have $\beta_{A}(x r) \leq \beta_{A}(x) \leq s$, and so $x r \in L\left(\beta_{A} ; s\right)$. At last, for any $i \in L\left(\beta_{A} ; s\right)$ and $x, y \in R$, we have $\beta_{A}((x+i) y-x y) \leq \beta_{A}(i) \leq s$, and that $(x+i) y-x y \in L\left(\beta_{A} ; s\right)$, and therefore $L\left(\beta_{A} ; s\right)$ is an ideal of R.

Conversely, assume that for each $s, t \in[0,1]$, the non-empty $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are ideals of R. If there exist $x_{0}, y_{0} \in R$ such that $\alpha_{A}\left(x_{0}-y_{0}\right)<\min \left\{\alpha_{A}\left(x_{0}\right), \alpha_{A}\left(y_{0}\right)\right\}$, putting $t_{0}=\left(\left(\alpha_{A}\left(x_{0}-y_{0}\right)+\min \left\{\alpha_{A}\left(x_{0}\right), \alpha_{A}\left(y_{0}\right)\right\}\right) / 2\right.$, then $0 \leq \alpha_{A}\left(x_{0}-y_{0}\right)<t_{0}<$ $\min \left\{\alpha_{A}\left(x_{0}\right), \alpha_{A}\left(y_{0}\right)\right\} \leq 1$. It follows that $x_{0} \in U\left(\alpha_{A} ; t_{0}\right)$ and $y_{0} \in U\left(\alpha_{A} ; t_{0}\right)$, but $x_{0}-$ $y_{0} \notin U\left(\alpha_{A} ; t_{0}\right)$, that is, $U\left(\alpha_{A} ; t_{0}\right)$ is not an ideal of R. This is a contradiction. Secondly, suppose that there exist $x_{0}, y_{0} \in R$ such that $\alpha_{A}\left(y_{0}+x_{0}-y_{0}\right)<\alpha_{A}\left(x_{0}\right)$, setting $t_{0}=$ $\left(\alpha_{A}\left(y_{0}+x_{0}-y_{0}\right)+\alpha_{A}\left(x_{0}\right)\right) / 2$, we have $0 \leq \alpha_{A}\left(y_{0}+x_{0}-y_{0}\right)<t_{0}<\alpha_{A}\left(x_{0}\right) \leq 1$. It follows that $x_{0} \in U\left(\alpha_{A} ; t_{0}\right)$, but $y_{0}+x_{0}-y_{0} \notin U\left(\alpha_{A} ; t_{0}\right)$. This is a contradiction. Thirdly, if there exist $y_{0} \in R$ and $x_{0} \in U\left(\alpha_{A} ; t_{0}\right)$ such that $\alpha_{A}\left(x_{0} y_{0}\right)<\alpha_{A}\left(x_{0}\right)$. Taking $t_{0}=\left(\alpha_{A}\left(x_{0} y_{0}\right)+\alpha_{A}\left(x_{0}\right)\right) / 2$, we have $0 \leq \alpha_{A}\left(x_{0}\right)<t_{0}<\alpha_{A}\left(x_{0} y_{0}\right) \leq 1$. It follows that $x_{0} y_{0} \notin U\left(\alpha_{A} ; t_{0}\right)$, but $x_{0} \in U\left(\alpha_{A} ; t_{0}\right)$. This is a contradiction. At last, suppose
that there exist $x_{0}, y_{0}, z_{0} \in R$ such that $\alpha_{A}\left(\left(x_{0}+z_{0}\right) y_{0}-x_{0} y_{0}\right)<\alpha_{A}\left(z_{0}\right)$. Putting $t_{0}=$ $\left(\alpha_{A}\left(\left(x_{0}+z_{0}\right) y_{0}-x_{0} y_{0}\right)+\alpha_{A}\left(z_{0}\right)\right) / 2$, we get $0 \leq \alpha_{A}\left(\left(x_{0}+z_{0}\right) y_{0}-x_{0} y_{0}\right)<t_{0}<\alpha_{A}\left(z_{0}\right) \leq 1$. It follows that $z_{0} \in U\left(\alpha_{A} ; t_{0}\right)$, but $\left(x_{0}+z_{0}\right) y_{0}-x_{0} y_{0} \notin U\left(\alpha_{A} ; t_{0}\right)$. This is a contradiction. Hence, α_{A} satisfies (IF1)-(IF4). Similarly, we can prove that β_{A} satisfies (IF5)-(IF8).This completes the proof.

Let Λ be a non-empty subset of $[0,1]$.
Theorem 2.7. Let $\left\{I_{t} \mid t \in \Lambda\right\}$ be a collection of ideals of a near-ring R such that (i) $R=\bigcup_{t \in \Lambda} I_{t}$; (ii) $s>t$ if and only if $I_{s} \subset I_{t}$ for all $s, t \in \Lambda$.

Then an IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ in X defined by $\alpha_{A}(x)=\sup \left\{t \in \Lambda \mid x \in I_{t}\right\}, \beta_{A}(x)=\inf \{t \in$ $\left.\Lambda \mid x \in I_{t}\right\}$ for all $x \in X$ is an intuitionistic fuzzy ideal of R.

Proof. According to Theorem 2.6, it is sufficient to show that $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are ideals of R for every $t \in\left[0, \alpha_{A}(0)\right]$ and $s \in\left[\beta_{A}(0), 1\right]$. In order to prove that $U\left(\alpha_{A} ; t\right)$ is an ideal of R, we divide the proof into the following two cases:
(i) $t=\sup \{q \in \Lambda \mid q<t\}$
(ii) $t \neq \sup \{q \in \Lambda \mid q<t\}$

The case (i) implies that $x \in U\left(\alpha_{A} ; t\right) \Leftrightarrow x \in I_{q}, \forall q<t \Leftrightarrow x \in \bigcap_{q<t} I_{q}$ so that $U\left(\alpha_{A} ; t\right)=\bigcap_{q<t} I_{q}$, which is an ideal of R. For the case (ii), we claim that $U\left(\alpha_{A} ; t\right)=$ $\bigcup_{q \geq t} I_{q}$, If $x \in \bigcup_{q \geq t} I_{q}$, then $x \in I_{q}$ for some $q \geq t$. It follows that $\alpha_{A}(x) \geq q \geq t$, so that $x \in U\left(\alpha_{A} ; t\right)$. This shows that $\bigcup_{q \geq t} I_{q} \subseteq U\left(\alpha_{A} ; t\right)$. Now assume $x \notin \bigcup_{q \geq t} I_{q}$. Then $x \notin I_{q}$ for all $q \geq t$. Since $t \neq \sup \{q \in \Lambda\rceil q<t\}$, there exists $\varepsilon>0$ such that $(t-\epsilon, t) \bigcap \Lambda=\phi$. Hence $x \notin I_{q}$ for all $q>t-\varepsilon$, which means that $x \in I_{q}$, then $q \leq t-\varepsilon<t$. Thus $\alpha_{A}(x) \leq t-\varepsilon$, and so $x \notin U\left(\alpha_{A} ; t\right)$. Therefore $U\left(\alpha_{A} ; t\right) \subseteq \bigcup_{q \geq t} I_{q}$, and that $U\left(\alpha_{A} ; t\right)=\bigcup_{q \geq t} I_{q}$, which is an ideal of R. Next, we prove that $L\left(\beta_{A} ; s\right)$ is an ideal of R. We consider the following two cases:
(iii) $s=\inf \{r \in \Lambda \mid s<r\}$
(iv) $s \neq \inf \{r \in \Lambda \mid s<r\}$

For the case (iii), we have

$$
x \in L\left(\beta_{A} ; s\right) \Leftrightarrow x \in I_{r}, \forall s<r \Leftrightarrow x \in \bigcap_{s<r} I_{r}
$$

and hence $L\left(\beta_{A}, s\right)=\bigcap_{s<r} I_{r}$, which is an ideal of R. For the case(iv), there exists $\varepsilon>0$ such that $(s, s+\varepsilon) \bigcap \Lambda=\phi$, we will show that $L\left(\beta_{A} ; s\right)=\bigcup_{s \geq r} I_{r}$. If $x \in \bigcup_{s \geq r} I_{r}$, then $x \in I_{r}$ for some $r \leq s$. It follows that $\beta_{A}(x) \leq r \leq s$. So that $x \in L\left(\beta_{A} ; s\right)$. Hence $\bigcup_{s \geq r} I_{r} \subseteq L\left(\beta_{A} ; s\right)$. Conversely, if $x \notin \bigcup_{s \geq r} I_{r}$, then $x \notin I_{r}$ for all $r \leq s$, which implies that $x \notin I_{r}$ for all $r<s+\varepsilon$, that is, if $x \in I_{r}$, then $r \geq s+\varepsilon$. Thus $\beta_{A}(x) \geq s+\varepsilon>s$, that is, $x \notin L\left(\beta_{A} ; s\right)$. Therefore $L\left(\beta_{A} ; s\right) \subseteq U_{s \geq r} I_{r}$ and consequently $L\left(\beta_{A} ; s\right)=\bigcup_{s \geq r} I_{r}$, which is an ideal of R. This completes the proof.

A map f from a near-ring R into a near-ring S is called a homomorphism if $f(x+y)=$ $f(x)+f(y)$ and $f(x y)=f(x) f(y)$ for all $x, y \in R$. Let $f: R \rightarrow S$ be a homomorphism of near-rings. For any $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in S, we define a new $\operatorname{IFS} A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in R by $\alpha_{A}^{f}(x)=\alpha_{A}(f(x)), \beta_{A}^{f}(x)=\beta_{A}(f(x))$, for all $x \in R$.

Theorem 2.8. Let $f: R \rightarrow S$ be a homomorphism of near-rings. If an $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in S is an intuitionistic fuzzy ideal of S, then an $\operatorname{IFS} A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in R is an intuitionistic fuzzy ideal of R.

Proof. For any $x, y, z \in R$, (IF1) $\alpha_{A}^{f}(x-y)=\alpha_{A}(f(x-y))=\alpha_{A}(f(x)-f(y)) \geq$ $\min \left\{\alpha_{A}(f(x)), \alpha_{A}(f(y))\right\}=\min \left\{\alpha_{A}^{f}(x), \alpha_{A}^{f}(y)\right\} . \quad(\mathrm{IF} 2) \alpha_{A}^{f}(y+x-y)=\alpha_{A}(f(y+x-$ $y))=\alpha_{A}(f(y)+f(x)-f(y)) \geq \alpha_{A}(f(x))=\alpha_{A}^{f}(x)$. (IF3) $\alpha_{A}^{f}(f(x y))=\alpha_{A}(f(x y))=$ $\alpha_{A}(f(x) f(y)) \geq \alpha_{A}(f(x))=\alpha_{A}^{f}(x)$ and (IF4) $\alpha_{A}^{f}((x+z) y-x y)=\alpha_{A}(f((x+z) y-x y))=$ $\alpha_{A}((f(x)+f(z)) f(y)-f(x) f(y)) \geq \alpha_{A}(f(z))=\alpha_{A}^{f}(z)$. Moreover, (IF5) $\beta_{A}^{f}(x-y)=$ $\beta_{A}(f(x-y))=\beta_{A}(f(x)-f(y)) \leq \max \left\{\beta_{A}(f(x)), \beta_{A}(f(y))\right\}=\max \left\{\beta_{A}^{f}(x), \beta_{A}^{f}(y)\right\}$. (IF6) $\beta_{A}^{f}(y+x-y)=\beta_{A}(f(y+x-y))=\beta_{A}(f(y)+f(x)-f(y)) \leq \beta_{A}(f(x))=\beta_{A}^{f}(x)$. (IF7) $\beta_{A}^{f}(x y)=\beta_{A}(f(x y))=\beta_{A}(f(x) f(y)) \leq \beta_{A}(f(x))=\beta_{A}^{f}(x)$ and (IF8) $\beta_{A}^{f}((x+z) y-x y)=$ $\beta_{A}(f((x+z) y-x y))=\beta_{A}((f(x)+f(z)) f(y)-f(x) f(y)) \leq \beta_{A}(f(z))=\beta_{A}^{f}(z)$. Hence $\operatorname{IFS} A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ is an intuitionistic fuzzy ideal of R.

If we strengthen the condition of f, then we can construct the converse of Theorem 2.8 as follows.

Theorem 2.9. Let $f: R \rightarrow S$ be an epimorphism of near-rings and let $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in S. If $\operatorname{IFS} A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ is an intuitionistic fuzzy ideal of R, then $\operatorname{IFS} A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of S.

Proof. Let $x, y, z \in S$, then there exist $a, b, c \in R$ such that $f(a)=x, f(b)=y$ and $f(c)=$ z. (IF1) $\alpha_{A}(x-y)=\alpha_{A}(f(a)-f(b))=\alpha_{A}(f(a-b))=\alpha_{A}^{f}(a-b) \geq \min \left\{\alpha_{A}^{f}(a), \alpha_{A}^{f}(b)\right\}=$ $\min \left\{\alpha_{A}(f(a)), \alpha_{A}(f(b))\right\}=\min \left\{\alpha_{A}(x), \alpha_{A}(y)\right\} .(\operatorname{IF} 2) \alpha_{A}(y+x-y)=\alpha_{A}(f(b)+f(a)-$ $f(b))=\alpha_{A}(f(b+a-b))=\alpha_{A}^{f}(b+a-b) \geq \alpha_{A}^{f}(a)=\alpha_{A}(f(a))=\alpha_{A}(x)$. (IF3) $\alpha_{A}(x y)=$ $\alpha_{A}(f(a) f(b))=\alpha_{A}(f(a b))=\alpha_{A}^{f}(a b) \geq \alpha_{A}^{f}(a)=\alpha_{A}(f(a))=\alpha_{A}(x)$. (IF4) $\alpha_{A}((x+z) y-$ $x y)=\alpha_{A}((f(a)+f(c)) f(b)-f(a) f(b))=\alpha_{A}(f((a+c) b-a b))=\alpha_{A}^{f}((a+c) b-a b) \geq$ $\alpha_{A}^{f}(c)=\alpha_{A}(f(c))=\alpha_{A}(z)$. Moreover, (IF5) $\beta_{A}(x-y)=\beta_{A}(f(a)-f(b))=\beta_{A}(f(a-b))=$ $\beta_{A}^{f}(a-b) \leq \max \left\{\beta_{A}^{f}(a), \beta_{A}^{f}(b)\right\}=\max \left\{\beta_{A}(f(a)), \beta_{A}(f(b))\right\}=\max \left\{\beta_{A}(x), \beta_{A}(y)\right\}$. (IF6) $\beta_{A}(y+x-y)=\beta_{A}(f(b)+f(a)-f(b))=\beta_{A}(f(b+a-b))=\beta_{A}^{f}(b+a-b) \leq \beta_{A}^{f}(a)=$ $\beta_{A}(f(a))=\beta_{A}(x)$. (IF7) $\beta_{A}(x y)=\beta_{A}(f(a) f(b))=\beta_{A}(f(a b))=\beta_{A}^{f}(a b) \leq \beta_{A}^{f}(a)=$ $\beta_{A}(f(a))=\beta_{A}(x)$. (IF8) $\beta_{A}((x+z) y-x y)=\beta_{A}((f(a)+f(c)) f(b)-f(a) f(b))=\beta_{A}(f((a+$ $c) b-a b))=\beta_{A}^{f}((a+c) b-a b) \leq \beta_{A}^{f}(c)=\beta_{A}(f(c))=\beta_{A}(z)$. Hence $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of S.

References

[1] W.Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems, 8(1982), 133-139.
[2] S.Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy sets and systems, 44(1991),139-146.
[3] K.H.Kim \& Y.B.Jun, Anti fuzzy R-subgroup of near-rings, Sci.Math .2(1999), 147-153.
[4] K.H.Kim \& Y.B.Jun, On fuzzy R-subgroup of near-rings, J.Fuzzy Math.8(2000),549-558.
[5] S.D.Kim \& H.S.Kim, On fuzzy ideals of near-rings, Bull. Korean Math.S oc.33(1996),593-601.
[6] K.H.Kim, Y.B.Jun \& Y.H.Yon, Abnormalization of anti fuzzy ideals in near-rings. Far East J. Math. Sci. (FJMS) 3 (2001), no. 1, 15-25.
[7] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20 (1986),87-96.
[8] K.T.Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy sets and systems, 61(1994), 137-142.
Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000,P.R.China
E-mail: zhanjianming@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 03E72, 16Y30, 16A76.
 Key words and phrases. Near-rings, Intuitionistic fuzzy ideals, Fuzzy ideals, Homomorphism.

