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ON THE PROBLEM OF NEARLY DERIVATIVES

DONATELLA BONGIORNO

Received July 26, 2004

Abstract. We provide a minimal constructive integration process of Riemann type
which includes the Lebesgue integral and also integrates the derivatives of nearly differ-
entiable functions.

1. Introduction

In [1] a minimal constructive integration process of Riemann-type which includes the
Lebesgue integral and also integrates the derivatives of differentiable functions is given. It
is called the C-integral and it is obtained from McShane’s definition of the Lebesgue integral
(see for example [6], [8], [9] and [10]) by imposing a mild regularity condition on McShane’s
partitions.

Given an interval [a, b] of the real line R and a positive function δ on [a, b] (in the
sequel called gauge), we recall that a δ-fine McShane’s partition of [a, b] is (by definition)
a collection P = {(Ah, xh)}p

h=1 of nonoverlapping intervals Ah and points xh ∈ [a, b] such
that Ah ⊂ (xh − δ(xh), xh + δ(xh)), for each h, and [a, b] =

⋃
h Ah.

Definition 1.1. A function f : [a, b] → R is said to be C-integrable on [a, b] if there exists
a constant A such that for each ε > 0 there is a gauge δ on [a, b] with∣∣∣∣∣

p∑
i=1

f(xi)|Ai| − A

∣∣∣∣∣ < ε ,

for each δ-fine McShane’s partition {(A1, x1), . . . , (Ap, xp)} of [a, b] satisfying the condition∑p
i=1 dist(xi, Ai) < 1/ε.

Theorem 1.2. [1, Main Theorem] A function f : [a, b] → R is C-integrable on [a, b] if and
only if there exist a Lebesgue integrable function g and a derivative h on [a, b] such that
f(x) = g(x) + h(x) for each x ∈ [a, b].

The fact that the C-integral is properly included into the Denjoy-Perron integral is shown
by A.M. Bruckner, R.J. Fleissner and J. Foran in [4] by the following example:

The function

F (x) =
{

x sin(1/x2) for x ∈ (0, 1],
0 for x = 0

is ACG∗ on [0, 1] and, for each absolutely continuous function G, the function F − G is
not differentiable at 0. Therefore the function f(x) = F ′(x) for x ∈ (0, 1] and f(0) = 0 is
Denjoy-Perron integrable and not C-integrable on [0, 1].

We say that a continuous function F is nearly differentiable on [a, b] if there exists a
countable set N ⊂ [a, b] such that F is differentiable on [a, b] \ N . A function f equivalent
to the derivative of a nearly differentiable function is called a nearly derivative. If f is
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a nearly derivative, then f is Denjoy-Perron integrable, but it may be not C-integrable
(previous example). Now let us consider the following example:

Let K be the family of all complementary intervals of the Cantor ternary set, λ > log3 2
and F =

∑
K∈K FK , where

F(α,β)(x) = (x − α)λ cos
(

π

2
· |β − α|2

x − α

)
.

In [2] it is proved that F is ACG∗ and, for each absolutely continuous function G, the
function F −G is not nearly differentiable. This implies that the Denjoy-Perron integral is
a solution “too general” for the

Problem of nearly derivatives: Recover, by integration process, the primitive of a nearly
derivative.

In this paper we provide a new solution to the above problem, by a constructive integra-
tion process of Riemann type, based on a slight modification of the C-integral:

Definition 1.3. We say that a function f : [a, b] → R is C̃-integrable on [a, b] if there exist
a constant A and a countable set N such that for each ε > 0 there is a gauge δ with∣∣∣∣∣

p∑
i=1

f(xi)|Ai| − A

∣∣∣∣∣ < ε ,(1.1)

for each δ-fine McShane’s partition {(A1, x1), . . . , (Ap, xp)} of [a, b] satisfying the following
conditions ⎧⎨

⎩
∑p

i=1 dist(xi, Ai) < 1/ε;

if xi ∈ N, then xi ∈ Ai, i = 1, · · · , p.
(1.2)

The number A is called the C̃-integral of f on [a, b].

In Section 3 we prove that

Theorem 1.4. A function f : [a, b] → R is C̃-integrable on [a, b] if and only if there exist a
Lebesgue integrable function g and a nearly derivative h on [a, b] such that f(x) = g(x)+h(x)
for each x ∈ [a, b].

Therefore the C̃-integral provides the minimal extension of the Lebesgue integral which
also integrates each nearly derivative.

In Sections 4 and 5 we give two characterizations of the C̃-primitives.
In Section 6 we prove that each BV function is a multiplier for the C̃-integral .

2. Preliminaries

The set of all natural numbers, integer numbers, and real numbers are denoted by N,
Z, and R, respectively. If E ⊂ R then |E| denotes the Lebesgue measure of E. Let
A = (α, β) ⊂ [a, b] and let F be a real valued function on [a, b]. We set F (A) = F (β)−F (α).
By L1[a, b] we denote the family of all Lebesgue integrable functions.

In this paper, to distinguish the different integrals, we denote by
∫ b

a
f the Lebesgue

integral, by (C̃)
∫ b

a f the C̃-integral, and by (DP )
∫ b

a f the Denjoy-Perron integral of f on
the interval [a, b].

Given a subset E of [a, b] and a gauge δ, we call δ-fine McShane partial partition anchored
on E any collection {(Ah, xh)}p

h=1 of nonoverlapping intervals Ah ⊂ [a, b] and points xh ∈ E
such that Ah ⊂ (xh − δ(xh), xh + δ(xh)), for each h.
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Remark 2.1. If f ∈ L1[a, b] then f is C̃-integrable on [a, b] (with the same value of the
integral).

This follows by the fact that the Lebesgue integral is equivalent to the McShane integral
(see [6], [8], [9], and [10]).

Remark 2.2. If f is C̃-integrable on [a, b], then f is Denjoy-Perron integrable on [a, b] (with
the same value of the integral).

This follows by the fact that the Denjoy-Perron integral is equivalent to the Henstock-
Kurzweil integral (see [6], and [10]) and to the fact that the partitions involved in the def-
inition of the Henstock-Kurzweil integral are McShane’s partition {(A1, x1), . . . , (Ap, xp)}
of [a, b] satisfying the conditions xi ∈ Ai, for each i.

Remark 2.3. The indefinite integral F (x) = (C̃)
∫ x

a
f is continuous.

Remark 2.4. If f is C̃-integrable on [a, b], then f is C̃-integrable on each subinterval of
[a, b].

Henstock′s type lemma. If f is C̃-integrable on [a, b], then there is a countable set N such
that for each ε > 0 there exists a gauge δ so that

p∑
i=1

∣∣∣∣f(xi)|Ai| − (C̃)
∫

Ai

f

∣∣∣∣ < ε ,

for each δ-fine McShane partition {(A1, x1), . . . , (Ap, xp)} of [a, b] satisfying condition (1.2).

Lemma 2.5. If f is a nearly derivative on [a, b], then f is C̃-integrable on [a, b].

Proof. Let F be a nearly differentiable function with nearly derivative f . Then there is a
sequence {an} ⊂ [a, b] such that F ′(x) = f(x) for each x ∈ [a, b] \ {an}. Given 0 < ε <
1/(b − a), define δ : [a, b] → R

+ such that:

|f(an)| · δ(an) <
ε

2n+2
,(2.1)

for n = 1, 2, · · · ;

|F (t) − F (an)| <
ε

2n+2
,

for |t − an| < δ(an), and n = 1, 2, · · · ;

∣∣∣∣F (y) − F (x)
y − x

− f(x)
∣∣∣∣ <

ε2

8
,(2.2)

for x ∈ [a, b] \ {an}, and y ∈ [a, b] with |y − x| < δ(x).

Note that if x ∈ [a, b]\{an} and if A = (α, β) is a subinterval of [a, b] such that dist(x,A) <
δ(x), then condition (2.2) implies

|F (A) − f(x)|A||
≤ |F (β) − F (x) − f(x)(β − x)|

+|F (α) − F (x) − f(x)(α − x)|(2.3)

<
ε2

8
|β − x| + ε2

8
|α − x| ≤ ε2

4
(dist(x,A) + |A|).
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Thus, given a δ-fine McShane’s partition {(A1, x1), · · · , (Ap, xp)} with
∑p

i=1 dist(xi, Ai) <
1/ε, and xi ∈ Ai if xi ∈ {an}, by (2.1) and (2.3) we have∣∣∣∣∣

p∑
i=1

f(xi)|Ai| − (F (b) − F (a))

∣∣∣∣∣
≤

∑
xi∈{an}

|f(xi)|Ai| − F (Ai)| +
∑

xi �∈{an}
|f(xi)|Ai| − F (Ai)|

< 2
∞∑

i=1

ε

2i+2
+

ε2

4

p∑
i=1

(dist(xi, Ai) + |Ai|)

<
ε

2
+

ε2

4
·
(

1
ε

+ (b − a)
)

< ε.

This complete the proof of C̃-integrability of f .

An interval [α, β] ⊂ [a, b] is said to be f -regular if there exist a Lebesgue integrable
function g and a nearly derivative h on [a, b] such that f(x) = g(x)+h(x) for each x ∈ [α, β].

Remark 2.6. If an interval is union of two f -regular intervals, then it is f -regular.

Lemma 2.7. Let f be C̃-integrable on a given interval [α, β], and let E be a closed subset of
[α, β] such that α, β ∈ E and each closed interval disjoint with E is f -regular. If f ∈ L1(E)
and if ∑

p∈N

sup J ⊂ Ip
J interval

∣∣∣∣(C̃)
∫

J

f

∣∣∣∣ < +∞ ,

where {Ip} is the sequence of all connected components of [α, β]\E, then [α, β] is f -regular.

Proof. With no loss of generality, we can assume that E �= [α, β] and that {Ip} is infinite
(indeed, if it is finite we can reduce the proof to the infinite case by adding a suitable
sequence of points to E).
By Remark 2.1 the function fχE is C̃-integrable, then g = f − fχE is null on E and C̃-
integrable on [α, β]. So, if we prove that [α, β] is g-regular, then [α, β] is f -regular. Thus
we can assume f = 0 on E.
Fix a sequence {εn} of positive real numbers such that∑

n∈N

εn < +∞,(2.4)

and

β − α + 2 <
1
εn

.(2.5)

Moreover, according to the Henstock’s type lemma, there is a countable set N ⊂ [α, β] and,
for each n ∈ N, a gauge δn(x) such that

p∑
i=1

∣∣∣∣(C̃)
∫

Ai

f

∣∣∣∣ < εn ,(2.6)

for each δn-fine McShane’s partial partition {(A1, x1), . . . , (Ap, xp)} anchored on E and
satisfying condition (1.2).

Now, following [1, Section 3], we fix an increasing sequence of compact sets Hk such that⋃∞
k=1 Hk = (α, β) \ E, Hk ∩ Ip is a proper interval for finitely many p and Hk ∩ Ip = ∅ for
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the remaining indices p, and such that

∑
p∈N

sup J ⊂ Ip \ Hk
J interval

∣∣∣∣(C̃)
∫

J

f

∣∣∣∣ < +∞ .(2.7)

Then we can repeat the proof of [1, Claim 1] to prove the existence of a family of real
numbers {γp,q; p ∈ N, q ∈ Z} such that

(c1) γp,0 = αp+βp

2 ;

(c2) γp,q ≤ γp,q+1;

(c3) αp < γp,q < βp;

(c4) infq∈Z {γp,q} = αp and supq∈Z {γp,q} = βp;

and such that the intervals Ip,q = [γp,q, γp,q+1] satisfy the following conditions:

(c5) for each x ∈ E and each ε > 0 there exists δ > 0 with

∣∣∣∣(C̃)
∫

J

f

∣∣∣∣ ≤ ε dist(x, Ip,q) ,

for any interval J contained in Ip,q, provided that Ip,q ⊂ (x − δ, x + δ);

(c6)
∑

p∈N,q∈Z

∣∣∣(C̃)
∫

Ip,q
f
∣∣∣ < +∞.

To prove condition (c6) we follows [1] and take xp,q ∈ Ekp,q ,lp,q \ N (to be able to apply
(2.6)), instead of xp,q ∈ Ekp,q .

Further, for each p ∈ N and q ∈ Z we put

cp,q =
1

|Ip,q | (C̃)
∫

Ip,q

f,

and take

0 < ηp,q < dist2(Ip,q , E) such that
∑

p∈N,q∈Z

ηp,q < +∞.(2.8)

Therefore, by an easy extension of Lemma 1 of [1], for each p ∈ N and q ∈ Z there exists a
nearly derivative hp,q such that hp,q = 0 outside Ip,q, and such that

∫
Ip,q

|f − cp,q − hp,q| < ηp,q,

and

(C̃)
∫

Ip,q

hp,q = 0.

Now we define

h =
∑

p∈N,q∈Z

hp,q,
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and we prove the f -regularity of [α, β] by showing that f −h is Lebesgue integrable in [α, β]
and h is a nearly derivative in [α, β]. Since f = 0 on E, we have∫ β

α

|f − h|

≤
∑

p∈N,q∈Z

∫
Ip,q

(|cp,q| + |f − cp,q − hp,q|)

≤
∑

p∈N,q∈Z

∣∣∣∣∣(C̃)
∫

Ip,q

f

∣∣∣∣∣ +
∑

p∈N,q∈Z

ηp,q.

Then, by condition (c6) and by (2.8) we conclude that f − h ∈ L1[α, β]. Hence, by Remark
2.1 and Remark 2.2, h = (h−f)+f is Denjoy-Perron integrable. Consequently its primitive

H(x) = (DP )
∫ x

α

h, x ∈ [α, β],

is differentiable with derivative H ′(x) = h(x) for each x �∈ (E ∪ N). Thus, to complete the
proof, we can follow [1, Page 125-126] to get H ′(x) = 0 = h(x), for each x ∈ E.

Corollary 2.8. If f is C̃-integrable on [a, b], and if each compact sub-interval of (a, b) is
f -regular, then [a, b] is f -regular.

Proof. By Remark 2.6 we have

sup
J ⊂ (a, b)
J interval

∣∣∣∣(C̃)
∫

J

f

∣∣∣∣ =

∣∣∣∣∣(C̃)
∫ b

a

f

∣∣∣∣∣ < +∞ .

Then we can apply Lemma 2.7 to f and E = {a, b}.
3. Proof of Theorem 1.4

Assume that f = g + h with g ∈ L1[a, b] and with h nearly derivative. By Remark 2.1,
h is C̃-integrable on [a, b], and by Lemma 2.5 also g is C̃-integrable on [a, b]. Therefore f is
C̃-integrable on [a, b].

Now let f be C̃-integrable on [a, b]. By Remark 2.2, f is Denjoy-Perron integrable on
[a, b], then there exists an interval [α, β] ⊂ [a, b] such that f ∈ L1[α, β] (see [12, Chap.
VIII, Theorem 1.4]). Consequently, denoted by Ω the union of the interiors of all f -regular
intervals contained in [a, b], we have Ω �= ∅. By Corollary 2.8, if Ω = (α, β), then [α, β] is
f -regular, and the proof is complete.

Assume, by contradiction, that (a, b) \ Ω �= ∅. We firstly prove that (a, b) \ Ω does not
contain isolated points. In fact, let α < γ < β, with α, γ, β ∈ [a, b] \Ω such that (α, γ) ⊂ Ω
and (γ, β) ⊂ Ω. Then, by Corollary 2.8, [α, γ] and [γ, β] are f -regular. So, by Remark 2.6,
[α, β] is f -regular, which is in contradiction with the assumption γ �∈ Ω.

Let E = [a, b] \Ω. Since f is Denjoy-Perron integrable on [a, b], then by [12, Chap. VIII,
Theorem 1.4] there exists an interval [α, β] ⊂ [a, b] such that E ∩ (α, β) �= ∅, ∫

E∩[α,β]
|f | <

+∞ and ∑
p∈N

sup J ⊂ Ip
J interval

∣∣∣∣(DP )
∫

J

f

∣∣∣∣ < +∞ ,

where Ip is the sequence of all connected components of (α, β) \E. Since E ∩ (α, β) has no
isolated points, we can assume α, β ∈ E. Moreover, by Remarks 2.2 and 2.6, (DP )

∫
J

f =
(C̃)

∫
J

f , for each J ⊂ [a, b]. Thus all assumptions of Lemma 2.7 hold with E replaced by
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E ∩ [α, β]. So [α, β] is f -regular, which, by definition of E means that (α, β) cannot meet
E. This is the final contradiction proving that [a, b] is f -regular.

4. ACGC̃−Functions

We start by a characterization of the C̃-primitives in terms of a slight modification of
the classical ACG∗ notion.

Definition 4.1. A function F : [a, b] → R is said to be ACC̃ on E ⊂ [a, b] if for each ε > 0
there exist a constant η > 0, a countable set N ⊂ E and a gauge δ such that

∑
i |F (Ai)| < ε

for each δ-fine McShane’s partial partition {(Ai, xi)}p
i=1 anchored on E, satisfying condition

(1.2), and such that
∑p

i=1 |Ai| < η.

Definition 4.2. A continuous function F : [a, b] → R is said to be ACGC̃ on [a, b] if there
exists a sequence {En} of measurable sets such that [a, b] =

⋃
n En and F is ACC̃ on each

En.

Lemma 4.3. If F is ACGC̃ on [a, b] and E ⊂ [a, b] with |E| = 0, then given ε > 0 there
exist a countable set N ⊂ E and a gauge δ such that

∑p
i=1 |F (Ai)| < ε, for each δ-fine

McShane’s partial partition {(Ai, xi)}p
i=1 anchored on E and satisfying condition (1.2).

Proof. Since F is ACGC̃ , there exists a sequence {En} of pairwise disjoint measurable sets
such that [a, b] =

⋃
n En and F is ACC̃ on each measurable set En. Given ε > 0, for a fixed

n ∈ N there exists a positive number ηn, a countable set Nn ⊂ En and a gauge δn such that
q∑

i=1

|F (Ji)| <
ε

2n
,(4.1)

for each δn-fine McShane’s partial partition {(Ji, yi)}q
i=1 anchored on En, satisfying con-

dition (1.2), and such that
∑

i |Ji| < η. Since |E ∩ En| = 0 we can find an open set
On ⊃ E ∩ En such that |On| < ηn. Define δ∗n(x) = min(δn(x),dist(x,cOn)), where by cOn

we denote the complement of On. Therefore (4.1) holds for each δ∗n-fine McShane’s partial
partition {(Ji, yi)}q

i=1 anchored on E ∩ En and satisfying condition (1.2).
Set N =

⋃
n(E ∩ Nn) and define δ(x) = δ∗n(x), for x ∈ E ∩ En, n ∈ N. Then, given

a δ-fine McShane’s partial partition {(Ai, xi)}p
i=1 anchored on E and satisfying condition

(1.2), we have
p∑

i=1

|F (Ai)| =
∞∑

n=1

∑
xi∈En

|F (Ai)| <

∞∑
n=1

ε

2n
= ε.

Lemma 4.4. If F is a function differentiable at x, then given ε > 0 there exists γ(x) > 0
such that

|F (I) − F ′(x)|I|| < ε (dist(x, I) + |I|),
for each interval I ⊂ (x − γ(x), x + γ(x)).

Proof. By the definition of derivative, there exists γ(x) > 0 such that

|F (y) − F (x) − F ′(x)(y − x)| <
ε

2
|y − x|,
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for each y ∈ (x − γ(x), x + γ(x)).
Therefore, given I = (α, β) ⊂ (x − γ(x), x + γ(x)) we have

|F (β) − F (α) − F ′(x)(β − α)|
≤ |F (β) − F (x) − F ′(x)(β − x)| + |F (α) − F (x) − F ′(x)(α − x)|
<

ε

2
|β − x| + ε

2
|α − x|

<
ε

2
dist(x, I) +

ε

2
(dist(x, I) + |I|)

< ε (dist(x, I) + |I|).

Theorem 4.5. F is ACGC̃ on [a, b] if and only if there exists a C̃-integrable function
f : [a, b] → R such that

F (x) − F (a) = (C̃)
∫ x

a

f(t) dt, for each x ∈ [a, b].(4.2)

Proof. Note that if F is ACGC̃ on [a, b] then it is ACGδ, according to Gordon’s definition
(see [5]). Therefore it is differentiable a.e. in [a, b] (see [5, Theorem 6] and [12, Chapter
VII, Theorem 7.2]). Let E = {x ∈ [a, b] : F is not differentiable at x}. Then |E| = 0 and,
by Lemma 4.3, given 0 < ε < 2/(b − a) there exist a countable set N ⊂ E and a gauge τ
such that

p∑
i=1

|F (Ai)| <
ε

4
,

for each τ -fine McShane’s partial partition {(Ai, xi)}p
i=1 anchored on E and satisfying con-

dition (1.2).
If x �∈ E, by Lemma 4.4 there exists γ(x) > 0 such that

|F (I) − F ′(x)|I| | <
ε2

4
(dist(x, I) + |I|),

for each interval I ⊂ [a, b] ∩ (x − γ(x), x + γ(x)).
Let

δ(x) =
{

τ(x) if x ∈ E
γ(x) if x �∈ E,

and let

f(x) =
{

0 if x ∈ E
F ′(x) if x �∈ E.

So, for each x ∈ (a, b] and for each δ-fine McShane’s partition P = {(A1, x1), . . . , (Ap, xp)}
of [a, x] satisfying conditions (1.2), we have∣∣∣∣∣

p∑
i=1

f(xi)|Ai| − (F (x) − F (a))

∣∣∣∣∣ ≤
p∑

i=1

|f(xi)|Ai| − F (Ai)|

≤
∑

xi∈E

|F (Ai)| +
∑

xi �∈E

|F ′(xi)|Ai| − F (Ai)|

<
ε

4
+

∑
xi �∈E

ε2

4
(dist(xi, Ai) + |Ai|)

<
ε

4
+

ε

4
+

ε2

4
(b − a) < ε.

This completes the proof of the “if” part of the theorem.
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Now assume that F is the C̃-primitive of a C̃-integrable function f . For each natural n
we set En = {x ∈ [a, b] : |f(x)| ≤ n}. Then [a, b] =

⋃
n En. To complete the proof of the

“only if” part, it is enough to prove that F is ACC̃ on each En.
Let n ∈ N and ε > 0. By Henstock’s type lemma there exist a countable set N ⊂ [a, b]

and a gauge δ such that
p∑

i=1

|f(xi)|Ai| − F (Ai)| <
ε

2
,

for each δ-fine McShane’s partial partition P = {(Ah, xh)}p
h=1 of [a, b] satisfying condition

(1.2).
So, if P is anchored on En, and

∑
i |Ai| < ε/2n, then

p∑
i=1

|F (Ai)|

≤
p∑

i=1

|f(xi)|Ai| − F (Ai)| +
p∑

i=1

|f(xi)| · |Ai|

<
ε

2
+ n

∑
i

|Ai| < ε.

Therefore F is ACC̃ on En, and the proof is complete.

5. The Variational Measure VC̃

Let F be an additive interval function defined on the family of all sub-intervals of [a, b].
Given a gauge δ, a set E ⊂ [a, b], a subset N of E, and ε > 0, we set

V(F, δ, E, N, ε) = sup
∑

i

|F (Ai)|,

where the “sup” is taken over all δ-fine McShane’s partial partitions anchored on E and
satisfying condition (1.2).

The variational measure VC̃ is defined as follows:

VC̃F (E) = lim
ε→0

infδ inf
N

{V(F, δ, E, N, ε) : N countable}.
VC̃F is a regular Borel measure in [a, b] (we can easily follows the proofs of Theorems

3.7 and 3.15 of [11]).

Theorem 5.1. An additive function F is a C̃-primitive if and only if the variational mea-
sure VC̃F is absolutely continuous with respect to the Lebesgue measure.

Proof. Let F (x) = F (a) + (C̃)
∫ x

a
f(t) dt be the indefinite C̃-integral of a function f , and

let E ⊂ [a, b] be a Lebesgue null set. Without loss of generality we can assume f(x) = 0 for
each x ∈ E. Then, by the Henstock’s type lemma, there exists a countable set N ⊂ [a, b]
such that for each ε > 0 there is a gauge δ with

p∑
i=1

|F (Ii)| < ε ,

for each δ-fine McShane partial partition {(A1, x1), . . . , (Ap, xp)} anchored on E and satis-
fying condition (1.2).
Consequently V(F, δ, E, N, ε) ≤ ε, hence VC̃F (E) = 0. This completes the proof of the “if”
part of the Theorem.
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Now assume that VC̃F is absolutely continuous with respect to the Lebesgue measure,
and remark that

V(F, δ, E, E, +∞) ≤ V(F, δ, E, N, ε),

for each δ, E, N and ε. Then

inf
δ

V(F, δ, E, E, +∞) ≤ VC̃F (E),

for each set E ⊂ [a, b]. This implies that the Henstock-Kurzweil variational measure VHKF ,
defined by VHKF (E) = infδ V(F, δ, E, E, +∞), is absolutely continuous with respect to the
Lebesgue measure. Thus, by [3, Theorem 2], the function F is differentiable outside a
Lebesgue null set E. Therefore, since VC̃F (E) = 0, for each ε > 0 there exist a positive η,
a gauge δ1, and a countable set N ⊂ E such that

q∑
i=1

|F (Bi)| <
ε

2
,

for each δ1-fine McShane partial partition {(B1, x1), . . . , (Bp, xq)} anchored on E and sat-
isfying condition (1.2), with Bi instead of Ai.

Now, by Lemma 4.4, to each t ∈ [a, b] \ N there exists δ2(t) > 0 such that

|f(t)|B| − F (B)| <
ε2

4
(dist(t,B) + |B|),

for each interval B ⊂ (t − δ1(t), t + δ1(t)).
Then, to complete the proof of the “only if” part, it is enough to prove that F is the

indefinite C̃-integral of the following function:

f(t) =
{

F ′(t) if t ∈ [a, b] \ N,
0 if t ∈ N.

Let

δ(t) =
{

δ1(t) if t ∈ N,
δ2(t) if t ∈ [a, b] \ N,

and, for x ∈ (a, b], let {(A1, x1), . . . , (Ap, xp)} be a δ-fine McShane partition of [a, x],
satisfying condition (1.2).
Then ∣∣∣∣∣

p∑
i=1

f(xi)|Ii| − (F (x) − F (a))

∣∣∣∣∣ ≤
p∑

i=1

|f(xi)|Ii| − F (Ii)|

<
∑

xi∈N

|F (Ii)| + ε2

4

∑
xi �∈N

(dist(xi, Ii) + |Ii|)

<
ε

2
+

ε

4
+

ε2

4
(b − a) < ε.

By the arbitrariness of ε, the function f is C̃-integrable on [a, x], and

(C̃)
∫ x

a

f(t) dt = F (x) − F (a).

So, by the arbitrariness of x ∈ [a, b], the function F is the indefinite C̃-integral of f on
[a, b].
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6. The multipliers

In this section we prove that each BV function is a multiplier for the C̃-integral; in the
sense that if f is a C̃-integrable function and g is a BV function, then fg is C̃-integrable.
Recall that a function g : [a, b] → R is said to be a BV function whenever there exists a
function of bounded variation g̃ : [a, b] → R such that g = g̃ a.e. in [a, b].

Theorem 6.1. Each BV function is a multiplier for the C̃-integral.

Proof. Let f be a C̃-integrable function and let F be its primitive. If g is a BV function,
then by [12, Chap. 8, Theorem 2.5], fg is Denjoy-Perron integrable, and for each x ∈ [a, b],

(DP )
∫ x

a

fg dt = [Fg]xa −
∫ x

a

F dg,(6.1)

for each x ∈ [a, b]. Let Φ(x) = (DP )
∫ x

a
fg dt, and let

E = {x ∈ [a, b] : Φ
′
(x) = f(x)g(x)}.

Then N = [a, b] \ E is a Lebesgue null set. Without loss of generality we can assume that
f(x) = 0 for each x ∈ N , and g(x) is increasing and positive on [a, b].

Now fix an ε > 0. By Lemma 4.4, for each x ∈ E there exists δ1(x) > 0 such that

|f(x)g(x)|I| − Φ(I)| <
ε2(dist(x, I) + |I|)

6
,(6.2)

for each interval I ∈ (x − δ1(x), x + δ1(x)).
As the variational measure VC̃F is absolutely continuous with respect to the Lebesgue
measure, by Theorem 5.1, there exists a gauge δ2 such that

p∑
i=1

|F (Ii)| <
ε

3(‖g‖∞ + 1)
,(6.3)

for each δ2-fine McShane partial partition {(A1, x1), · · · , (Ap, xp)} anchored on N and sat-
isfying condition (1.2).
Choose σ > 0 so that

|F (x) − F (y)| <
ε

6(‖g‖∞ +1)
,(6.4)

for each x, y ∈ I with |x − y| < σ, and define the function δ by the formula

δ(x) =
{

δ1(x) if x ∈ E
min(δ2(x), σ) if x ∈ N.

(6.5)

Let {(A1, x1), · · · , (Ap, xp)} be a δ-fine McShane partition of [a, b] satisfying condition (1.2).
Then ∣∣∣∣∣

∑
i

f(xi)g(xi)|Ii| − Φ([a, b])

∣∣∣∣∣
≤

∑
i

|f(xi)g(xi)|Ii| − Φ(Ii)| ≤
∑

xi∈E

+
∑

xi∈N

.(6.6)

An estimate of
∑

xi∈E follows from (6.2):∑
xi∈E

|f(xi)g(xi)|Ii| − Φ(Ii)|

<
ε2

6

∑
xi∈E

(dist(xi, Ii) + |Ii|) <
ε2

6
· 1
ε

+
ε2(b − a)

6
<

ε

3
.(6.7)
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Next we estimate
∑

xi∈N . Note that f(xi) = 0 for xi ∈ N . Then, using (6.1) and letting
Ii = [αi, βi] we obtain

∑
xi∈N =

∑
xi∈N |Φ(Ii)|

=
∑

xi∈N

∣∣∣(F (βi)g(βi) − F (αi)g(αi) −
∫ βi

αi
F dg

)∣∣∣
=

∑
xi∈N |(F (βi) − F (αi)) g(βi)+

+F (αi) (g(βi) − g(αi)) − F (ξi) (g(βi) − g(αi))|

≤ ∑
xi∈N |(F (βi) − F (αi)) g(βi)|+

+
∑

xi∈N |F (αi) − F (ξi)| (g(βi) − g(αi)) ,

where ξi ∈ [αi, βi]. Moreover, by (6.3), we have
∑

xi∈N

|(F (βi) − F (αi)) g(βi)| ≤ ε

3(‖g‖∞ + 1)
· ‖g‖∞ <

ε

3
,(6.8)

and, by (6.4) and (6.5), we infer
∑

xi∈N

|F (αi) − F (ξi)| (g(βi) − g(αi))(6.9)

≤ ε

6(‖g‖∞ +1)
· 2‖g‖∞≤ ε

3
.

Finally, summing up the inequalities (6.7), (6.8) and (6.9) and taking into account (6.6)
and (6.7), we obtain ∣∣∣∣∣

∑
i

f(xi)g(xi)|Ii| − Φ([a, b])

∣∣∣∣∣ < ε,

which completes the proof.

Corollary 6.2. The product of a nearly derivative and a BV function is a nearly derivative
modulo a Lebesgue integrable function having arbitrarily small L1-norm.

Proof. Let f be a nearly derivative and let g be a BV function. By Lemma 2.5, f is C̃-
integrable, and, by Theorem 6.1, fg is C̃-integrable. Thus, by Theorem 1.4 there exists a
nearly derivative f1 such that fg − f1 is a Lebesgue integrable function. Choose an ε > 0.
The absolute continuity of the Lebesgue integral and Lusin’s theorem imply that there
exists a continuous function h1 such that

∫ b

a

|fg − f1 − h1| <
ε

4
.

Let h2 be a continuous function such that h2(a) = f1(a) + h1(a), h2(b) = f1(b) + h1(b),
and

∫ b

a
|h2| < ε/4. Moreover, let h3 be a continuous function for which h3(a) = h3(b) = 0

and ∫ b

a
h3 =

∫ b

a
(f1 + h1 − h2) −

∫ b

a
fg

=
∫ b

a (f1 + h1 − fg) − ∫ b

a h2.
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Clearly, we may assume h3 ≥ 0 or h3 ≤ 0. Thus∫ b

a

|h3| =

∣∣∣∣∣
∫ b

a

h3

∣∣∣∣∣ ≤
∫ b

a

|fg − f1 − h1| +
∫ b

a

|h2|

<
ε

4
+

ε

4
=

ε

2
.

Observe that the function hε = f1 + h1 − h2 − h3 is a nearly derivative, since a continuous
function is a derivative and the sum of nearly derivatives is a nearly derivative. Furthemore,∫ b

a

|fg − hε| ≤
∫ b

a

|fg − f1 − h1| +
∫ b

a

|h2| +
∫ b

a

|h3|

<
ε

4
+

ε

4
+

ε

2
= ε.

Consequently, the claim follows by the obvious identity fg = hε + (fg − hε).

References

[1] B. Bongiorno; L. Di Piazza; D. Preiss, A constructive minimal integral which includes Lebesgue inte-
grable functions and derivatives, J. London Math. Soc., 62(1) (2000), 117–126.

[2] B. Bongiorno; U. Darji; W.F. Pfeffer, On indefinite BV -integrals, Comm. Math. Univ. Carolinae, 41
(2000), No. 4.

[3] B. Bongiorno; L. Di Piazza; V. Skvortsov, A new full descriptive characterization of the Denjoy-Perron
integral, Real Anal. Exchange, 21 (1995-96), No. 2, 656–663.

[4] A.M. Bruckner; R.J. Fleissner; J. Foran, The minimal integral which includes Lebesgue integrable
functions and derivatives, Coll. Math., 50 (2) (1986), 289–293. 2) (1986), 289–293.

[5] R.A. Gordon, A descriptive characterization of the generalized Riemann integral, Real Analysis Ex-
change, 15 (1989-90), 397–400.

[6] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Lebesgue, Graduate Studies in Math., 4
(1994), AMS.

[7] R. Henstock, The general theory of integration, Clarendon Press, Oxford, 1991.
[8] E.J. McShane, A unified theory of integration, Amer. Math. Monthly, 80 (1973), 349–359.
[9] E.J. McShane, Unified integration, Academic Press, New York, 1983.

[10] W.F. Pfeffer, The Riemann Approach to Integration, Cambridge University Press, Cambridge, 1993.
[11] B.S. Thomson, Derivatives of Interval Functions, Mem. Amer. Math. Soc., 452, Providence, 1991.
[12] S. Saks, Theory of the integral, Dover, New York, 1964.

Department of Mathematics, Università di Palermo, Facoltà di Ingegneria, Viale delle Scienze,

90100 Palermo (Italy)

E-mail address: donatell@math.unipa.it


