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Abstract. In this manuscript first by definition of regular congruence relation on a
hyper BCK-algebra, we construct a quotient hyper BCK-algebra. After that, we state
and prove the homomorphism and isomorphism theorems for hyper BCK-algebras. Fi-
nally, we show that there exists at least one maximal regular congruence relation in a
bounded hyper BCK-algebra.

1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki[5] in 1966 as a gen-
eralization of the concept of set-theoretic difference and propositional calculi. Since then a
great deal of literature has been produced on the theory of BCK-algebras. In particular,
emphasis seems to have been put on the ideal theory of BCK-algebras. The hyperstruc-
ture theory (called also multialgebras)was introduced in 1934 by F. Marty [10] at the 8th
congress of Scandinavian Mathematiciens. Around the 40’s, several authors worked on
hypergroups, especially in France and in the United States, but also in Italy, Russia and
Japan. Over the following decades, many important results appeared, but above all since
the 70’s onwards the most luxuriant flourishing of hyperstructures has been seen. Hyper-
structures have many applications to several sectors of both pure and applied sciences. In
[8], Y. B. Jun et al. applied the hyperstructures to BCK-algebras, and introduced the
notion of a hyper BCK-algebra which is a generalization of BCK-algebra, and investigated
some related properties. They also introduced the notions of hyper BCK-ideal, strong
and reflexive hyper BCK-ideals. Now we follow [9] and introduce the concept of quotient
hyper BCK-algebras. Then we prove homomorphism and isomorphism theorems for hyper
BCK-algebras and we get some related results. Finally, we show that there exists at least
one maximal regular congruence relation in a bounded hyper BCK-algebra.

2. Preliminaries

Definition 2.1. [8] By a hyper BCK-algebra we mean a non-empty set H endowed with
a hyperoperation “◦” and a constant 0 satisfying the following axioms:
(HK1) (x ◦ z) ◦ (y ◦ z) � x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦ H � {x},
(HK4) x � y and y � x imply x = y.
for all x, y, z ∈ H , where x � y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H, A � B is
defined by ∀a ∈ A, ∃b ∈ B such that a � b. In such case, we call “�” the hyperorder in H .

Theorem 2.2. [8] In any hyper BCK-algebra H, the following hold:
(i) 0 ◦ 0 = {0},
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(ii) 0 � x,
(iii) x � x,
(iv) 0 ◦ x = {0},
(v) x ◦ y � x,
(vi) x ◦ 0 = {x},

for all x, y ∈ H.

Theorem 2.3. [2] Let (H1, ◦1, 0) and (H2, ◦2, 0) are two hyper BCK-algebras such that
H1 ∩H2 = {0} and H = H1 ∪H2. Then (H, ◦, 0) is a hyper BCK-algebra, where the hyper
operation “◦” on H is defined by,

x ◦ y =

⎧⎨
⎩

x ◦1 y if x, y ∈ H1

x ◦2 y if x, y ∈ H2

{x} otherwise,

for all x, y ∈ H, and we denote it by H1 ⊕ H2.

Theorem 2.4. [2] Let (H1, ◦1, 01) and (H2, ◦2, 02) are two hyper BCK-algebras and H =
H1 × H2. We define a hyper operation “◦” on H as follows,

(a1, b1) ◦ (a2, b2) = (a1 ◦ a2, b1 ◦ b2)

for all (a1, b1), (a2, b2) ∈ H. Where for A ⊆ H1 and B ⊆ H2 by (A,B) we mean

(A,B) = {(a, b) : a ∈ A, b ∈ B}, 0 = (01, 02)

and

(a1, b1) < (a2, b2) ⇐⇒ a1 < a2 and b1 < b2.

Then (H, ◦, 0) is a hyper BCK-algebra, and it is called the hyper product of H1 and H2.

Definition 2.5. [7, 8] Let I be a nonempty subset of a hyper BCK-algebra H and 0 ∈ I.
Then I is said to be a hyper BCK-ideal of H if x ◦ y � I and y ∈ I implies x ∈ I for all
x, y ∈ H , reflexive if x ◦ x ⊆ I for all x ∈ H , strong hyper BCK-ideal of H if (x ◦ y)∩ I �= ∅
and y ∈ I implies x ∈ I for all x, y ∈ H , hyper subalgebra of H if x ◦ y ⊆ I for all x, y ∈ I.

Theorem 2.6. [7, 8] Let H be hyper BCK-algebra. Then,
(i) any strong hyper BCK-ideal of H is a hyper BCK-ideal of H,
(ii) if I is a hyper BCK-ideal of H and A is a nonempty subset of H. Then A � I

implies A ⊆ I,
(iii) if I is a reflexive hyper BCK-ideal of H and (x ◦ y) ∩ I �= ∅, then x ◦ y ⊆ I for all

x, y ∈ H,
(iv) H is a BCK-algebra if and only if H = {x ∈ H : x ◦ x = {0}}.

Note. From now on in this paper we let H denotes a hyper BCK-algebra.

3. Quotient hyper BCK-algebras

In order to give a definition of a quotient hyper BCK-algebra, Author in [9], defined the
notion of regular congruence relation on hyper BCK-algebra as follows:

“ An equivalence relation ϕ is called a congruence if it satisfies the following condition:
for all x, x

′
, y, y

′ ∈ H ,

(x, y), (x
′
, y

′
) ∈ ϕ =⇒ (x ◦ x

′
, y ◦ y

′
) ∈ ϕ

where (x ◦ x
′
, y ◦ y

′
) ∈ ϕ is defined by (a, b) ∈ ϕ for some a ∈ x ◦ x

′
and b ∈ y ◦ y

′
.

A congruence relation is called regular, if for all x, y ∈ H ,

(x ◦ y, {0}), (y ◦ x, {0}) ∈ ϕ =⇒ (x, y) ∈ ϕ ”
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Then he defined the hyper operation “◦” on quotient structure H
ϕ for regular congruence

relation ϕ on H , as follows:

[x] ◦ [y] =
⋃

{[a] | a ∈ x ◦ y}
Certainly, as we observed in the proof of the Proposition 1. of [9], his purpose of the notation
“
⋃

” in the above definition is as follows,⋃
{[a] : a ∈ x ◦ y} = {[a] : a ∈ x ◦ y}

Since, otherwise [x] ◦ [y] /∈ H
ϕ .

Now, in the following example we show that the above hyper operation is not well-defined.

Example 3.1. Let H = {0, 1, 2, 3}. Then the following table shows a hyper BCK-algebra
structure on H .

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0, 1} {0, 1} {0, 1}
2 {2} {1, 2} {0, 1, 2} {0, 2}
3 {3} {1, 2, 3} {1, 2, 3} {0, 1, 3}

Suppose ϕ = {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}. We can check that ϕ is a regular con-
gruence relation on H and H

ϕ = {[0], [1], [3]}. Moreover, [1] = [2], but [1] ◦ [1] = {[0], [1]} �=
{[1]} = [2]◦ [1]. Hence the hyper operation “◦” which is defined as above is not well-defined.
Thus, H

ϕ is not a hyper BCK-algebra .

Now, we introduce the another structure for definition of quotient hyper BCK-algebra.

Definition 3.2. Let Θ be an equivalence relation on H and A,B ⊆ H . Then,
(i) AΘB means that, there exists a ∈ A and b ∈ B such that aΘb,
(ii) AΘB means that, for all a ∈ A there exists b ∈ B such that aΘb and for all b ∈ B

there exists a ∈ A such that aΘb,
(iii) Θ is called a congruence relation on H , if xΘy and x

′
Θy

′
then x ◦ x

′
Θy ◦ y

′
, for all

x, y, x′, y′ ∈ H ,
(iv) Θ is called a regular relation on H , if x ◦ yΘ{0} and y ◦ xΘ{0}, then xΘy for all

x, y ∈ H .

Lemma 3.3. Let Θ be an equivalence relation on H and A,B ⊆ H. If AΘB and BΘC,
then AΘC.

Proof. The proof is easy.

Lemma 3.4. Let Θ be an equivalence relation on H. Then the following statements are
equivalent:

(i) Θ is a congruence relation on H,
(ii) if xΘy, then x ◦ aΘy ◦ a and a ◦ xΘa ◦ y, for all a, x, y ∈ H.

Proof. (i) =⇒ (ii) Let xΘy and a ∈ H . Since Θ is a congruence relation on H and aΘa,
then x ◦ aΘy ◦ a and a ◦ xΘa ◦ y.

(ii) =⇒ (i) Let xΘy and x′Θy′. By (ii), x ◦ x′Θy ◦ x′ and y ◦ x′Θy ◦ y′. Hence by lemma
3.2, x ◦ x′Θy ◦ y′. Therefore, Θ is a congruence relation on H .

Theorem 3.5. Let Θ and Θ′ are two regular congruence relations on H such that [0]Θ =
[0]Θ′ . Then Θ = Θ′.
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Proof. Let Θ and Θ′ are two regular congruence relation on H such that [0]Θ = [0]Θ′ . It is
enough to show that, for all x, y ∈ H

xΘy if and only if xΘ′y

Let xΘy, for x, y ∈ H . Since Θ is a congruence relation on H , then by Lemma 3.3, x◦xΘx◦y.
Now, since 0 ∈ x◦x then there exists t ∈ x◦y such that 0Θt and so t ∈ [0]Θ. Thus, t ∈ [0]Θ′

and so x ◦ yΘ′{0}. By the similar way, we can show that y ◦ xΘ′{0}. Now, since Θ′ is a
regular relation, then xΘ′y. Similarly, we can show that if xΘ′y, then xΘy, for all x, y ∈ H .
Therefore, Θ = Θ′.

Lemma 3.6. Let Θ be a regular congruence relation on H. Then [0]Θ is a strong hyper
BCK-ideal of H.

Proof. Clear that 0 ∈ [0]Θ. Now, let x ◦ y
⋂

[0]Θ �= ∅ and y ∈ [0]Θ. Then, there exists
a ∈ x ◦ y such that a ∈ [0]Θ and so aΘ0. Hence, x ◦ yΘ{0}. Moreover, since yΘ0 and
Θ is a congruence relation on H , then by Lemma 3.3, y ◦ xΘ0 ◦ x = {0}. Now, since
x ◦ yΘ{0}, y ◦ xΘ{0} and Θ is a regular relation, then xΘy. Since, yΘ0 then by transitive
condition xΘ0 and so x ∈ [0]Θ. Therefore, [0]Θ is a strong hyper BCK-ideal of H .

Note. Let Θ be a regular congruence relation on H . Then by Lemma 3.5, [0]Θ is a strong
hyper BCK-ideal of H and so by Theorem 2.6(i), [0]Θ is a hyper BCK-ideal of H .

Theorem 3.7. Let Θ be a regular congruence relation on H, I = [0]Θ and
H
I = {Ix : x ∈ H}, where Ix = [x]Θ for all x ∈ H. Then H

I with hyperoperation “◦” and
hyperorder “<” which is defined as follows, is a hyper BCK-algebra which is called quotient
hyper BCK-algebra,

Ix ◦ Iy = {Iz : z ∈ x ◦ y} , Ix < Iy ⇐⇒ I ∈ Ix ◦ Iy

Proof. First, we show that the hyperoperation “◦” on H
I is well-defined. Let x, x′, y, y′ ∈ H

such that Ix = Ix′ and Iy = Iy′ . Let Iz ∈ Ix ◦ Iy . Then there is u ∈ x ◦ y such that Iz = Iu.
Since, xΘx

′
, yΘy

′
and Θ is a congruence relation on H , then x ◦ yΘx

′ ◦ y
′
. Hence, there

is z
′ ∈ x

′ ◦ y
′

such that uΘz
′

and so Iu = Iz′ . Since Iz′ ∈ Ix′ ◦ Iy′ and Iz = Iu = Iz′ ,
then Iz ∈ Ix′ ◦ Iy′ . Therefore, Ix ◦ Iy ⊆ Ix′ ◦ Iy′ . By the similar way, we can show that
Ix′ ◦ Iy′ ⊆ Ix ◦ Iy and so Ix ◦ Iy = Ix′ ◦ Iy′ . Hence, hyperopration “◦” is well-defied. Now
we show that H

I satisfies the axioms of a hyper BCK-algebra.
(HK1): Let Iw ∈ (Ix ◦ Iz) ◦ (Iy ◦ Iz), for Ix, Iy , Iz ∈H

I . Then, there are Iu ∈ Ix ◦ Iz and
Iv ∈ Iy ◦ Iz such that Iw ∈ Iu ◦ Iv. Hence, there are u

′ ∈ x◦ z, v
′ ∈ y ◦ z and w

′ ∈ u ◦ v such
that Iu = Iu′ , Iv = Iv′ , Iw = Iw′ , and so uΘu

′
, vΘv′ and wΘw′. Since Θ is a congruence

relation on H , then u ◦ vΘu
′ ◦ v

′
. Since w

′ ∈ u ◦ v, then there is a ∈ u
′ ◦ v

′
such that w

′
Θa

and so Iw′ = Ia. Thus Iw = Iw′ = Ia. By (HK1) of H , a ∈ u
′ ◦ v

′ ⊆ (x ◦ z) ◦ (y ◦ z) � x ◦ y.
Then there is b ∈ x ◦ y such that a � b and so 0 ∈ a ◦ b. Hence, Ib ∈ Ix ◦ Iy and
I = I0 ∈ Ia ◦ Ib. Since Iw = Ia, then I ∈ Iw ◦ Ib and so Iw � Ib and this implies that
(Ix ◦ Iz) ◦ (Iy ◦ Iz) � Ix ◦ Iy. Therefore, (HK1) hold in H

I .
(HK2): Let w ∈ (Ix ◦ Iy) ◦ Iz , for Ix, Iy, Iz ∈H

I . Then, there is u ∈ x ◦ y such that
Iw ∈ Iu ◦ Iz and so there is w

′ ∈ u ◦ z such that Iw = Iw′ . Since, by (HK2) of H ,
w

′ ∈ u ◦ z ⊆ (x ◦ y) ◦ z = (x ◦ z) ◦ y. Then Iw = Iw′ ∈ (Ix ◦ Iz) ◦ Iy. Hence, (Ix ◦ Iy) ◦ Iz ⊆
(Ix ◦ Iz) ◦ Iy. By the similar way, we can show that (Ix ◦ Iz) ◦ Iy ⊆ (Ix ◦ Iy) ◦ Iz . Therefore,
(Ix ◦ Iz) ◦ Iy = (Ix ◦ Iy) ◦ Iz and so (HK2) hold in H

I .
(HK3): Let Iz ∈ Ix◦H

I , for Ix ∈H
I . Then, there is Iy ∈H

I such that Iz ∈ Ix ◦ Iy. Hence,
there is z

′ ∈ x ◦ y such that Iz = Iz′ . By Theorem 2.2(v), x ◦ y � x and so z
′ � x. Now,
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since 0 ∈ z
′ ◦ x then I ∈ Iz′ ◦ Ix and so I ∈ Iz ◦ Ix. Thus, Iz � Ix and this implies that

Ix◦H
I � Ix. Therefore, (HK3) hold in H

I .
(HK4) Let Ix � Iy and Iy � Ix, for Ix, Iy ∈H

I . Then, I ∈ Ix ◦ Iy and I ∈ Iy ◦ Ix. Hence,
there are u ∈ x ◦ y and v ∈ y ◦ x such that Iu = I = Iv and so uΘ0 and vΘ0. Then we
conclude that x ◦ yΘ{0} and y ◦ xΘ{0}. Since Θ is a regular relation on H , then xΘy and
so Ix = Iy. Therefore, (HK4) hold in H

I .

Example 3.8. Let H = {0, 1, 2, 3}. Then the following table shows the hyper BCK-
algebra structure on H .

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0, 1} {0} {1}
2 {2} {2} {0, 1} {2}
3 {3} {3} {3} {0, 3}

Let Θ = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (3, 3)}. It is easy to check that Θ is a regular
congruence relation on H . Moreover, I = [0]Θ = {0, 1} = I1, I2 = {2} and I3 = {3} and so
H
I = {I, I2, I3}. Cayley’s table of H

I is as follows:

◦ I I2 I3

I {I} {I} {I}
I2 {I2} {I} {I2}
I3 {I3} {I3} {I, I3}

We can check that H
I is a hyper BCK-algebra.

Theorem 3.9. Let Θ be a regular congruence relation on H and I = [0]Θ. Then

I is a reflexive hyper BCK-ideal of H ⇐⇒ H

I
is a BCK-algebra

Proof. (⇐=) Let H
I be a BCK-algebra on H . Since Θ is a regular congruence relation on

H , then by Lemma 3.5, I = [0]Θ is a strong hyper BCK-ideal and so by Theorem 2.6(i), it
is a hyper BCK-ideal of H . Now, we must show that for all x ∈ H , x◦x ⊆ I. Let z ∈ x◦x.
Then, Iz ∈ Ix ◦ Ix. Since H

I is a BCK-algebra and I ∈ Ix ◦ Ix, then Ix ◦ Ix = I. Hence
Iz = I and so z Θ 0 and this implies that z ∈ [0]Θ = I. Therefore, for all x ∈ H , x ◦ x ⊆ I
and this implies that I is a reflexive hyper BCK-ideal of H .

(=⇒) Let Ia ∈H
I . Since a ◦ a ⊆ I for all a ∈ H , then

I ∈ Ia ◦ Ia = {Iz : z ∈ a ◦ a} ⊆ {Iz : z ∈ I} = {Iz : Iz = I} = {I}
Thus, Ia ◦ Ia = I and so by Corollary 2.6(iv), H

I is a BCK-algebra.

Theorem 3.10. Let I be a reflexive hyper BCK-ideal of H and relation Θ on H is defined
as follows:

xΘy ⇐⇒ x ◦ y ⊆ I and y ◦ x ⊆ I

for all x, y ∈ H. Then Θ is a regular congruence relation on H and I = [0]Θ. Moreover, H
I

is a BCK-algebra.

Proof. It is clear that Θ is a reflexive and symmetric relation on H . We show that Θ is a
transitive relation. Let xΘy and yΘz, for x, y, z ∈ H . Then x ◦ y ⊆ I and so by (HK1) of
H , (x ◦ z) ◦ (y ◦ z) � x ◦ y ⊆ I. Since yΘz, then y ◦ z ⊆ I and since I is a hyper BCK-ideal
of H , then x ◦ z ⊆ I. Moreover, since (z ◦ x) ◦ (y ◦ x) � z ◦ y, z ◦ y ⊆ I and y ◦ x ⊆ I,
then z ◦ x ⊆ I and so zΘx. Therefore, Θ is a transitive relation and so it is an equivalence
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relation on H . Now, we prove that Θ is a congruence relation on H . By Lemma 3.3, it is
enough to show that if xΘy, then for all a ∈ H , x ◦ aΘy ◦ a and a ◦ xΘa ◦ y. So, let xΘy.
Then x ◦ y ⊆ I and y ◦ x ⊆ I. By (HK1) of H , (x ◦ a) ◦ (y ◦ a) � x ◦ y. Since x ◦ y ⊆ I
then (x ◦ a) ◦ (y ◦ a) � I. Since I is a hyper BCK-ideal of H , then by Theorem 2.6(ii),
(x ◦ a) ◦ (y ◦ a) ⊆ I. Thus u ◦ v ⊆ I, for all u ∈ x ◦ a and v ∈ y ◦ a. Similarly, since
(y ◦ a) ◦ (x ◦ a) � y ◦ x and y ◦ x ⊆ I, then (y ◦ a) ◦ (x ◦ a) ⊆ I and so v ◦ u ⊆ I for all
u ∈ x ◦ a and v ∈ y ◦ a. Thus, for all u ∈ x ◦ a and v ∈ y ◦ a, uΘv and this implies that
x ◦ aΘy ◦ a. Now, let u ∈ a ◦ x. Since (a ◦ x) ◦ (y ◦ x) � a ◦ y, then there is t ∈ y ◦ x such
that u ◦ t � a ◦ y and so there are w ∈ u ◦ t and v′ ∈ a ◦ y such that w � v′. Hence, by
(HK2) of H , 0 ∈ w ◦ v′ ⊆ (u◦ t)◦ v′ = (u◦ v

′
)◦ t. Then, there is c ∈ u ◦ v

′
such that 0 ∈ c◦ t

and so c ◦ t ∩ I �= ∅. Hence by Theorem 2.6(iii), c ◦ t ⊆ I. Since t ∈ y ◦ x ⊆ I and I is a
hyper BCK-ideal of H , then c ∈ I. Therefore, u ◦ v

′ ∩ I �= ∅ and so by Theorem 2.6(iii),
u ◦ v

′ ⊆ I. Moreover, since (a ◦ y) ◦ (x ◦ y) � a ◦ x and v′ ∈ a ◦ y, then similarly, we can
show that there is u

′ ∈ a ◦ x such that v
′ ◦ u

′ ⊆ I. Since u, u
′ ∈ a ◦ x and I is a reflexive

hyper BCK-ideal of H , then u
′ ◦ u ⊆ (a ◦ x) ◦ (a ◦ x) � a ◦ a ⊆ I and so u

′ ◦ u � I. Hence
by Theorem 2.6(ii), u′ ◦ u ⊆ I. Now, since (v

′ ◦ u) ◦ (u
′ ◦ u) � v

′ ◦ u
′ ⊆ I, u′ ◦ u ⊆ I and

I is a hyper BCK-ideal of H , then v
′ ◦ u ⊆ I. Now, since u ◦ v′ ⊆ I and v′ ◦ u ⊆ I then

uΘv
′
. By the similar way, we can prove that for all v ∈ a ◦ y there is u

′ ∈ a ◦ x such that
u

′
Θv. Hence, a ◦ xΘa ◦ x, for all a ∈ H . Therefore, Θ is a congruence relation on H . Also,

we must prove that Θ is a regular relation on H . Let x, y ∈ H , x ◦ y Θ{0} and y ◦ x Θ{0}.
Then, there exist a ∈ x ◦ y and b ∈ y ◦ x such that aΘ0 and bΘ0 and so, {a} = a ◦ 0 ⊆ I
and {b} = b ◦ 0 ⊆ I. Hence x ◦ y ∩ I �= ∅ and y ◦ x ∩ I �= ∅. Then by Theorem 2.6(iii),
x ◦ y ⊆ I and y ◦ x ⊆ I and this implies that xΘy. Therefore, Θ is a regular relation on H .
Moreover, we show that I = [0]Θ. Let x ∈ [0]Θ. Then xΘ0 and so {x} = x ◦ 0 ⊆ I. Hence,
[0]Θ ⊆ I. Let x ∈ I, then x ◦ 0 = {x} ⊆ I. Moreover, by Theorem 2.2(iv), 0 ◦ x = {0} ⊆ I.
Thus, xΘ0 and so x ∈ [0]Θ. Therefore, I ⊆ [0]Θ and so I = [0]Θ. Now, since Θ is a regular
congruence relation on H and I = [0]Θ is a reflexive hyper BCK-ideal relation of H , then
by Theorem 3.8, (H

I , ◦, I) is a BCK-algebra.

4. Isomorphism theorems on hyper BCK-algebras

Definition 4.1. Let H and H ′ are two hyper BCK-algebras and f : H −→ H ′ be a map.
Then f is said to be a homomorphism of hyper BCK-algebras if f(x ◦ y) = f(x) ◦ f(y), for
all x, y ∈ H . If f is 1-1 (onto) we say that f is a monomorphism (epimorphism). If f is
both 1-1 and onto, we say that f is an isomorphism. If f : H −→ H ′ is an isomorphism,
then we say that H and H ′ are isomorphic and we write H ∼= H ′. Moreover, the Kerf is
defined by Kerf = {x ∈ H : f(x) = 0}.
Theorem 4.2. If f : H −→ H

′
is a homomorphism of hyper BCK-algebras, then f(0) = 0.

Proof. Let f(0) = a. Since by Theorem 2.2(i), 0 ◦ 0 = {0}, then

0 ∈ f(0) ◦ f(0) = f(0 ◦ 0) = f(0) = a

Hence, 0 = a and so f(0) = 0.

Lemma 4.3. Let f : H −→ H
′
be a homomorphism of hyper BCK-algebras and A,B ⊆ H.

Then,

(i) if x � y, then f(x) � f(y),
(ii) if A � B, then f(A) � f(B),
(iii) Kerf is a hyper BCK-ideal of H.
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Proof. (i) Let x, y ∈ H and x � y. Then 0 ∈ x ◦ y and so 0 = f(0) ∈ f(x◦ y) ⊆ f(x)◦ f(y).
Hence, f(x) � f(y).
(ii) Let A,B ⊆ H , A � B and c ∈ f(A). Then, there is a ∈ A such that c = f(a). Since
A � B, then there is b ∈ B such that a � b and so by (i), c = f(a) � f(b) ∈ f(B). Hence
f(A) � f(B).
(iii) Let x ◦ y � Kerf and y ∈ Kerf , for x, y ∈ H . Since Kerf = f−1({0}) then by (ii),
f(x) ◦ f(y) = f(x ◦ y) � f(Kerf ) = f(f−1({0})) = {0}. Since f(y) = 0 ∈ {0} and {0} is
a hyper BCK-ideal of H , then f(x) ∈ {0} and so x ∈ Kerf . Therefore, Kerf is a hyper
BCK-ideal of H .

Lemma 4.4. Let Θ be a regular congruence relation on H and I = [0]Θ. Then π : H −→
H
I which is defined by π(x) = Ix, for all x ∈ H, is an epimorphism which is called canonical
epimorphism.

Proof. The proof is straightforward.

Theorem 4.5. (Homomorphism theorem) Let Θ be a regular congruence relation on H
and I = [0]Θ. If f : H −→ H ′ is a homomorphism of hyper BCK-algebras such that
I ⊆ Kerf , then f ′ :HI −→ H ′, which is defined by f ′(Ix) = f(x), for all x ∈ H, is an unique
homomorphism such that the following diagram is commutative:

�f
H H ′

H

I

�
�

��

f ′
�

���π

i.e. f ′ ◦ π = f , where π denotes the canonical epimorphism.

Proof. Since Θ is a regular congruence relation on H , then H
I is a hyper BCK-algebra.

Now, let f ′ : H
I −→ H ′ is defined by,

f ′(Ix) = f(x) , ∀ x ∈ H.

Let x, y ∈ H , and Ix = Iy . Then, I ∈ Ix ◦ Iy and so there exists z ∈ x ◦ y such that
I = Iz . Hence, z ∈ I ⊆ Kerf and so f(z) = 0. Since f is a homomorphism, then
0 = f(z) ∈ f(x ◦ y) = f(x) ◦ f(y) and so f(x) � f(y). Similarly, we can prove that
f(y) � f(x) and so by (HK4) of H , f(x) = f(y). Hence, f ′(Ix) = f ′(Iy). Therefore, f ′ is
well-defined. Moreover, it is easy to show that

f ′(Ix ◦ Iy) = f ′(Ix) ◦ f ′(Iy)

and f ′ ◦ π = f . Now, we prove that f ′ is unique. Let g :HI −→ H ′ be a homomorphism
such that g ◦ π = f . Then, for all x ∈ H , g(Ix) = g(π(x)) = f(x) = f ′(π(x)) = f ′(Ix).

Example 4.6. Let f : H −→ H be a homomorphism of hyper BCK-algebras and Θ be a
relation on H which is defined as follows:

xΘy ⇐⇒ f(x) = f(y)

Then Θ is a regular congruence relation on H and [0]Θ =kerf . It is easy to check that Θ
is an equivalence relation. Let x, y, a ∈ H , xΘy and t ∈ x ◦ a(s ∈ y ◦ a). Then f(x) = f(y)
and so f(x◦a) = f(x)◦f(a) = f(y)◦f(a) = f(y ◦a). Hence, there exists s ∈ y ◦a(t ∈ x◦a)
such that f(t) = f(s). Thus, tΘs and so x ◦ aΘy ◦ a. By the similar way, we can show that
a ◦ xΘa ◦ y. Hence, Θ is a congruence relation on H . Now, let x ◦ yΘ{0} and y ◦ xΘ{0}
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for x, y ∈ H . Then, there exist s ∈ x ◦ y and t ∈ y ◦ x such that sΘ0 and tΘ0. Hence,
f(s) = f(0) = f(t) and so 0 = f(0) ∈ f(x) ◦ f(y) ∩ f(y) ◦ f(x). Now, since f(x) � f(y)
and f(y) � f(x) then by (HK4) of H , f(x) = f(y). Therefore, xΘy and so Θ is a regular
relation. It is easy to check that [0]Θ =kerf .

Theorem 4.7. (Isomorphism Theorem) Let Θ be a regular congruence relation on H and
I = [0]Θ. If f : H −→ H ′ is a homomorphism of hyper BCK-algebras such that Kerf = I,
then

H

I
∼= f(H)

Proof. Let f ′ : H
I −→ H ′ is defined by, f ′(Ix) = f(x) for all x ∈ H . It is easy to show that

f ′ is a homomorphism. Now, we show that f ′ is a monomorphism. Let f ′(Ix) = f ′(Iy), for
x, y ∈ H . Then f(x) = f(y) and so

0 = f(0) ⊆ f(x ◦ x) = f(x) ◦ f(x) = f(x) ◦ f(y) = f(x ◦ y)

Hence, there exists t ∈ x◦ y such that f(t) = 0. Then, t ∈ Kerf = I = [0]Θ and so tΘ 0 and
this implies that x ◦ yΘ{0}. Similarly, we can prove that y ◦ xΘ{0}. Since Θ is a regular
relation, then xΘy and so Ix = Iy . Therefore, f ′ is a monomorphism and so

H

I
∼= f(H)

Theorem 4.8. Let Θ and Θ′ are regular congruence relations on hyper BCK-algebras H
and H ′, respectively, such that I = [0]Θ and J = [0]′Θ. If f : H −→ H ′ is a homomorphism
of hyper BCK-algebras such that xΘy implies f(x)Θ′f(y), for all x, y ∈ H, then there exists
an unique homomorphism f∗ : H

I −→ H
J such that the following diagram is commutative;

�f
H H ′

H

I

� �

H

J

π π′

�
f∗

i.e. π′ ◦ f = f∗ ◦ π, where π and π′ denotes the canonical epimorphisms.

Proof. Let f∗ : H
I −→ H

J is defined by,

f∗(Ix) = Jf(x), ∀x ∈ H

First, we show that f∗ is well-defined. Let x, y ∈ H and Ix = Iy. Then, xΘy and so
f(x)Θ′f(y). Hence, Jf(x) = Jf(y). Therefore, f∗ is well-defined. Moreover, it is easy to
prove that f∗(Ix ◦ Iy) = f∗(Ix) ◦ f∗(Iy) and π′ ◦ f = f∗ ◦ π. Now, we show that f∗ is
unique. Let g : H

I −→ H
J be a homomorphism such that π′ ◦ f = g ◦ π. Then, for all

x ∈ H, g(Ix) = g(π(x)) = π′ ◦ f(x) = f∗ ◦ π(x) = f∗(Ix).

Theorem 4.9. Let f : H −→ H
′

be an epimorphism of hyper BCK-algebras, Θ
′

be a
regular congruence relation on H ′ and J = [0]Θ′ . Then, there exists a regular congruence
relation Θ on H such that,

H

I
∼= H

′

J
where, I = [0]Θ.



REGULAR CONGRUENCE RELATIONS ON HYPER BCK-ALGEBRAS 225

Proof. Let relation Θ on H is defined by xΘy ⇐⇒ f(x)Θ
′
f(y), for all x, y ∈ H . Since Θ

′
is

a regular congruence relation on H
′
, then it is easy to check that Θ is a regular congruence

relation on H . Moreover,

x ∈ I = [0]Θ ⇐⇒ xΘ0 ⇐⇒ f(x)Θ
′
f(0) = f(x)Θ

′
0 ⇐⇒ f(x) ∈ [0]Θ′ = J ⇐⇒ x ∈ f−1(J)

Hence I = f−1(J). Now, let π : H
′ −→ H

′

J be canonical epimorphism and f : H −→ H
′

J is
defined by f = π ◦ f . Since π and f are epimorphism, then f̄ is an epimorphism. Moreover,

Kerf̄ = {x ∈ H : f̄(x) = J} = {x ∈ H : π(f(x)) = J} = {x ∈ H : Jf(x) = J}
= {x ∈ H : f(x) ∈ J} = {x ∈ H : x ∈ f−1(J)} = {x ∈ H : x ∈ I} = I

Therefore, by the isomorphism theorem H
I
∼= H

′

J .

Theorem 4.10. Let Θ and Θ1 are regular congruence relations on H, J = [0]Θ and I =
[0]Θ1 . Then,

H
I
J
I

∼= H

J

where, J
I = {Ix ∈ H

I : x ∈ J}.
Proof. Let relation Θ2 on H

I is defined by, IxΘ2 Iy ⇐⇒ xΘy, for all Ix, Iy ∈ H
I . Since Θ

is an equivalence relation on H , then it is easy to check that Θ2 is an equivalence relation
on H

I . Let Ix, Iy, Iz ∈ H
I and IxΘ2Iy . Then by the some modifications we can prove that

Ix ◦ IaΘ2Iy ◦ Ia and Ia ◦ IxΘ2Ia ◦ Iy . Therefore, by Lemma 3.3, Θ2 is a congruence relation
on H

I . Now, let Ix ◦ IyΘ2{I} and Iy ◦ IxΘ2{I}. Then there exist u ∈ x ◦ y and v ∈ y ◦ x
such that IuΘ2I and IvΘ2I. Hence, uΘ0 and vΘ0 and so x ◦ y Θ {0}, y ◦ x Θ{0}. Since Θ
is a regular relation on H , then xΘy and so IxΘ2Iy. Therefore, Θ2 is a regular relation on
H . Moreover,

[I]Θ2 = {Ix ∈ H

I
: Ix Θ2I} = {Ix ∈ H

I
: xΘ0}

= {Ix ∈ H

I
: x ∈ [0]Θ = J} = {Ix ∈ H

I
: x ∈ J} =

J

I

Now, we define ϕ :HI −→ H
J by ϕ(Ix) = Jx. If Ix = Iy, then IxΘ2Iy and so xΘy. Since

J = [0]Θ, then Jx = Jy and so ϕ is well-defined. Moreover, ϕ is a homomorphism. Also,

Kerϕ = {Ix ∈ H

I
: ϕ(Ix) = J)} = {Ix ∈ H

I
: Jx = J} = {Ix ∈ H

I
: x ∈ J} =

J

I
= [I]Θ2

Since ϕ is onto, then by the isomorphism theorem,
H
I
J
I

∼= H
J .

Theorem 4.11. Let Θ and Ω are regular congruence relations on H and K, respectively,
such that I = [0]Θ and J = [0]Ω. Then,

H × K

I × J
� H

I
× K

J

Proof. Let Γ be a relation on H × K which is defined as follows:

(a, b)Γ(c, d) if and only if aΘc & bΩd,

for all (a, b), (c, d) ∈ H × K. It is easy to check that Γ is a regular congruence relation on
H × K. Now, let (a, b) ∈ H × K, then

(a, b) ∈ [(0, 0)]Γ ⇐⇒ a Θ 0 and b Ω 0 ⇐⇒ a ∈ I and b ∈ J ⇐⇒ (a, b) ∈ I × J
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Hence, [(0, 0)]Γ = I × J . Now, we define f : H × K −→ H
I × K

J by f
(
(a, b)

)
= (Ia, Jb),

for all (a, b) ∈ H × K. It is easy to check that f is well-defined. Let (a, b), (c, d) ∈ H × K.
Then,

f
(
(a, b) ◦ (c, d)

)
= f

(
(a ◦ c, b ◦ d)

)
=

⋃
s∈a◦c,t∈b◦d

f
(
(s, t)

)

=
⋃

s∈a◦c,t∈b◦d

(Is, Jt) = (
⋃

s∈a◦c

Is,
⋃

t∈b◦d

Jt)

= (Ia ◦ Jc, Ib ◦ Jd) = (Ia, Jb) ◦ (Ic, Jd)

= f
(
(a, b)

)
◦ f

(
(c, d)

)

Hence, f is a homomorphism. It is easy to check that Ker f = [(0, 0)]Γ = I × J . Moreover,
f is onto. Therefore, by isomorphism theorem,

H × K

I × J
� H

I
× K

J

Lemma 4.12. Let Γ be a regular congruence relation on H1 × H2. Then there are regular
congruence relations Θ1 and Θ2 on H1 and H2, respectively, such that

xΘ1u ⇐⇒ (x, 0) Γ (u, 0)

yΘ2v ⇐⇒ (0, y) Γ (0, v)

for all x, u ∈ H1 and y, v ∈ H2.

Proof. It is easy to check that Θ1 is an equivalence relation on H1. Now, let xΘ1u and
a ∈ H1. Then (x, 0)Γ(u, 0). Since Γ is a congruence relation on H × K, then (x, 0) ◦
(a, 0)Γ (u, 0)◦ (a, 0) and so (x◦a, 0)Γ (u◦a, 0). Hence, for all s ∈ x◦a(t ∈ u◦a) there exists
t ∈ u ◦ a(s ∈ x ◦ a) such that (s, 0) Γ (t, 0). Thus sΘ1t and this show that x ◦ aΘ1y ◦ a. By
the similar way, we can prove that a ◦ xΘ1a ◦ y. Therefore, Θ1 is a congruence relation on
H1. Now, let x, y ∈ H1, x◦ yΘ1{0} and y ◦xΘ1{0}. Then, there exist s ∈ x◦ y and t ∈ y ◦x
such that sΘ10 and tΘ10. Hence (s, 0)Γ(0, 0) and (t, 0)Γ(0, 0). Thus (x, 0) ◦ (y, 0)Γ{(0, 0)}
and (y, 0) ◦ (x, 0)Γ{(0, 0)}. Since Γ is regular, then (x, 0)Γ(y, 0) and so, xΘ1y. Therefore,
Θ1 is a regular congruence relation on H1. By the similar way, we can prove that Θ2 is a
regular congruence relation on H2.

Theorem 4.13. Let Γ be a regular congruence relation on H1 × H2 such that [0]Γ = L.
Then, there are hyper BCK-ideals I and J of H1 and H2, respectively, such that

H1 × H2

L
∼= H1

I
× H2

J

Proof. Let relations Θ1 and Θ2 on H1 and H2 are defined as follow:

xΘ1u ⇐⇒ (x, 0) Γ (u, 0);

yΘ2v ⇐⇒ (0, y) Γ (0, v).
Then by Lemma 4.12, Θ1 and Θ2 are regular congruence relations on H1 and H2, respec-
tively. Let [0]Θ1 = I and [0]Θ2 = J and let f : H1 × H2 −→ H1

I × H2
J is defined by

f(x, y) = (Ix, Iy), for all x ∈ H1 and y ∈ H2. Then f is a homomorphism of hyper BCK-
algebras such that Kerf = I × J . Now, we prove that L = I × J . Let (x, y) ∈ L. Then,
(x, y)Γ(0, 0). Since Γ is a congruence relation on H1 ×H2, then (x, y) ◦ (0, y)Γ(0, 0) ◦ (0, y).
Hence, (x ◦ 0, y ◦ y)Γ(0, 0 ◦ y) and so (x, y ◦ y)Γ(0, 0). Since 0 ∈ y ◦ y, then (x, 0)Γ(0, 0).
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Hence by the definition of Θ1, xΘ10 and so x ∈ I. By the similar way, we can show that
y ∈ J . Therefore, L ⊆ I × J . Now, let (x, y) ∈ I × J . Then, x ∈ I and y ∈ J and so xΘ10
and yΘ20. Hence by the definition of Θ1 and Θ2, (x, 0)Γ(0, 0) and (0, y)Γ(0, 0). Since Γ is a
congruence relation, then (x, y)◦ (x, 0)Γ(x, y)◦ (0, 0) and so (x◦x, y)Γ(x, y). Since 0 ∈ x◦x,
then (0, y)Γ(x, y). Since (0, y)Γ(0, 0), then (x, y)Γ(0, 0). Hence (x, y) ∈ L and so I ×J ⊆ L.
Therefore, L = I × J and so L =kerf . Since f is onto, then by the isomorphism theorem,

H1 × H2

L
∼= H1

I
× H2

J

Theorem 4.14. Let f : H −→ H ′ be an epimorphism of hyper BCK-algebras. Then there
is a one-to-one correspondence between regular congruence relations on H ′ and the regular
congruence relations on H such that the class of 0 with respect to them is contain Kerf .

Proof. Let f : H −→ H ′ be an epimorphism of hyper BCK-algebras and

A={Θ : Θ is a regular congruence relation on H such that Kerf ⊆ [0]Θ}
B={Ω : Ω is a regular congruence relation on H ′}

Let for all Θ ∈ A, ϕ : A −→ B is defined by ϕ(Θ) = Ω such that the relation Ω on H ′ is
defined as follows:

uΩv ⇐⇒ there exist x, y ∈ H such that u = f(x), v = f(y) and xΘy (1)

for all u, v ∈ H ′. First, we show that Ω ∈ B. Since f is an epimorphism and Θ is
reflexive, then Ω is reflexive. It is easy to check that Ω is symmetric. Now, let u, v, w ∈
H ′, uΩv and vΩw. Then by (1) there exist x, y, y′, z ∈ H such that xΘy, y′Θz, f(x) =
u, f(y) = v = f(y′) and f(z) = w. Hence, there exist s ∈ y ◦ y′ and t ∈ y′ ◦ y such
that f(s) = 0 = f(t) and so s, t ∈ Kerf . Since Kerf ⊆ [0]Θ, then sΘ0 and tΘ0. Hence,
y ◦ y′Θ{0} and y′ ◦ yΘ{0}. Since Θ is a regular relation, then yΘy′. Hence by the transitive
condition of Θ, xΘz and so by (1), uΘv. Therefore, Ω is a transitive relation. Now, let
u, v, b ∈ H ′ and uΩv. Then by (1), there exist x, y ∈ H such that u = f(x), v = f(y) and
xΘy. Since f is an epimorphism, then there exists c ∈ H such that f(c) = b. Since Θ is a
congruence relation on H and xΘy, then x ◦ cΘy ◦ c. Hence by (1), f(x ◦ c)Ωf(y ◦ c) and so
f(x)◦f(c)Ωf(y)◦f(c). Thus, u◦ bΩv ◦ b. Similarly, we can show that b◦uΩb◦v. Therefore,
Ω is a congruence relation on H ′. Similar to the proof of congruency of Ω, we can prove
that Ω is a regular relation on H ′. Therefore, Ω ∈ B. Now, we show that ϕ is injective. Let
Θ1, Θ2 ∈ A and ϕ(Θ1) = ϕ(Θ2). Then there are Ω1, Ω2 ∈ B such that Ω1 = Ω2. Moreover,
for all x, y ∈ H ,

xΘ1y ⇐⇒ f(x)Ω1f(y) ⇐⇒ f(x)Ω2f(y) ⇐⇒ xΘ2y

Hence, Θ1 = Θ2 and so ϕ is injective. Now, let Ω ∈ B and Θ be a relation on H which is
defined as follows:

xΘy ⇐⇒ f(x)Ωf(y)

It is easy to check that Θ is a regular congruence relation on H . Let x ∈ Kerf . Then
f(x) = 0 = f(0) and so by (1), xΘ0. Therefore, Kerf ⊆ [0]Θ and so Θ ∈ A. Now, we claim
that ϕ(Θ) = Ω. Let ϕ(Θ) = Ω′, for Ω′ ∈ B. Then by (1) and definition of Θ, for all u ∈ H ′

uΩ′0 ⇐⇒ there exists x ∈ H such that u = f(x) and xΘ0 ⇐⇒ f(x)Ωf(0) ⇐⇒ uΩ0

Thus, [0]′Ω = [0]Ω and so by Lemma 3.4, Ω′ = Ω. Hence, ϕ(Θ) = Ω and so ϕ is onto .
Therefore, ϕ is a bijection.
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Theorem 4.15. Let H1 and H2 are two hyper BCK-algebras. Then there exists a one-
to-one correspondence between the set of all regular congruence relations on H = H1 ⊕
H2 and the product of the set of all regular congruence relations on H1 and the set of
all regular congruence relations on H2. Moreover, if Γ is correspondent to (Θ, Ω) in this
correspondence, then, [0]Γ = [0]Θ ∪ [0]Ω.

Proof. Let H = H1 ⊕ H2 and

A={ Γ : Γ is a regular congruence relation on H}
B={ Θ : Θ is a regular congruence relation on H1}
C={ Ω : Ω is a regular congruence relation on H2}

and ϕ : A −→ B×C is defined by ϕ(Γ) = (Θ, Ω), where Θ and Ω are defined on H1 and H2

as follows:

xΘy ⇐⇒ xΓy , xΩy ⇐⇒ xΓy (1)

for all x, y ∈ H1 and for all x, y ∈ H2. It is easy to check that Θ and Ω are regular
congruence relations on H1 and H2 and ϕ is well-defined. Hence, (Θ, Ω) ∈ B × C. Now, let
Γ, Γ′ ∈ A and ϕ(Γ) = ϕ(Γ′). Then (Θ, Ω) = (Θ′, Ω′) and so Θ = Θ′ and Ω = Ω′. Hence, for
all x ∈ H ,

xΓ0 ⇐⇒ (xΓ0, x ∈ H1) or (xΓ0, x ∈ H2)
⇐⇒ xΘ0 or xΩ0
⇐⇒ xΘ′0 or xΩ′0
⇐⇒ (xΓ′0, x ∈ H1) or (xΓ′0, x ∈ H2)
⇐⇒ xΓ′0

Hence, [0]Γ = [0]Γ′ and so by lemma 3.4, Γ = Γ′. Therefore, ϕ is injective. Now, let
(Θ, Ω) ∈ B and Γ be a relation on H which is defined as follows:

xΓy ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

xΘy if x, y ∈ H1

xΩy if x, y ∈ H2

xΘ0 and yΩ0 if x ∈ H1, y ∈ H2

xΩ0 and yΘ0 if x ∈ H2, y ∈ H1

It is easy to prove that Γ is a regular congruence relation on H . Now, let a, x, y ∈ H such
that xΓy. If x, y ∈ H1 or x, y ∈ H2, the proof is clear. Now, without loss of generality,
let x ∈ H1 and y ∈ H2. Since xΓy, then xΘ0 and yΩ0. If a ∈ H1, then by definition of
H1 ⊕ H2, a ◦ y = a. Since Θ is a congruence relation on H , then a ◦ xΘa ◦ 0=a. Hence,
a ◦ xΘa ◦ y and so a ◦ xΓa ◦ y. By xΘ0 and Lemma 3.3, x ◦ aΘ0 ◦ a = 0. Since y ◦ a = y
and yΩ0 then y ◦ aΩ0 and so y ◦ aΩ0. Thus by the definition of Γ, x ◦ aΓy ◦ a. By the
similar way, if a ∈ H2, then we can show that a ◦ xΓa ◦ y and x ◦ aΓy ◦ a. Therefore, Γ is a
congruence relation on H .
Now, let x ◦ yΓ{0} and y ◦ xΓ{0} for x, y ∈ H . It x, y ∈ H1 or x, y ∈ H2, the proof is clear.
Now, without loss of generality, let x ∈ H1 and y ∈ H2. Then by definition of H1 ⊕ H2,
x ◦ y = x and y ◦ x = y. Hence xΓ0 and yΓ0. Since Γ is transitive, then xΓy and so Γ is a
regular relation on H . Now, we show that ϕ(Γ) = (Θ, Ω). Let ϕ(Γ) = (Θ′, Ω′), for Θ′ ∈ B
and Γ′ ∈ C. Then by (1) and definition of Γ we can check that [0]Θ = [0]′Θ and [0]Ω = [0]′Ω.
Hence by Lemma 3.4, Θ = Θ′ and Ω = Ω′. Therefore, ϕ(Γ) = (Θ, Ω) and so ϕ is a bijection.
Now, let ϕ(Γ) = (Θ, Ω). Then by definition of Γ,

x ∈ [0]Γ ⇐⇒ (xΘ0, x ∈ H1) or (xΩ0, x ∈ H2) ⇐⇒ x ∈ [0]Θ or x ∈ [0]Ω ⇐⇒ x ∈ [0]Θ ∪ [0]Ω
Therefore, [0]Γ = [0]Θ ∪ [0]Ω.
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Corollary 4.16. Let H = H1 ⊕ H2, Θ and Ω are regular congruence relations on H1 and
H2, respectively, I = [0]Θ and J = [0]Ω. Then,

H

I ∪ J
∼= H1

I
⊕ H2

J

Proof. Let H = H1⊕H2, Θ and Ω are regular congruence relations on H1 and H2, I = [0]Θ
and J = [0]Ω. Then by Theorem 4.15, there exists a regular congruence relation Γ on H
such that [0]Γ = [0]Θ ∪ [0]Ω = I ∪ J . Now, let f : H −→ H1

I ⊕ H2
J is defined by,

f(x) =
{

Ix , if x ∈ H1

Jx , if x ∈ H2

We can check that f is an epimorphism and Kerf=I∪J . Hence by the isomorphism theorem
H

I ∪ J
∼= H1

I
⊕ H2

J

5. Maximal regular congruence relation

Definition 5.1. Let H be a hyper BCK-algebra. If there is an element e ∈ H such that
x � e for all x ∈ H , then H is called a bounded hyper BCK-algebra and e is said to be the
unit of H .

Lemma 5.2. Let Θ be a regular congruence relation on bounded hyper BCK-algebra H
and I = [0]Θ. If e ∈ H be a unit of H, then e ∈ I if and only if I = H.

Proof. (⇒) Let e ∈ H be a unit of H and e ∈ I. Let x ∈ H . Since Θ is a congruence
relation and eΘ0, then by Lemma 3.3, e ◦xΘ0 ◦x = {0} and so e ◦xΘ{0}. Since e is unit of
H , then x � e. Hence, 0 ∈ x ◦ e and so x ◦ eΘ{0}. Now, since e ◦ xΘ{0}, x ◦ eΘ{0} and Θ
is a regular relation on H , then xΘe and so by eΘ0, we get that xΘ0. Hence, x ∈ [0]Θ = I,
for all x ∈ H . Therefore, I = H .

(⇐) The proof is clear.

Definition 5.3. Let Θ be a congruence relation on H . Then Θ is called a maximal congru-
ence relation on H if [0]Θ �= H and if Θ′ is a congruence relation on H such that Θ ⊂ Θ′,
then [0]Θ′ = H .

Theorem 5.4. Let H �= {0} be a bounded hyper BCK-algebra. Then there is at least one
maximal regular congruence relation on H.

Proof. Let

T = {Θ : Θ is a regular congruence relation on H, and [0]Θ �= H}
Let ρ be a relation on H which is defined by, xρy ⇐⇒ x = y, for all x, y ∈ H . It is
easy to check that ρ is a regular congruence relation on H and [0]ρ = {0} �= H . Hence,
ρ ∈ T and so T �= ∅. Clear that, (T,⊆) is a partially ordered set. Now, let T0 be a totally
ordered subset of T and Θ =

⋃
Θi∈T0

Θi. It is easy to check that Θ is an equivalence relation

on H . Now, let x, y ∈ H such that xΘy. Then, there is a Θi ∈ T such that xΘiy. Since
Θi is a congruence relation on H , then by Lemma 3.3, x ◦ aΘiy ◦ a and a ◦ xΘia ◦ y, for
all a ∈ H . Since Θi ⊆ Θ, then x ◦ aΘy ◦ a and a ◦ xΘa ◦ y, for all a ∈ H . Therefore, Θ is
a congruence relation on H . Now, let x ◦ yΘ{0} and y ◦ xΘ{0}, for x, y ∈ H . Then, there
are Θi, Θj ∈ T0 such that x ◦ yΘi{0} and y ◦ xΘj{0}. Since T0 is a totally ordered, then
Θj ⊆ Θi or Θi ⊆ Θj. Without loss of generality, we assume that Θj ⊆ Θi. Then x◦ yΘi{0}
and y ◦ xΘi{0} and since Θi is a regular relation, then xΘiy and so xΘy. Hence, Θ is a
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regular relation on H . Now, let [0]Θ = H , by contrary. Since H is bounded, then e ∈ H and
so e ∈ [0]Θ =

⋃
Θi∈T0

[0]Θi . Hence, there is Θi ∈ T0 such that e ∈ [0]Θi and so by Theorem

5.2, [0]Θi = H , which is a contradiction. Thus [0]Θ �= H and so Θ ∈ T . Moreover, Θ is a
upper bound of T0. Now, by Zorn’s lemma T has at least one maximal element in H .

In the following example, we show that the bounded condition is necessary in Theorem
5.4.

Example 5.5. Let N = {0, 1, 2, 3, ...} and hyper operation “ ◦ ” on N is defined as follow:

x ◦ y =
{ {0, x} , if x ≤ y

{x} , if x > y

for all x, y ∈ H . Then (N, ◦, 0) is a hyper BCK-algebra. It is easy to check that hyperopra-
tion “◦” is well-defined. Now we show that N satisfies the axioms of a hyper BCK-algebra.

(HK1): Let x, y, z ∈ N . Then by definition of “◦ ”, (x◦ z)◦ (y ◦ z) ⊆ {0, x} and x ∈ x◦ y.
Since {0, x} � x, then (x ◦ z) ◦ (y ◦ z) � x ◦ y.

(HK2): Let x, y, z ∈ N . Clear that, x ∈ (x ◦ z) ◦ y and x ∈ (x ◦ y) ◦ z. Now, it is enough
to show that 0 �∈ (x ◦ y) ◦ z ⇐⇒ 0 �∈ (x ◦ z) ◦ y. Let 0 /∈ (x ◦ z) ◦ y, then x > z and x > y
and so by definition of “◦”, (x ◦ y) ◦ z = {x} ◦ z = {x}. Thus 0 �∈ (x ◦ y) ◦ z. The proof of
the converse is similar. Therefore, (x ◦ z) ◦ y = (x ◦ y) ◦ z.

(HK3): Let x ∈ N . Since, x ◦ N =
⋃

y∈N

x ◦ y ⊆ {0, x} � x, then x ◦ N � x.

(HK4) Let x, y ∈ N , x � y and y � x. Then 0 ∈ x ◦ y and 0 ∈ y ◦ x. Hence, x ≤ y and
y ≤ x and so x = y.

Therefore, (N, ◦, 0) is a hyper BCK-algebra, which is not bounded. Now, let I be a hyper
BCK-ideal of N . Then, we claim that, I = N or I = {0, 1, 2, ..., n}, for some n ∈ N . Let
I �= N . Since 0 ∈ I, then there is 0 �= m ∈ N such that m �∈ I. Let n be smallest element of
N such that n ∈ I but n+1 �∈ I. Then by Theorem 2.6(ii), {0, 1, 2, ..., n} ⊆ I. Now, let k ∈ I
but k �∈ {0, 1, 2, ..., n}, by contrary. Then n+1 ≤ k and so (n+1)◦n = {n+1} � {k} ⊆ I.
Since I is a hyper BCK-ideal of N and n ∈ I, then n + 1 ∈ I, which is a contradiction.
Hence, I ⊆ {0, 1, 2, ..., n} and so I = {0, 1, 2, ..., n}. Now, we prove that N has not any
maximal regular congruence relation. Let Θ be a maximal regular congruence relation on N ,
by contrary. Since, by Lemma 3.5 and Theorems 2.6(i), I = [0]Θ is a hyper BCK-ideal of N
and [0]Θ �= H , then by the above comment, there exists n ∈ N such that I = {0, 1, 2, ..., n}.
Let relation Θ′ on N is defined as follow:

xΘ′y ⇐⇒ (0 ≤ x, y ≤ n + 1) or (x, y > n + 1 and xΘy)

It is easy to check that Θ′ is a reflexive and symmetric relation. Now, let xΘ′y and yΘ′z.
If 0 ≤ y ≤ n + 1, then 0 ≤ x, z ≤ n + 1 and so xΘ′z. If y > n + 1, then xΘy, yΘz and
x, z > n + 1 and so xΘz. Hence, xΘ′z. Therefore, Θ′ is transitive. Now, we show that Θ′

is a congruence relation on N . First, we claim that if x, y ∈ N such that x, y > n + 1 and
xΘy, then x = y. Let x �= y, by contrary. Without loss of generality, we assume that x < y.
Since Θ is a congruence relation and xΘy, then by Lemma 3.3, {y} = y ◦ xΘy ◦ y = {0, y}
and so 0Θy. Since 0 ≤ 0 ≤ n + 1, then 0 ≤ y ≤ n, which is a contradiction. Thus, x = y.
Let a ∈ N be an arbitrary element of N and x, y ∈ N such that xΘy. Then by definition
of Θ′, 0 ≤ x, y ≤ n + 1 or x, y > n + 1 and xΘy. If x, y > n + 1 and xΘy, then by the above
comment, x = y and so x ◦ aΘ′y ◦ a and a ◦ xΘ′a ◦ y. If 0 ≤ x, y ≤ n + 1, then 0Θ′y and
0Θ′x and so xΘ′y. Now, since x ◦ a ⊆ {0, x} and y ◦ a ⊆ {0, y}, then x ◦ aΘ′y ◦ a. For case
a ◦xΘ̄′a ◦ y, if a > n+1, then a ◦x = {a} = a ◦ y and so a ◦xΘ̄′a ◦ y. If 0 ≤ a ≤ n+1, then
aΘ′0. Since a ◦ x ⊆ {0, a} and a ◦ y ⊆ {0, a}, then a ◦ xΘ̄′a ◦ y. Therefore, by Lemma 3.3,
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Θ is a congruence relation on N . Now, let x, y ∈ N such that x ◦ yΘ′{0} and y ◦ xΘ′{0}.
If x = y, the proof is clear. Let x �= y. Without loss of generality, we assume that x < y.
Hence, y ◦ x = {y} and so yΘ′0. Thus, 0 ≤ x < y ≤ n + 1, and so xΘ′y. Hence, Θ′ is a
regular relation on N . Moreover, x ∈ [0]′Θ ⇐⇒ xΘ′0 ⇐⇒ 0 ≤ x ≤ n + 1 and this implies
that [0]′Θ = {0, 1, 2, ..., n + 1}. Hence, Θ ⊂ Θ′ (since (n + 1, 0) ∈ Θ′ but (n + 1, 0) �∈ Θ) and
[0]Θ′ �= H , which is a contradiction by maximality of Θ. Hence, there is not any maximal
regular congruence on N . Therefore, the bounded condition in Theorem 5.4 is necessary.
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