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Introduction

An interesting result of Ghahramani, Lau and Losert [3] asserts that if G1 and G2 are
two locally compact groups such that LUC(G1)∗ is isometric isomorphic with LUC(G2)∗,
then G1 and G2 are topologically isomorphic. In the present paper we shall extend this result
to locally hypergroups by proving that if K1 and K2 are two locally compact hypergroups
such that LUC(K1)∗ is isometrically isomorphic to LUC(K2)∗, then G(K1) is topologically
isomorphic with G(K2), where G(Ki) denotes the maximum subgroup of Ki(i = 1, 2).

Preliminaries
Throughout this paper, K will denote a locally compact hypergroup (Same as convo in

[4]) with a fixed left Haar measre λ. The following notations are different form those in [4]:
δx The point mass at x ∈ K
Cb(K) The bounded continuous complex velued functions on K
‖f‖∞ sup{|f (x)| : x ∈ K}.

The involution on K is denoted by x → x̌. If f ∈ B∞(K) (the space of bounded complex
valued Borel measurable functions on K) and x, y ∈ K, the left translation xf or �xf is
defined by

xf (y) = �xf(y) =
∫

K

fdδx ∗ δy = f(x ∗ y),

if the integral exists. For f ∈ B∞(K) the two functions f̌ , f̃ which are given by f̌(x) =
f(x̌), f̃(x) = f(x̌) respectively, are in B∞(K). For µ in M(K) the measure µ̌ is defined by

µ̌(f) =
∫

K

f̃(x)dµ(x) (f ∈ B∞(K)).

We also recall that if µ, ν ∈ M(K) and f ∈ B∞(K) then
∫

K

fd(µ ∗ ν) =
∫

K

∫
K

f(x ∗ y)dµ(x)dν(y)

and

µ ∗ f(x) =
∫

K

f(y̌ ∗ x)dµ(y)

f ∗ µ(x) =
∫

K

f(x ∗ y̌)dµ(y)
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The functions µ ∗ f and f ∗ µ are in B∞(K). If f is also in Cb(K) then both µ ∗ f and
f ∗ µ are in Cb(K) with ‖µ ∗ f‖∞ ≤ ‖µ‖‖f‖∞ and if f ∈ C0(K) then µ ∗ f ∈ C0(K). Since
for f ∈ B∞(K), (µ ∗ f )̌ = f̌ ∗ µ̌, it follows that f ∗ µ ∈ C0(K) whenever f ∈ C0(K) and
µ ∈ M(K).

Not that µ̌ ∗ f(x) =
∫

f(y ∗ x)dµ(x) = 〈f, δx ∗ µ〉 and similarly f ∗ µ̌(x) = 〈f, µ ∗ δx〉
(x ∈ K and µ ∈ M(K), f ∈ B∞(K)). For simplicity we denote µ̌ ∗ f and f ∗ µ̌ by µf and
fµ respectively. So if f ∈ C0(K), then both µf and fµ are in C0(K).

We also recall that if K is a hypergroup with a left Haar measure λ, then L1(K) =
Ma(K) = {ν ∈ M(K) : x �−→ δx ∗ ν from K into M(K) is norm continuous} and further-
more Ma(K) is a closed two sided L−ideal of M(K) (c.f. [5]).

Since Ma(K) has a bounded approximate identity an application of Cohen Factorization
theorem [4. Theorem 32.22] shows that

C0(K) = {fµ : f ∈ C0(K), µ ∈ Ma(K)}
= {µf : f ∈ C0(K), µ ∈ Ma(K)}.

For a hypergroup K we denote by LUC(K) the space of all funtions f ∈ Cb(K) for which
the mapping : x �−→ xf is continuous from K to (Cb(K), ‖ ‖∞). Note that LUC(K) =
L1(K) ∗ L∞(K) = L1(K) ∗ LUC(K) (see Lemma 2.2 of [10]).

Let G(K) = {x ∈ K : δx ∗ δx̌ = δx̌ ∗ δx = δe}. Then G(K) is a (closed) subhypergroup
of K and a locally compact group [5 , 10.4C]. It is called the maximum subgroup of K. For
each x ∈ K and y ∈ G(K), there exists a unique z ∈ K such that δx ∗ δy = δz [5, 10.4B].
We write z = xy. For more information on hypergroups we refer the interested reader to
[2] and [9].

A closed linear subspace X of Cb(K) is called left introverted if �x(X) ⊆ X for all
x ∈ K, and for each m ∈ X∗ and f ∈ X the function m�(f) on K is defined by m�(f)(x) =
m(�xf) (x ∈ K) is also in X . In this case the Arens multiplication on X∗ is defined
by 〈nm, f〉 = 〈n,m�(f)〉 (f ∈ X, n, m ∈ X∗) makes sense. Furthermore, X∗ with this
multiplication is a Banach algebra (see [1]). Trivial examples of left introverted subspaces
of Cb(K) are C0(K) and LUC(K). In the case where X = C0(K), then C0(K)∗ = M(K)
and the multiplication on M(K) is precisely the convolution of the measures as defined
above.

The results

We start with the following result which is a generalization of 5.6B of [5].

Theorem 1. Let K be a hypergroup. Let (µα) be a net in M(K) which converges to µ in
M(K) in the weak * - topology with ‖ µα ‖−→‖ µ ‖. Then ‖ µα ∗ ν−µ ∗ ν ‖−→ 0, for every
ν ∈ Ma(K).

Proof. Given ε > 0, by Theorem 3.3 of [8] there exist an α0 and a compact subset F of K
such that for all α ≥ α0

(| µα | + | µ |)(K\F ) < ε.(1)

Let A = {νf : f ∈ Cb(K) and ‖ f ‖∞≤ 1}. Since ‖ νf ‖∞≤‖ ν ‖‖ f ‖∞ it follows that A
is uniformly bounded in Cb(K). We claim that A is equicontinuous. To see this, take x0

fixed in K. So there is a neighbourhood U of x0 such that ‖ δx ∗ ν − δx0 ∗ ν ‖< ε for all
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x ∈ U . If f ∈ Cb(K) with ‖ f ‖∞≤ 1, then for every x ∈ U

| νf(x) − νf(x0) | = |
∫

K

f(y)d(δx ∗ ν − δx0 ∗ ν)(y) |
≤ ‖ f ‖∞‖ δx ∗ ν − δx0 ∗ ν ‖< ε.

That is A is equicontinuous. Let AF denote the set of all elements in A restricted to F . By
the Ascoli Theorem [6, p.233 Theorem 17] the uniform closure of AF is compact in C(F )
(the space of all continuous complex-valued functions on F ), and so it is totally bounded.
Let {νf1, . . . , νfN} be an ε-net for this compact metric space. Let νf ∈ A; then for some
j (1 ≤ j ≤ N)
‖ νf − νfj ‖F < ε, where ‖ . ‖F denotes the sup-norm on F . Since µα −→ µ in the
weak *-topology, there exists an α1(α1 ≥ α0) such that for all i = 1, . . . , N

| ∫
F

νfidµα − ∫
F

νfidµ |< ε for all α ≥ α1.

Thus for all α ≥ α1 we have

| (µα ∗ ν − µ ∗ ν)(f) | ≤ |
∫

K\F

f(x)d(µα ∗ ν − µ ∗ ν)(x) |

+ |
∫

F

f(x)d(µα ∗ ν − µ ∗ ν)(x) |
≤ ‖ ν ‖ (| µα | + | µ |)(K\F )

+ |
∫

F

[νf(x) − νfj(x)]dµα(x) |

+ |
∫

F

νfj(x)dµα(x) −
∫

F

νfjdµ(x) |

+ |
∫

F

[νfj(x) − νf(x)]dµ(x) |
< ε ‖ ν ‖ + ‖ νf − νfj ‖F ‖ µα ‖ +ε

+ ‖ µ ‖‖ νf − νfj ‖F

< ε(3M + 1),

where M > 0 is chosen so that ‖ µ ‖< M, ‖ ν ‖< M and ‖ µα ‖< M for all α. This
implies that ‖ µα ∗ ν − µ ∗ ν ‖≤ ε(3M + 1). �

In view of the above theorem we introduce the following definition.

Definition 2. Let {mα} be a net in LUC(K)∗. We say that (mα) converges to m ∈
LUC(K)∗ strictly if ‖ mαµ − mµ ‖−→ 0 for every µ ∈ Ma(K).

As a consequence of Theorem 1, we obtain the following result.

Corollary 3. Let K be a hypergroup. If (µα) is a net in M(K) which converges to
µ ∈ M(K) in the weak *-topology with ‖ µα ‖−→‖ µ ‖, then (µα) converges to µ strictly.

Lemma 4. For any locally compact hypergroup K,

LUC(K)∗ = M(K) ⊕ C0(K)⊥,

where C0(K)⊥ = {m ∈ LUC(K)∗ : m(f) = 0 for all f ∈ C0(K)}. If m ∈ LUC(K)∗ and
m = µ + m1 for µ ∈ M(K) and m1 ∈ C0(K)⊥, then ‖m‖ = ‖µ‖ + ‖m1‖ and C0(K)⊥ is a
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closed ideal in LUC(K)∗.

Proof. We only need to show that C0(K)⊥ is an ideal in LUC(K)∗, since the proof of the
other parts is the same as that of Lemma 1.1 of [3].

Let n ∈ C0(K)⊥ and h ∈ C0(K). Since �xh ∈ C0(K) for every x ∈ K, it follows that
n(�xh) = 0 for all x ∈ K. Thus for every x ∈ K

〈nh, x〉 = n(�xh) = 0.

Hence nh = 0. So for every m ∈ LUC(K)∗ and h ∈ C0(K) we have 〈mn, h〉 = 〈m,nh〉 = 0.
Thus mn ∈ C0(K)⊥. So C0(K)⊥ is a left ideal in LUC(K)∗.

In order to prove that C0(K)⊥ is a right ideal in LUC(K)∗, we choose n ∈ C0(K)⊥. For
every µ ∈ M(K) and h ∈ C0(K), since µh ∈ C0(K) we have 〈nµ, h〉 = 〈n, µh〉 = 0. Thus
nµ ∈ C0(K)⊥. Let m ∈ LUC(K) and m = µ+m1, for µ ∈ M(K) and m1 ∈ C0(K)⊥. Then
nm = nµ + nm1. Since by the second paragraph nm1 is also in C0(K)⊥, we conclude that
nm ∈ C0(K)⊥. That is, C0(K)⊥ is also a right ideal of LUC(K)∗. The proof is complete.
�

Lemma 5. Let K be a hypergroup. Then for m in LUC(K)∗ the following are equivalent:
(i) m is invertible and ‖m‖ = ‖m−1‖ = 1 ,
(ii) there exists α ∈ C with |α| = 1 and x ∈ G(K) such that m = αδx.

Proof. It is clear that (ii) implies (i). It remains to prove that (i) implies (ii). To see
this we invoke Lemma 4 in order to write m = µ + m1 and m−1 = ν + m2 with µ, ν ∈
M(K),m1, m2 ∈ C0(K)⊥. Then δe = µ∗ ν +(µm2 +m1ν +m1m2). Again by Lemma 4 the
part in parentheses belongs to C0(K)⊥ and hence equals 0. Hence ‖ µ∗ν ‖= 1 =‖ µ ‖=‖ ν ‖,
so m1 = 0 = m2, by Lemma 4. For every h ∈ C0(K) with h(e) = 1 and 0 ≤ h ≤ 1 we have

1 = 〈δe, h〉 = 〈µ ∗ ν, h〉.
Thus

1 =
∫

K

hd(µ ∗ ν) ≤
∫

K

hd | µ | ∗ | ν |=
∫

K

| µ | hd | ν |≤‖ µ ‖‖ ν ‖= 1.

Hence ∫
K

[1− | µ | h]d | ν |= 0.

Since 0 ≤ |µ|h ≤ 1, it follows that |µ|h(t) = 1 for all t ∈ supp(ν). Since

|µ|h(t) = 1 =
∫

K

h(δt ∗ δs)d|µ|(s),

we have ∫
K

[1 − h(δt ∗ δs)]d|µ|(s) = 0.

Thus h(δt ∗ δs) = 1 for all t ∈ supp(ν) and s ∈ supp(µ). Form this it follows that e ∈
supp(δx ∗ δy) for all x ∈ supp(µ) and y ∈ supp(ν). So x = y̌ for every x ∈ supp(ν) and
y ∈ supp(µ). Hence there exists x ∈ K such that supp(µ) = {x} and supp(ν) = {x̌}. Since
δe = µ ∗ ν, it follows that x ∈ G(K). This establishes the proof. �
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The proof of the following Lemma is the same as that of Lemma 1 of [7].

Lemma 6. Let X be a locally compact Hausdorff space and m ∈ C0(X)∗. Then m has a
unique norm preserving extension to a continuous linear functional on Cb(X).

Using Lemma 6 in place of Lemma 1 of [7] in the Proof of Lemma 1.4 of [3], we obtain
the following result. The proof is omitted.

Lemma 7. Let K1, K2 be two locally compact hypergroups and let T be an isometric
isomorphism from LUC(K1)∗ onto LUC(K2)∗. Let (mα) be a net in M(K1) converging
strictly to m in M(K2) and ‖mα‖ = ‖m‖ = 1. Then T (mα) converges to T (m) in the weak
∗−topology of LUC(K2)∗.

Remark. It should be remarked that in the above lemma M(Ki) (i = 1, 2) is considered as
a subspace of LUC(Ki)∗ in the obvious way.

The following is the main result of this paper and it gives a generalization of Theorem
1.6 of [3].

Theorem 8. Let K1 and K2 be two locally compact hypergroups and LUC(K1)∗ is isomet-
rically isomorphic with LUC(K2)∗. Then G(K1) is topologically isomorphic with G(K2).

Proof. Let x ∈ G(K1). Then T (δx)T (δx̌) = T (δx̌)T (δx) = e2 (the identity of K2). So by
Lemma 5 there exist α(x) ∈ C with | α(x) |= 1 and τ(x) ∈ K2 such that T (δx) = α(x)δτ(x).
It is also obvious that α defines a character on K1, that is α(δx ∗ δy) = α(x)α(y) and
| α(x) |= 1 (x, y ∈ K1), and τ defines an isomorphism of K1 onto K2. Let (xi) be a net in
K1 which converges to x in K1; then δxi −→ δx strictly. So by Lemma 7, T (δxi) −→ T (δx)
in the weak * - topology of LUC(K2)∗. Consequently, α(xi) −→ α(x) and τ(xi) −→ τ(x).
This proves the continuity of α and τ . The proof is complete. �

Let τ : K1 → K2 be a (topological) isomorphism of K1 onto K2 and let α : K1 → C

be a continuous character. Define τα : C0(K2) → C0(K1) by (ταf)(x) = α(x)f(τ(x)) for
all x ∈ K1 and f ∈ C0(K2). Then τα is an isometric isomorphism of C0(K2) onto C0(K1).
Furthermore, Tτ,α = τ∗

α is an isometric algebra isomorphism from M(K1) onto M(K2),
where

〈τ∗
α, f〉 =

∫
K1

α(x)f(τ(x))dµ(x) (f ∈ C0(K2), µ ∈ M(K1)).

For each µ ∈ M(K1), let µτ ∈ M(K2) be defined by

〈µτ , f〉 =
∫

K1

f(τ(x))dµ(x) (f ∈ C0(K2)).

Lemma 9. Let K1 and K2 be two locally compact hypergroups. Let τ be a topological iso-
morphism of K1 onto K2 and T be an isometric isomorphism of LUC(K1)∗ onto LUC(K2)∗

such that T (δx) = τ∗
α(x)(x ∈ K1). Then

T (µ) = αµτ (µ ∈ M(K1)).(2)

In particular, T maps M(K1) onto M(K2) and Ma(K1) onto Ma(K2).
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Proof. It is clear that (2) holds for µ = δx(x ∈ K1), and hence for all convex combinations
of such measures. Let µ ∈ M(K1) be a positive measure with ‖ µ ‖= 1. There exists a net
µβ =

∑nβ

i=1 λβ
i δxi of convex combinations of δx’s, x ∈ K1 such that µβ converges to µ in

the weak * - topology of M(K1). Therefore

‖ µβ ‖= 〈µβ , 1〉 −→ 〈µ, 1〉 =‖ µ ‖ .

From Corollary 3 it follows that (µβ) converges to µ strictly. So (Tµβ) converges to Tµ
in the weak * - topology of LUC(K2)∗, by Lemma 7. Hence, the net αµτ

β −→ αµτ in the
weak * - topology. That is, (2) holds for all positive measures µ with ‖ µ ‖= 1, and hence
it must hold for all µ ∈ M(K1).

In order to prove the next assertion, we assume that (zβ) is a net in K2 which converges
to z ∈ K2. Then yβ −→ y in K1, where yβ = τ−1(zβ) and y = τ−1(z). Thus for every
µ ∈ Ma(K1) we have

‖ (Tµ) ∗ δyβ
− (Tµ) ∗ δy ‖ = sup{|

∫
K1

(f ◦ τ)(x)α(x)d(µ ∗ δzβ
− µ ∗ δz)(x) | :

f ∈ C0(K2), ‖ f ‖u≤ 1}
≤ ‖ µ ∗ δzβ

− µ ∗ δz ‖−→ 0.

Similarly, ‖ δyβ
∗ (Tµ) − δy ∗ (Tµ) ‖−→ 0. Hence Tµ ∈ Ma(K2). �

In the case of join hypergroups we present the following result. For the definition of
the join hypergroup G ∨ J of a compact group G and a discrete hypergroup J we refer the
interested reader to 10.5 of [4]. Note that every join hypergroup has a left Haar measure,
by Proposition 1.1 of [9].

Theorem 10. Let K1 = G1 ∨ J1 and K2 = G2 ∨ J2 be two join hypergroups. If J1 is
isomorphic with J2 and LUC(K1)∗ is topologically isomorphic with LUC(K2)∗, then the
following are valid:

i) K1 is topologically isomorphic with K2;
ii) Ma(K1) is isometrically isomorphic with Ma(K2);
iii) M(K1) is isometrically isomorphic with M(K2).

Proof. Since G(Ki) = Gi(i = 1, 2), from Theorem 8 it follows that G1 is topologically
isomorphic with G2. From the fact that J1 is isomorphic with J2, we conclude that K1 is
topologically isomorphic with K2. Now (ii) and (iii) follow from Theorem 9. �
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