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Abstract. There are some games widely played in the routine world of gambles,
roulette, quiz show and the sports exercises. The object of the game is to get the
highest score among all of the players, from one or two chances of sampling. A three-
player game of “Risky Exchange”, which reduces to a three-player continuous game
on the unit cube, having symmetry between players’ roles, is investigated, and the
optimal strategies for the three players and the winning probabilities they can get in
the optimal play are derived.

1 Three-Player Games of “Score Showdown” (Simultaneous-Move Version).
Consider the three players I, II and III (sometimes they are denoted by 1, 2 and 3). Let
Xij(i = 1, 2, 3; j = 1, 2) be the random variable (r.v.) observed by player i at the j-th
observation. We assume that Xij’s are i.i.d., each with uniform distribution in [0, 1].

Each player i privately observes Xi1 and chooses either one of Ai (i.e., he accepts the
observed value of Xi1) or Ri (i.e., he rejects the observed value of Xi1 and resamples a new
r.v. Xi2). The observed value Xi1 (and Xi2 also, when Ri is chosen) and the choices of
either Ai or Ri are, of course, unknown to his (or her) opponents. Let

Si(Xi1, Xi2) =
{

Xi1

ϕ(Xi1, Xi2),
if Xi1 is

{
accepted
rejected,

by player i(1.1)

which we call the score for player i.
After the play is over, the scores are compared, and the player with the highest score

among the players becomes the winner. Each player aims to maximize the probability of
his (or her) winning. The object of the present paper is to solve the three-player game of
“Risky Exchange” i.e. the case where

ϕ(Xi1, Xi2) = Xi2I(Xi1 < Xi2), i = 1, 2, 3.(1.2)

The game reduces to a continuous game on the unit cube having a high symmetry
between the players’ roles, and the solution to the game is derived in Section 2. The result
given by Theorem 1 is somewhat surprising, and the point is mentioned in Remark 1 of
Section 3. Remark 2 is concerned with the sequential-move version of the games.

The games where the score function is given by (1.1), with

ϕ(Xi1, Xi2) = Xi2,(1.3)

ϕ(Xi1, Xi2) =
1
2
(Xi1 + Xi2),(1.4)

or
ϕ(Xi1, Xi2) = (Xi1 + Xi2)I(Xi1 + Xi2 < 1).(1.5)
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are called “Keep-or-Exchange”, “Competing Average” and “Showcase Showdown”, respec-
tively. The simultaneous-move two-player versions of these games are solved in Ref.[1, 2,
4], and the solution to the three-player version of the game “Keep-or-Exchange” is given in
Ref.[3].

2 Simultaneous-Move Game of “Risky Exchange”. Suppose that players’ strate-
gies have the form of

I accepts (rejects) X11 = x, if x > (<)a,

II accepts (rejects) X21 = y, if y > (<)b,

III accepts (rejects) X31 = z, if z > (<)c.

Let Mi(a, b, c) ≡ P {Wi|I, II and III choose a, b and c, respctively}, i = 1, 2, 3.
Also let P (D) be the probability of draw, that is

P (D) = P {X12 < X11 < a, X22 < X21 < b, X32 < X31 < c} =
1
8
a2b2c2(2.1)

≡ M0(a, b, c), say.

Evidently
3∑

i=0

Mi(a, b, c) = 1, ∀(a, b, c)∈ [0, 1]3,(2.2)

and, by symmetry,

Mi(a, a, a) =
1
3

(1 − M0(a, a, a)) =
1
3

(
1 − 1

8
a6

)
, i = 1, 2, 3 ∀a ∈ [0, 1].(2.3)

Let pAAA, pRRR, pAAR, etc., denote the winning probability for I when the players’
choice-triple is A−A−A,R−R−R,A−A−R, etc. Also let qAAA, qRRR, qAAR(rAAA, rRRR,
rAAR) etc., similarly denote the winning probability for II (III). Then we find that

M1(a, b, c) = pAAA + pRRR + (other six probabilities),

M2(a, b, c) = qAAA + qRRR + (other six probabilities),

M3(a, b, c) = rAAA + rRRR + (other six probabilities),

pAAA = P {X11 > a, X21 > b, X31 > c, X11 > X22 ∨ X31}(2.4)

=
∫ 1

a∨(b∨c)

(t − b)(t− c)dt,

pRRR = P [X11 < a∧ X12, X22 < X21 < b,(2.5)
{X32 < X31 < c} ∪ {X31 < c ∧ X32, X12 > X32}]

+P [X11 < a ∧X12, X21 < b ∧ X22,

{X32 < X31 < c, X12 > X22} ∪ {X31 < c ∧X32, X12 > X22 ∨X32}]
=

1
8
(2a − a2)b2c2 +

1
2
b2

∫∫
1>s1>s3>0

(a ∧ s1)(c ∧ s3)ds1ds3

+
1
2
c2

∫∫
1>s1>s2>0

(a ∧ s1)(b ∧ s2)ds1ds2

+
∫∫∫

0<s2∨s3<s1<1

(a ∧ s1)(b ∧ s2)(c∧ s3)ds1ds2ds3,



EQUILIBRIUM IN THE THREE-PLAYER GAME 201

pARA = P [X11 > a, X31 > c, {X22 < X21 < b, X11 > X31}(2.6)
∪{X21 < b ∧ X22, X11 > X22 ∨ X31}]

=
1
2
b2P {X11 > a, X31 > c, X11 > X31}

+
∫ 1

a∨c

(s1 − c)ds1

∫ s1

0

(b ∧ s2)ds2,

pRAA = P {X11 < a∧ X12, b < X21 < X12, c < X31 < X12}(2.7)

=
∫ 1

b∨c

(a ∧ t)(t − b)(t− c)dt,

pARR = P [X11 > a, X22 < X21 < b,(2.8)
{X32 < X31 < c} ∪ {X31 < c ∧X32, X11 > X32}]

+P [X11 > a, X21 < b ∧ X22,

{X32 < X31 < c, X11 > X22} ∪ {X31 < c ∧ X32, X11 > X22 ∨X32}]

=
1
4
āb2c2 +

1
2
b2

∫ 1

a

ds1

∫ s1

0

(c ∧ s2)ds2 +
1
2
c2

∫ 1

a

ds1

∫ s1

0

(b ∧ s2)ds2

+
∫ 1

a

ds1

∫∫
s2∨s3<s1

(b ∧ s2)(c ∧ s3)ds2ds3,

pAAR = P {X11 > a, X21 > b, X32 < X31 < c, X11 > X21}(2.9)
+P {X11 > a, X21 > b, X31 < c ∧ X32, X11 > X21 ∨ X32}

=
1
2
c2P {X11 > a, X21 > b, X11 > X21} +

∫ 1

a∨b

(s1 − b)ds1

∫ s1

0

(c ∧ s3)ds3

(by denoting s1 = X11 and s3 = X32),

pRRA = P [X11 < a ∧X12, X31 > c,(2.10)
{X22 < X21 < b, X12 > X31} ∪ {X21 < b ∧ X22, X12 > X22 ∨ X31}]

=
1
2
b2

∫ 1

c

(s1 − c)(a ∧ s1)ds1 +
∫ 1

c

(s1 − c)(a ∧ s1)ds1

∫ s1

0

(b ∧ s2)ds2

(by denoting s1 = X12 and s2 = X22),

and finally

pRAR = P [X11 < a ∧X12, X21 > b,(2.11)
{X32 < X31 < c, X12 > X21} ∪ {X31 < c ∧ X32, X12 > X21 ∨X32}]

=
1
2
c2

∫ 1

b

(s1 − b)(a ∧ s1)ds1 +
∫ 1

b

(s1 − b)(a ∧ s1)ds1

∫ s1

0

(c ∧ s3)ds3

(by denoting s1 = X12 and s3 = X32).

Equations (2.6) & (2.9) and (2.10) & (2.11) are the two pairs in each of which one
becomes the other by interchange of b and c.

First we want to make sure that Eqs(2.4)∼(2.11) do not involve any error, by showing
that (2.3) holds true.
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Before doing that, we prepare the following lemma.
Lemma 1.1. The following five identities about multiple integrals take place.

f (a) ≡
∫∫

1>s1>s2>0

(a ∧ s1)(a ∧ s2)ds1ds2 =
1
8
a4 − 1

2
a3 +

1
2
a2,(2.13)

g(s1|a) ≡
∫∫

s2∨s3<s1

(a ∧ s2)(a ∧ s3)ds2ds3(2.14)

=

⎧⎪⎪⎨
⎪⎪⎩

1
4
s4
1, if s1 < a

1
4
a4 + a2(s1 − a)2 + a3(s1 − a), if s1 > a,

[
c.f., This is piecewise increasing with values from g(0|a) = 0 to
g(1|a) = 2f (a), and note that

∫ 1

a
g(t|a)dt = − 1

12
a5 + 1

4
a4 − 1

2
a3 + 1

3
a2.

]

h(a) ≡
∫∫∫

0<s2∨s3<s1<1

(a ∧ s1)(a ∧ s2)(a ∧ s3)ds1ds2ds3(2.15)

=
∫ 1

0

(a ∧ s1)g(s1|a)ds1

=
1
24

a6 +
1
4
a5ā +

1
3
a3ā3 +

1
2
a4ā2 = − 1

24
a6 +

1
4
a5 − 1

2
a4 +

1
3
a3,

∫ 1

a

ds1

∫ s1

0

(a ∧ s2)ds2 =
1
2
aā,(2.16)

and

k(a) ≡
∫ 1

a

(s1 − a)ds1

∫ s1

0

(a ∧ s2)ds2 =
1
4
(aā)2 +

1
3
aā3.(2.17)

Proofs are easy.
Applying Lemma 1.1 to Eq.(2.4)∼(2.11), we can compute M1(a, a, a). We obtain that

[pAAA + pRAA]a=b=c = (1 + a)
∫ 1

a

(t − a)2dt =
1
3
(1 + a)ā3(2.18)

from (2.4) and (2.7) ;

[pRRR]a=b=c =
1
8
a4(2a − a2) + a2f (a) + h(a)(2.19)

= − 1
24

a6 +
1
3
a3,

from (2.5), together with (2.13) and (2.15) ;

[pARA + pAAR + pRRA + pRAR]a=b=c = (2 + 2a)
{

1
4
(aā)2 + k(a)

}
(2.20)

= (1 + a)
{

(aā)2 +
2
3
aā3

}
,
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from (2.6), (2.9), (2.10) and (2.11), together with (2.16) and (2.17) ; and finally

[pARR]a=b=c =
1
4
āa4 + a2

∫ 1

a

ds1

∫ s1

0

(a ∧ s2)ds2 +
∫ 1

a

g(s1|a)ds1(2.21)

= a3ā +
1
3
a2ā3 = −1

3
a5 +

1
3
a2

from (2.8), helped by (2.14) and (2.16).
Adding the four equations (2.18)∼(2.21) we find, after simplification, that

[pAAA + pRRR + (other six probabilities)]a=b=c

=
1
3
(1 + a)ā3 +

(
− 1

24
a6 +

1
3
a3

)
+ (1 + a)

{
(aā)2 +

2
3
aā3

}
+

(
−1

3
a5 +

1
3
a2

)

=
1
3

(
1 − 1

8
a6

)
, ∀a ∈ [0, 1],

and hence (2.3) holds true.
Now we want to compute M1(a, b, b), from Eqs(2.4)∼(2.11). For the subsequent equa-

tions we denote I(a < b), I(a = b) and I(a > b), by ξ, η and ζ respectively.
Lemma 1.2. The following four identities about multiple integrals take place.

(2.13α)
∫∫

1>s1>s2>0

(a ∧ s1)(b ∧ s2)ds1ds2 = (ξ + η) ·
{
− 1

24
a4 +

1
6
ab(b2 − 3b + 3)

}

+ζ ·
{

1
24

b4 − 1
12

ab(2a2 − 3ab − 6b̄)
}

,

(See Eq.(2.6) in Ref.[4])

(2.15α)
∫∫∫

0<s2∨s3<s1<1

(a ∧ s1)(b ∧ s2)(b ∧ s3)ds1ds2ds3 =
∫ 1

0

(a ∧ s1)g(s1|b)ds1

= (ξ + η) ·
[

1
24

a6 +
a

20
(b5 − a5) + a

∫ 1

b

g(s1|b)ds1

]

+ζ ·
[

1
24

b6 +
∫ a

b

s1g(s1|b)ds1 + a

∫ 1

a

g(s1|b)ds1

]
,

(2.16α)
∫ 1

a

ds1

∫ s1

0

(b ∧ s2)ds2 = (ξ + η) ·
[

1
2
(a2ā + b̄2b) +

∫ b

a

s2s̄2ds2

]

+ζ ·
[
1
2
(āb2 − ā2b) + āb̄b

]
,

(2.17α)
∫ 1

a

(s1 − b)ds1

∫ s1

0

(b ∧ s2)ds2 = (ξ + η) ·
[

1
2

∫ b

a

s2
1(s1 − b)ds1 +

1
4
(bb̄)2 +

1
3
bb̄3

]

+ζ ·
∫ 1

a

(s1 − b)
(

b2

2
+ b(s1 − b)

)
ds1.



204 MINORU SAKAGUCHI

Proofs are easy. The coefficients of η in Eqs(2.13α), (2.15α) ∼ (2.17α) are equal to
Eqs(2.13), (2.15)∼(2.17) in Lemma 1.1.

Applying Lemma 1.2 to Eqs(2.4)∼(2.11), we obtain

[pAAA + pRAA]b=c =
∫ 1

a∨b

(t − b)2dt +
∫ 1

b

(a ∧ t)(t − b)2dt(2.22)

= (ξ + η) · 1
3
(1 + a)b̄3 + ζ ·

[
(1 + a)

∫ 1

a

(t − b)2dt +
∫ a

b

t(t − b)2dt

]

from (2.4) and (2.7) ;

[pRRR]b=c =
1
8
(2a − a2)b4 + b2

∫∫
1>s1>s2>0

(a ∧ s1)(b ∧ s2)ds1ds2(2.23)

+
∫ 1

0

(a ∧ s1)g(s1|b)ds1

=
1
8
(2a − a2)b4 + (ξ + η) ·

[
− 1

24
a4b2 +

1
6
ab3(b2 − 3b + 3)

+
1
24

a6 +
a

20
(b5 − a5) + a

∫ 1

b

g(s1|b)ds1

]

+ζ ·
[{

1
24

b6 − 1
12

ab3(2a2 − 3ab− 6b̄)
}

+
{

1
24

b6 +
∫ a

b

s1g(s1|b)ds1 + a

∫ 1

a

g(s1|b)ds1

}]

from (2.5), together with (2.13α) and (2.15α) ;

[pARA + pAAR + pRRA + pRAR]b=c(2.24)

= b2

{
P (X11 > a, X21 > b, X11 > X21) +

∫ 1

b

(a ∧ s1)(s1 − b)ds1

}

+2
[∫ 1

a∨b

(s1 − b)ds1

∫ s1

0

(b ∧ s2)ds2 +
∫ 1

b

(a ∧ s1)(s1 − b)ds1

∫ s1

0

(b ∧ s2)ds2

]

= b2

[
(ξ + η) · 1 + a

2
b̄2 + ζ ·

{
1
2
(1− a2 − 2āb) +

∫ a

b

s1(s1 − b)ds1 + a

∫ 1

a

(s1 − b)ds1

}]

+2
[
(ξ + η) · (1 + a)k(b) + ζ ·

{
(1 + a)

∫ 1

a

(s1 − b)ds1

∫ s1

0

(b ∧ s2)ds2

+
∫ a

b

s1(s1 − b)ds1

∫ s1

0

(b ∧ s2)ds2

}]

from (2.6), (2.9), (2.10) and (2.11), helped by (2.17α), and finally

[pARR]b=c =
1
4
āb4 + b2

∫ 1

a

ds1

∫ s1

0

(b ∧ s2)ds2 +
∫ 1

a

g(s1|b)ds1(2.25)

=
1
4
āb4 + (ξ + η) ·

[
b2

2
(a2ā + b̄2b) + b2

∫ b

a

s2s̄2ds2

]
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+ζ ·
{

1
2
(āb4 − ā2b3) + āb̄b3

}
+

[
(ξ + η) ·

{∫ b

a

1
4
s4
1ds1 +

∫ 1

b

g(s1|b)ds1

}

+ζ ·
∫ 1

a

g(s1|b)ds1

]

from (2.8), helped by (2.16α). It is important to confirm that Eqs(2.22)∼(2.25) becomes
Eqs(2.18)∼(2.21) when we make a = b ± 0 (i.e., we compute the sum of the coefficients of
η in Eqs(2.18)∼(2.21).)

We now prove the following result.

Theorem 1 Solution to the simultaneous-move three-player game of “Risky Exchange” is
as follows. Let b∗(≈ 0.656) be a unique root in [0, 1] of the equation

2b4 + b5 = 1 − b + b2 − b3.(2.26)

Then the game has a unique equilibrium point (b∗, b∗, b∗) and the equilibrium payoffs

M0(b∗, b∗, b∗) =
1
8
b∗6 ≈ 0.010(2.27)

Mi(b∗, b∗, b∗) =
1
3

(
1 − 1

8
b∗6

)
≈ 0.330, i = 1, 2, 3.(2.28)

Proof is made along the same line as is followed in Ref.[3 : Theorem 3]. We want to prove
that

max
a∈[0,1]

M1(a, b∗, b∗) = M1(b∗, b∗, b∗),(2.29)

where b∗ ≈ 0.656 is defined by (2.26).
We note that, for any b ∈ [0, 1],

lim
a=b−0

M1(a, b, b) = lim
a=b+0

M1(a, b, b) =
1
3
(1 − 1

8
b6),

and
M1(a, b, b) = sum of Eqs(2.22) ∼ (2.25)

Denote the partial derivative
∂

∂a
of each of (2.22)∼ (2.25) by (2.22α) ∼ (2.25α). The

partial derivative
∂

∂a
is undefined in Case η. Then

(2.22α) = ξ · 1
3
b̄3 + ζ ·

[∫ 1

a

(t − b)2dt − (a − b)2
]

,

(2.23α) =
1
4
āb4 + ξ ·

[
1
6
(−a3b2 + b5) +

1
2
b̄b3 +

1
20

(b5 − a5) +
∫ 1

b

g(s1|b)ds1

]

+ζ ·
[
1
2
(−a2b3 + ab4 + b̄b3) +

∫ 1

a

g(s1|b)ds1

]
,

(2.24α) = ξ ·
[
1
2
(bb̄)2 + 2k(b)

]
+ ζ ·

[
b2

{
−a + b +

∫ 1

a

(s1 − b)ds1

}

+2
{∫ 1

a

(s1 − b)ds1

∫ s1

0

(b ∧ s2)ds2 − (a− b)
∫ a

0

(b ∧ s2)ds2

}]
,
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and

(2.25α) = −1
4
b4 + ξ ·

(
−1

2
a2b2 − 1

4
a4

)
+ ζ ·

[
−1

2
b4 + (b − a)b3 − g(a|b)

]
.

The condition that

0 =
[

∂

∂a
M1(a, b, b)

]
a=b−0

(2.30)

= [sum of the coefficients of ξ in Eqs(2.22α) ∼ (2.25α)]a=b−0

is identical to

0 =
1
3
b̄3 +

(
1
4
b̄b4 +

1
2
b̄b3 +

∫ 1

b

g(s1|b)ds1

)
+

(
1
2
(bb̄)2 + 2k(b)

)
− b4,

which, after simplification, becomes

−1
3
b5 − 2

3
b4 − 1

3
b3 +

1
3
b2 − 1

3
b +

1
3

= 0

or, equivalently, Eq.(2.26).
Next we find that, for 0 ≤ a < b,

∂2

∂a2
M1(a, b, b) =

∂

∂a
[sum of the coeff. of ξ in Eqs(2.22α) ∼ (2.25α)]

=
(
−1

4
b4 − 1

2
a2b2 − 1

4
a4

)
+ (−ab2 − a3) < 0;

and, for b < a ≤ 1,

∂2

∂a2
M1(a, b, b) =

∂

∂a
[sum of the coeff. of ζ in Eqs(2.22α) ∼ (2.25α)]

=
[−(a − b)2 − 2(a − b)

]
+

[
−1

4
b4 +

1
2
(−2ab3 + b4) − g(a|b)

]

+
[
b2(−1 − a + b) + 2

{
−(a − b)

∫ a

0

(b ∧ s2)ds2

−
∫ a

0

(b ∧ s2)ds2 − (a − b)(a ∧ b)
}]

+
[
−b3 − ∂

∂a
g(a|b)

]
< 0

(since all four terms of [· · ·] are negative).

Therefore,
∂

∂a
M1(a, b∗, b∗) is decreasing in a ∈ [0, 1] and

[
∂

∂a
M1(a, b∗, b∗)

]
a=b∗

= 0. So,

M1(a, b∗, b∗) is concave and unimodal with the maximal value M1(b∗, b∗, b∗) = 1
3
(1− 1

8
b∗6).

Thus Eq.(2.29) is proven.
The rest part in the proof of the theorem proceeds quite analogously as in Theorem 3

of Ref.[3]. It is lengthy and annoying, and we omit the detail. This completes the proof of
our Theorem 1. �
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3 Remarks.

Remark 1. The present author obtained in Ref.[4 ; Theorem 2] the following result.

Theorem 2 Solution to the simultaneous-move two-player game of “Risky Exchange” is
as follows. Let a∗(≈ 0.54386) be a unique root in [0, 1] of the equation

a(a2 + a + 1) = 1.(3.1)

Then the game has a unique equilibrium point (a∗, a∗) and the equilibrium payoffs

P (draw) =
1
4
a∗4 ≈ 0.02184,(3.2)

Mi(a∗, a∗) =
1
2

(
1 − 1

4
a∗4

)
≈ 0.48908, i = 1, 2.(3.3)

The optimal thresholds characterizing the solutions of the three-player game in Theorem
1 and the two-player game in Theorem 2, that is, Eqs (2.26) and (3.1) are seemingly
unrelated. However, since we can rewrite Eqs (2.26) and (3.1) as

b4(b2 + 3b + 3) = 1,(3.4)

and
a2(a2 + 2a + 2) = 1,(3.5)

respectively, some connection can be observed.
Furthermore, we already have one more interesting and maybe related result in Ref.[3 ;

Theorem 2].

Theorem 3 Solution to the simultaneous-move three-player game of “Keep-or-Exchange”
is as follows. The game has a unique equilibrium point (a∗, a∗, a∗) and the common equlib-
rium payoffs 1/3, where a∗ ≈ 0.691 is a unique root in [0, 1] of the equation

2a4 = 1 − a + a2 − a3.(3.6)

Note that Eqs (2.26) and (3.6) are very much alike.

Remark2. It is interesting to consider the sequential-move version of the game. There
appears the unfair acquisition of information by players. The game is played in three stages.

In the first stage, I observes that X11 = x and chooses one of either A1 (i.e., I accepts
x) or R1 (i.e., I rejects x, and resamples a new r.v. X12). The observed value x and I’s
choice of either A1 or R1 are informed to II and III. But the observed value of X12 is not
informed to II and III.

In the second stage, after knowing I’s choice of x&(A1 ∪ R1), II observes that X21 = y
and chooses either one of A2 (i.e., II accepts y) or R2 (i.e., II rejects y and resamples a new
r.v. X22). The observed value of y and II’s choice of either A2 or R2 are informed to III.
But the observed value of X22 is not informed to III.

In the third stage, after knowing I’s choice of x&(A1∪R1) and II’s choice of y&(A2∪R2),
III observes that X31 = z and chooses either one of A3 (i.e., III accepts z) or R3 (i.e., III
rejects z and resamples a new r.v. X32).

After the third stage is over, showdown is made, the scores are compared and the player
with the highest score among the players becomes the winner. Each player aims to maximize
the probability of his (or her) winning. We assume that all players are intelligent, and each
player should prepare for that any subsequent player must use their optimal strategies.
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The three-player game of ‘Keep-or-Exchange’ (i.e., the score is defined by (1.1)-(1.3)) is
solved in Ref.[3 ; Theorem 2]. The solution is found to be very complicate far more than
expected.

The sequential-move three-player games of “Risky Exchange” (i.e., the score is given
by (1.1)-(1.2)) remains to be solved. The sequential-move two-player games of “Keep-or-
Exchange”, “Competing Average” and “Showcase Showdown” are all solved in Ref.[2].
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