OPTIMAL SEQUENTIAL DECISIONS WITH INFORMATION INVARIANCE

E.G. ENNS

Received December 12, 2003

ABSTRACT. N independent and identically distributed random variables are sampled sequentially from a known continuous distribution. The optimal policy for maximizing the probability of obtaining the maximum of the sequence is formulated generally for any information source and illustrated with several examples. When following the optimal policy, it is shown in each case considered that the expected number of random variables sampled is simply related to the probability of selecting the maximum of the sequence. This relationship is posed as a conjecture for all information sources.

1 Introduction N independent and identically distributed random variables are sampled sequentially from a known continuous distribution. At each sampling an irrevocable decision for acceptance or rejection must be made. Exactly one of the N random variables sampled is to be accepted at which time the sampling procedure terminates. The problem is to find the optimal strategy which maximizes the probability of selecting the largest in the sequence when various types of information are available from the sample. Under this strategy we also find the expected number of observations made until a choice is made.

The types of information considered in this article are:

- A. <u>No information</u>: In this case there is no information about the value the random variable assumes when it is sampled.
- B. **Complete information**: In this case the value a random variable assumes when sampled is known exactly.
- C. <u>Sample extremum information</u>: In this case the information available is whether the random variable sampled is greater or less than the maximum of the random variables previously sampled.
- D. **Single level information**: In this example the information available is whether the random variable sampled is greater or less than some fixed number.

Examples B and D have been considered by Gilbert and Mosteller [1]. D is also a special case of Enns [2] in which case he considers an arbitrary number of sampling levels. Example C is equivalent to the complete information case B with the exception that no information about the distribution of the random variables sampled is known. This has been considered by Morgenstern [3]. This article combines the varied approaches in a single formulation.

In each of the above cases, the distribution and expected value of the number of random variables sampled has been obtained.

²⁰⁰⁰ Mathematics Subject Classification. Primary 90D35, Secondary 62L15.

Key words and phrases. Optimal stopping, Information Invariance, Best choice problem.

E.G. ENNS

Conjecture 1 If M_N is the event that the maximum in the sequence of size N is selected and K_N is the position in the sequence of the random variable selected, then we show that under the optimal strategy:

(1.1)
$$P(M_N) = (E(K_N) - \beta)/N$$

 β is the number of random variables at the beginning of the sequence that are not available for selection under the optimal policy.

All examples in this article confirm this conjecture.

2 Formulation Let (Y_1, Y_2, \ldots, Y_N) be N independent and identically distributed random variables with known distribution $F(y) = P\{Y_i \leq y\}$. As the distribution F(y) is known and the problem is to select the maximum of the sequence, then this problem is equivalent to selecting the maximum of the sequence (X_1, X_2, \ldots, X_N) where the transformation from $Y \to X$ preserves the ordering of the sequence. In this paper the transformation $X_i = F(Y_i), i = 1, 2, \ldots, N$ will be used. Hence X_i has a uniform distribution on [0, 1].

Let $\underline{z}_n = (x_1, x_2, \ldots, x_n)$ for $n \leq N$ denote the sequential sample obtained to the *n*th sampling from (X_1, X_2, \ldots, X_N) . Let ω_n be the information available ¿from \underline{z}_n ; this will vary in each of the cases mentioned. Then define:

 M_N : the event that the maximum of the sample of size N is selected.

 K_N : the number of random variables sampled, including the one selected.

 A_i : the event that X_i , i = 1, 2, ..., N, is selected in the sequential procedure.

Decisions at each stage in the procedure will be based on the information available. Hence let

$$D = \{D_1(\omega_1), D_2(\omega_2), \dots, D_N(\omega_N)\}\$$

represent the policy which is to be followed where

(2.1)
$$D_k(\omega_k) = P\{A_k \mid A'_1, A'_2, \dots, A'_{k-1}, \omega_k\}$$
 for $k = 1, 2, \dots, N$

The probability of obtaining the maximum of the sequence when following policy D with information source γ is $P_D^{\gamma}\{M_N\}$. The optimal policy D^* is defined as

(2.2)
$$P^{\gamma} \{M_N\} = P_{D^*}^{\gamma} \{M_N\} = \max_D P_D^{\gamma} \{M_N\}.$$

The distribution and expected value of K_N will be obtained for each information source mentioned. In each case the expected value of K_N will be related to the corresponding $P\{M_N\}$. Define:

$$P^{\gamma}\{K_N = k\} = P\{K_N = k \mid \text{ information source } \gamma\}$$

(2.3)
$$E^{\gamma} \{ K_N \} = \sum_k k P^{\gamma} \{ K_N = k \}.$$

3 The probability of obtaining the Maximum of the sequence and the Expected number of variables sampled One can now write:

$$P_{D}^{\gamma} \{M_{N}\} = \int_{0}^{1} P\{M_{N} \mid A_{1}, \underline{z}_{1}\} D_{1}(\omega_{1}) dx_{1} + \int_{0}^{1} dx_{1}(1 - D_{1}(\omega_{1})) \int_{0}^{1} dx_{2} P\{M_{N} \mid A_{2}, A_{1}', \underline{z}_{2}\} D_{2}(\omega_{2}) + \dots + \int_{0}^{1} dx_{1} (1 - D_{1}(\omega_{1})) \dots$$

$$(3.1) \int_{0}^{1} dx_{N-1}(1 - D_{N-1}(\omega_{N-1})) \int_{0}^{1} dx_{N} P\{M_{N} \mid A_{N}, A_{1}', \dots, A_{N-1}', \underline{z}_{N}\} D_{N}(\omega_{N}).$$

Exactly one random variable is to be selected, hence:

$$D_N(\omega_N) \equiv 1$$

and

$$P\{M_N \mid A_k, A'_1, \dots, A'_{k-1}, \underline{z}_k\} = 0 \quad \text{if } x_k \le r_{k-1} \\ = x_k^{N-k} \quad \text{if } x_k > r_{k-1}$$

(3.2) where
$$r_k = \max(x_1, x_2, \dots, x_k)$$
 for $k = 1, \dots, N$.

Substitution of (3.2) into (3.1) yields:

(3.3)
$$P_D^{\gamma} \{M_N\} = \int_0^1 x_1^{N-1} D_1(\omega_1) \, dx_1 + \sum_{k=2}^N \left[\prod_{j=1}^{k-1} \int_0^1 dx_j (1 - D_j(\omega_j)) \right] \int_{r_{k-1}}^1 dx_k x_k^{N-k} D_k(\omega_k).$$

In order to find D^* , the first step is to find $D^*_{N-1}(\omega_{N-1})$.

The last two terms of the summation in (3.3) may be written as:

$$\prod_{j=1}^{N-2} \int_0^1 dx_j \left(1 - D_j\left(\omega_j\right)\right) \phi(\underline{z}_{N-2})$$

where

(3.4)

$$\phi(\underline{z}_{N-2}) = (1 - r_{N-2}^2)/2 + \int_{r_{N-2}}^1 dx_{N-1} (2x_{N-1} - 1) D_{N-1} (\omega_{N-1}) - (1 - r_{N-2}) \int_0^{N-2} D_{N-1} (\omega_{N-1}) dx_{N-1}.$$

In order to maximize (3.3), one must first maximize $\phi(\underline{z}_{N-2})$. This can only be done by first specifying the information ω_{N-1} .

4 Optimal policies for various types of information

A. <u>No information</u>: In this case the most general decision is:

$$D_{N-1}^{*}(\omega_{N-1}) = p_{N-1}$$

as it cannot be a function of \underline{z}_{N-2} . Therefore

$$\phi(\underline{z}_{N-2}) = (1 - r_{N-2}^2)/2$$

which is not a function of p_{N-1} , namely p_{N-1} may be arbitrarily selected. Successively substituting $D_k^*(\omega_k) = p_k$, one finally obtains:

(4.1)
$$P^{A}\{M_{N}\} = \int_{0}^{1} dx_{1} x^{N-1} D_{1}^{*}(\omega_{1}) + \int_{0}^{1} dx_{1} (1 - D_{1}^{*}(\omega_{1}))(1 - x_{1}^{N-1})/(N-1).$$

With $D_1^*(\omega_1) = p_1$, one finds $P^A\{M_N\} = 1/N$ as expected. This illustrates that any policy is as good as any other policy when there is no information available. Hence we may select the policy $D_1^*(\omega_1) \equiv 1$. Then

$$P^A \{ K_N = k \} = 1 \quad \text{if} \quad k = 1$$
$$= 0 \quad \text{otherwise}$$

and

(4.2)
$$E^{A} \{K_{N}\} / N = P^{A} \{M_{N}\} = 1/N$$

This confirms the Conjecture with $\beta = 0$.

B. Complete information: In this case $D_{N-1}(\omega_{N-1})$ can be based on a complete knowledge of z_{N-2} . (3.4) is then obviously maximized when:

(4.3)
$$D_{N-1}^{*}(\omega_{N-1}) = 1 \quad \text{if} \quad x_{N-1} > \max(0.5, r_{N-2}) = 0 \quad \text{otherwise.}$$

Hence

(4.4)
$$\phi(\underline{z}_{N-2}) = (1 - r_{N-2}^2)/2 + 1/4 \quad \text{if} \quad r_{N-2} \le 1/2$$
$$= (1 - r_{N-2}^2)/2 + r_{N-2}(1 - r_{N-2}) \quad \text{if} \quad r_{N-2} \ge 1/2$$

Substitution into (3.3) and evaluation of the next optimal policy step, one obtains:

(4.5)
$$D_{N-2}^{*}(\omega_{N-2}) = 1 \quad \text{if} \quad x_{N-2} > \max(r_{N-3}, (1+\sqrt{6})/5) = 0 \quad \text{otherwise}$$

Successive substitution and policy evaluation yields:

$$D_k^*(\omega_k) = 1$$
 if $x_k > \max(r_{k-1}, L_{N-k})$ for $k = 1, \dots, N-1$
= 0 otherwise

where L_r is the unique root in [0, 1) of

(4.6)
$$\sum_{j=1}^{r} \left(x^{-j} - 1 \right) / j = 1.$$

Substitution of (4.6) and (3.3) yields:

(4.7)
$$P^{B} \{M_{N}\} = \left[1 + \sum_{r=1}^{N-1} \sum_{s=r}^{N-1} L_{N-r}^{s}/s\right]/N.$$

Table 1 lists values of L_r for $r \leq 100$. Empirically, one also obtains:

(4.8)
$$\lim_{N \to \infty} P^B \{M_N\} = 0.5802$$

The optimal policy in this case is given by (4.6). In order to find $P^B\{K_N = k\}$, consider the following revised policy when the kth random variable is sampled:

$$\pi_k(\omega_k, z) = 1 \quad \text{if} \quad x_k > \max\{r_{k-1}, L_{N-k}, z\}$$
$$= 0 \quad \text{otherwise for } k = 1, \dots, N-1$$

(4.9) $\pi_N(\omega_N, z) \equiv 1.$

Then $\pi_k(\omega_k, 0) = D_k^*(\omega_k)$ as defined in (4.6). Let

$$P_z \{K_N = k\} = P \{K_N = k \mid \text{ policy } \pi \text{ is being followed} \}$$

Then one can write:

$$P_z \{K_N = 1\} = 1 - \max(z, L_{N-1})$$

(4.10)

$$P_z \{K_N = k\} = z P_z \{K_{N-1} = k-1\} + \int_z^{\max(z, L_{N-1})} P_x \{K_{N-1} = k-1\} dx, \text{ for } k \ge 2.$$

When z = 0, $P_0 \{K_N = k\} = P^B \{K_N = k\}$. From (4.10), the distribution sought is:

$$P^{B} \{K_{N} = k\} = 1 - L_{N-1} \quad \text{when} \quad k = 1$$

$$= \sum_{r=1}^{k-1} L_{N-r}^{k-1} / (k-1) - \sum_{r=1}^{k} L_{N-4}^{k} / k \quad \text{when} \quad 2 \le k \le N-1$$

$$(4.11) \qquad \qquad = \sum_{r=1}^{N-1} L_{N-r}^{N-1} / (N-1) \quad \text{when} \quad k = N.$$

The first moment is then found to be:

(4.12)
$$E^{B}\left\{K_{N}\right\}/N = \left(1 + \sum_{r=1}^{N-1} \sum_{s=r}^{N-1} L_{N-r}^{s}/s\right)/N = P^{B}\left\{M_{N}\right\}.$$

Again this confirms the Conjecture with $\beta = 0$.

C. Sample extremum information:

The information that x_{N-1} is greater or less than the previous maximum implies that the most general form of the first policy decision is:

(4.13)
$$D_{N-1}(\omega_{N-1}) = p_{N-1} \quad \text{if} \quad x_{N-1} > r_{N-2}$$
$$= q_{N-1} \quad \text{if} \quad x_{N-1} \le r_{N-2}.$$

This results in:

(4.14)
$$\phi(z_{N-2}) = (1 - r_{N-2}^2)/2 + (p_{N-1} - q_{N-1})r_{N-2}(1 - r_{N-2})$$

which implies the optimal (N-1)th decision to be:

(4.15)
$$D_{N-1}^{*}(\omega_{N-1}) = 1 \quad \text{if} \quad x_{N-1} > r_{N-2}$$
$$= 0 \quad \text{otherwise, for } N > 2.$$

Successive integrations in (3.3) finally yield:

$$D_k^*(\omega_k) = 1$$
 if $x_k > r_{k-1}$ and $k > \xi$
= 0 otherwise

where ξ is uniquely determined from:

(4.16)
$$1 \le \sum_{i=\xi}^{N-1} i^{-1} \le 1 + 1/\xi.$$

(3.3) now becomes:

(4.17)
$$P^{c}\{M_{N}\} = \frac{\xi}{N} \sum_{i=\xi}^{N-1} i^{-1}$$

The limiting relation may be obtained by letting:

$$\alpha = \lim_{N \to \infty} \xi/N.$$

From (4.16) one finds $\alpha = e^{-1} = 0.3679$ and hence:

(4.18)
$$\lim_{N \to \infty} P^C \{M_N\} = 0.3679$$

Now

(4.19)

$$P^{C} \{K_{N} = k\} = 0 \quad \text{if} \quad k \leq \xi$$

$$= \xi/(k(k-1)) \quad \text{if} \quad k = \xi + 1, \dots, N-1$$

$$= \xi/(N-1) \quad \text{if} \quad k = N.$$

The first moment is:

$$E^C \left\{ K_N \right\} = \xi + \xi \sum_{i=\varepsilon}^{N-1} i^{-1}$$

or equivalently:

(4.20)
$$(E^C \{K_N\} - \xi)/N = P^C \{M_N\}.$$

Again the Conjecture is satisfied with $\beta = \xi$.

186

D. Single level information:

At each sampling, the information available is whether the random variable sampled is greater or less than some level l, see Enns [2]. The most general decision based on this information is:

(4.21)
$$D_{N-1}(\omega_{N-1}) = p_{N-1} \quad \text{if} \quad x_{N-1} > l \\ = q_{N-1} \quad \text{if} \quad x_{N-1} \le l.$$

One need only consider $l > r_{N-2}$, hence this yields:

(4.22)
$$\phi(\underline{z}_{N-2}) = (1 - r_{N-2}^2)/2 + (p_{N-1} - q_{N-1})l(1-l).$$

Thus the optimal (N-1)th decision which is the same as all previous optimal decisions is:

$$D_k^*(\omega_k) = 1 \quad \text{if} \quad x_k > l$$

$$(4.23) \qquad \qquad = 0 \quad \text{if} \quad x_k \le l$$

In this example (3.3) becomes:

(4.24)
$$P^{D} \{M_{N}\} = l^{N} \left[1/N + \sum_{k=1}^{N} (l^{-k} - 1)/k \right]$$

where l must be chosen to maximize (4.24).

Table 2 lists optimal values of l for $1 \le N \le 50$ after which the asymptotic value of l, namely $l = \exp(-a/N)$ with a = 1.502861 may be used. For N > 50, the accuracy of this estimate is

$$(4.25) |l - \exp(-a/N| \le 0.00011.$$

Asymptotically, (4.24) becomes

(4.26)
$$\lim_{N \to \infty} P^D \{M_N\} = (1 - e^{-a}) / a = 0.51735$$

Selected values of $P\{M_N\}$ are tabulated in Table 3 for information sources A, B, C and D. Many other information sources could of course have been considered. Another information source could have been whether the random variable sampled is greater or less than some constant times the sample mean of the random variables previously sampled. Other examples could be constructed using mixtures of the above information sources. An example of this is given later in the article.

When following policy (4.23), one obtains:

$$P^{D} \{K_{N} = k\} = l^{k-1}(1-l)$$
 for $k = 1, ..., N-1$
= l^{N-1} for $k = N$.

This implies that:

(4.27)

(4.28)
$$E^{D} \{K_{N}\} = (1 - l^{N})/(1 - l)$$

Differentiating (4.24), one finds:

(4.29)
$$dP^{D} \{M_{N}\} / dl = NP^{D} \{M_{N}\} / l - E^{D} \{K_{N}\} / l.$$

The policy being optimal requires $dP^D \{M_N\}/dl = 0$, hence $E^D \{K_N\}/N = P^D \{M_N\}$. This confirms the Conjecture with $\beta = 0$.

Variations on the Single-level problem have been published by Sakaguchi and Szajowski [4][5].

5 A mixture example

E. Mixture of information sources B and C:

When the first random variable is presented, its' value is known, however the distribution from which it was obtained is unknown. For subsequent random variables the distribution is known and complete information about the value a random variable assumes when sampled is known.

The optimal strategy in this case is intuitively obvious based on the previous discussion, namely, $D_1^*(\omega_1) \equiv 0$ and $D_k^*(\omega_k)$ for k > 1 is given by (4.6). One can now write:

(5.1)
$$P^{E}\{M_{N}\} = P^{E}\{M_{N}, X_{1} \leq L_{N-1}\} + P^{E}\{M_{N}, X_{1} > L_{N-1}\}$$

where

(5.2)
$$P^{E} \{M_{N}, X_{1} \leq L_{N-1}\} = P^{B} \{M_{N}, X_{1} \leq L_{N-1}\} = P^{B} \{M_{N}\} - (1 - L_{N-1}^{N})/N$$

and

(5.3)

$$P^{E} \{M_{N}, X_{1} > L_{N-1}\} = \sum_{l=2}^{N} \int_{L_{N-1}}^{1} dx x^{l-2} \int_{x}^{1} u^{N-l} du$$

$$= \frac{(1+L_{N-1}^{N})}{N} \sum_{i=1}^{N-1} i^{-1} - \sum_{i=1}^{N-1} \frac{L_{N-1}^{-i}}{i(N-i)}.$$

Hence

(5.4)

$$P^{E}\{M_{N}\} = P^{B}\{M_{N}\} - \frac{(1 - L_{N-1}^{N})}{N} + \frac{(1 + L_{N-1}^{N})}{N} \sum_{i=1}^{N-1} i^{-1} - \sum_{i=1}^{N-1} L_{N-1}^{-i} / (i(N-i)).$$

Similarly:

(5.5) $\mathcal{E}^{E} \{K_{N}\} = \mathcal{E}^{E} \{K_{N} \mid X_{1} \leq L_{N-1}\} P\{X_{1} \leq L_{N-1}\} + E^{E} \{K_{N} \mid X_{1} > L_{N-1}\} P\{X_{1} > L_{N-1}\}$ where

(5.6)
$$\mathcal{E}^{E} \{ K_{N} \mid X_{1} \leq L_{N-1} \} P \{ X_{1} \leq L_{N-1} \} = \mathcal{E}^{B} \{ K_{N} \} - (1 - L_{N-1})$$

and

$$P^{E} \{K_{N} = k, X_{1} > L_{N-1}\} = (1 - L_{N-1}^{k-1})/(k-1) - (1 - L_{N-1}^{k})/k \text{ for } k = 2, \dots, N-1$$

(5.7)
$$= (1 - L_{N-1}^{N-1})/(N-1) \text{ for } k = N.$$

Hence

(5.8)
$$\mathcal{E}^{E}\left\{K_{N} \mid X_{1} > L_{N-1}\right\} P\left\{X_{1} > L_{N-1}\right\} = 1 - L_{N-1} + \sum_{k=1}^{N-1} \left(1 - L_{N-1}^{k}\right) / k$$

from which one finally obtains:

(5.9)
$$\mathcal{E}^{E}\left\{K_{N}\right\} = \mathcal{E}^{B}\left\{K_{N}\right\} + \sum_{k=1}^{N-1} (1 - L_{N-1}^{k})/k.$$

Utilizing (4.12) one obtains the relation:

(5.10)
$$(\mathcal{E}^E \{K_N\} - 1)/N = P^E \{M_N\} - \frac{L_{N-1}^N}{N} \left[1 - \sum_{r=1}^{N-1} \frac{L_{N-1}^{-r} - 1}{r} \right] = P^E \{M_N\}$$

from the definition of L_{N-1} in (4.6).

The conjecture is therefore verified in this somewhat more complex example.

References

- Gilbert, J.P. and Mosteller, F., "Recognizing the maximum of a sequence", J.A.S.A. March 1966, pp. 35–73.
- [2] Enns, E.G., "Selecting the maximum of a sequence with imperfect information", J.A.S.A. September 1975, pp. 640–643.
- [3] Morgenstern, D., "Einführung in die Wahrscheinlichkeitsrechnung und Mathematische Statistik", Berlin 1964, Seite 13.
- [4] Sakaguchi, M. and Szajowski, K., "Single-level strategies for Full-information Best-Choice problems I", Math. Japonica 45, No 3 (1997), 483–495.
- [5] Sakaguchi, M. and Szajowski, K., "Single-level strategies for Full-information Best-choice problems II", Math. Japonica 46, No 2 (1997), 199–208.

table 1

r	L_r	r	L_r	r	L_r
1	.50000	34	.97674	67	.98810
2	.68990	35	.97739	68	.98927
3	.77585	36	.97801	69	.98944
4	.82459	37	.97859	70	.98860
5	.86696	38	.97915	71	.98876
6	.87781	39	.97968	72	.98892
7	.89391	40	.98018	73	.98907
8	.90627	41	.98065	74	.98921
9	.91604	42	.98111	75	.98936
10	.92398	43	.98154	76	.98950
11	.93054	44	.98196	77	.98963
12	.93606	45	.98235	78	.98976
13	.94077	46	.98273	79	.98989
14	.94483	47	.98309	80	.99002
15	.94837	48	.98344	81	.99014
16	.95148	49	.98378	82	.99026
17	.95424	50	.98410	83	.99038
18	.95671	51	.98440	84	.99049
19	.95892	52	.98470	85	.99060
20	.96091	53	.98499	86	.99071
21	.96272	54	.98526	87	.99082
22	.96437	55	.98553	88	.99092
23	.96589	56	.98578	89	.99102
24	.96737	57	.98603	90	.99112
25	.96855	58	.98627	91	.99122
26	.96974	59	.98650	92	.99131
27	.97083	60	.98672	93	.99140
28	.97185	61	.98694	94	.99150
29	.97281	62	.98715	95	.99158
30	.97369	63	.98735	96	.99167
31	.97453	64	.98754	97	.99176
32	.97531	65	.98773	98	.99184
33	.97605	66	.98792	99	.99192

Optimal values of L_r in the complete information case with $N \leq 100$.

N	l	N	l	N	l	N	l	N	l
1	0	11	.87426	21	.93152	31	.95295	41	.96417
2	.5	12	.88396	$\frac{21}{22}$.93450	32	.95438	42	.96500
3	.62284	13	.89227	23	.93724	33	.95572	43	.96580
4	.69784	14	.89947	24	.93975	34	.95699	44	.96656
5	.74814	15	.90577	25	.94207	35	.95819	45	.96729
6	.78415	16	.91132	26	.94422	36	.95932	46	.96798
7	.81118	17	.91626	27	.94622	37	.96039	47	.96865
8	.83221	18	.92068	28	.94808	38	.96141	48	.96929
9	.84903	19	.92466	29	.94981	39	.96237	49	.96991
10	.86279	20	.92825	30	.95143	40	.96329	50	.97050

TABLE 2

Optimal values of l in the single level information case.

table 3

N	$P^A\left\{M_N\right\}$	$P^B\left\{M_N\right\}$	$P^C\{M_N\}$	$P^D\{M_N\}$
1	1	1	1	1
2	0.5000	0.7500	0.5000	0.7500
3	0.3333	0.6843	0.5000	0.6703
4	0.2500	0.6554	0.4583	0.6312
5	0.2000	0.6392	0.4333	0.6080
6	0.1667	0.6288	0.4278	0.5926
7	0.1429	0.6215	0.4143	0.5817
8	0.1250	0.6161	0.4098	0.5736
9	0.1111	0.6120	0.4060	0.5673
10	0.1000	0.6087	0.3987	0.4522
20	0.0500	0.5942	0.3842	0.5397
50	0.0200	0.5857	0.3743	0.5263
100	0.0100	0.5829	0.3710	0.5218
∞	0	0.5802	0.3679	0.5174

Selected Values of $P^{\gamma} \{M_N\}$ for Various Types of Information

Department of Mathematics and Statistics University of Calgary 2500 University Drive NW Calgary, AB CANADA T2N 1N4 Phone: (403) 220-6303 Fax: (403) 282-5150 email: enns@math.ucalgary.ca