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Abstract. In this paper, we introduce the concept of fuzzy deductive systems of
HS-algebras, i.e. Hilbert algebras with the additional multiplication distributive with
respect to the basic operation, and investigate some related properties. Moreover, we
provide characterizations of Noetherian HS-algebra in term of fuzzy deductive systems.

1. Introduction and Preliminaries In 1966, Diego [10] introduced the notion of Hilbert
algebras and deductive systems, and provided various properties. The theory of Hilbert
algebras and deductive systems was further developed by Busneag in [1, 2, 3]. Y.B.Jun
[13, 14, 15] construct an extension of a fuzzy deductive system in a Hilbert algebra. In
this paper, we introduce a new class of algebras related to Hilbert algebras and semigroups,
called an HS-algebra. We fuzzify the concept of deductive systems of HS-algebras and
investigate some related properties. Moreover, we provide characterizations of Noetherian
HS-algebra in term of fuzzy deductive systems.

We now review some concepts and properties that will be useful in our results.
Definition 1.1 ([10]) A Hilbert algebra H is an algebra (H,→, 1) satisfying the following
conditions.

(i) x → (y → x) = 1,
(ii) (x → (y → z)) → ((x → y) → (x → z)) = 1,
(iii) if x → y = y → x = 1, then x = y.
If A is a Hilbert algebra, then the relation x ≤ y if and only if x → y = 1 is a partial

ordering on A; which is called the natural ordering on A; with respect to this ordering 1 is
the largest element of A.

A bounded Hilbert algebra is a Hilbert algebra with a smallest element 1 relative to
natural ordering.

A subset S of a bounded Hilbert algebra H is called a Hilbert subalgebra of H if 1 ∈ S
and x, y ∈ S ⇒ x → y ∈ S.
Proposition 1.2 ([6]) A Hilbert algebra H has the following properties for any x, y, z ∈ H :

(1) x ≤ y → x

(2) x → 1 = 1
(3) x → (y → z) = (x → y) → (x → z)
(4) (x → y) → ((y → x) → x) = (y → x) → ((x → y) → y)
(5) x → (y → z) = y → (x → z)
(6) x ≤ (x → y) → y

(7) ((x → y) → y) → y = x → y

(8) 1 → x = x
(9) x → y ≤ (y → z) → (x → z)
(10) if x ≤ y, then z → x ≤ z → y and y → z ≤ x → z
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Definition 1.3 ([8]) A subset A of a Hilbert algebra H is called a deductive system of H if
it satisfies:

(i) 1 ∈ A

(ii) if x, x → y ∈ A, then y ∈ A.
We now review some fuzzy logic concepts. A fuzzy set in a set X is a function µ : X →

[0, 1]. For any t ∈ [0, 1], the set U(µ; t) = {x ∈ X | µ(x) ≥ t} is called a level subset of µ.
Definition 1.4 A fuzzy set µ in a Hilbert algebra H is called a fuzzy deductive system of H
if

(i) µ(1) ≥ µ(x) for x ∈ H

(ii) µ(y) ≥ min{µ(x), µ(x → y)} for all x, y ∈ H .

2.Fuzzy deductive systems
Definition 2.1 A nonempty set X with two binary operation “ → ” and “ · ” and constant
1 is called an HS-algebra if X satisfies the axioms:

(I) H(X) = (X,→, 1) is a Hilbert algebra.
(II) S(X) = (X, ·) is a semigroup.
(III) The operation “ · ” is distribute over the operation “ → ”, that is, x · (y → z) =

(x · y) → (x · z) and (x → y) · z = (x · z) → (y · z) for all x, y, z ∈ X .
For convenience, we use the multiplication x · y by xy.

Example 2.2 Let X = {1, a, b, c}. Define → − operation and multiplication “ · ” by the
following tables:

→ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

· 1 a b c
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
c 1 a b c

By routine calculations, we can see that X is an HS-algebra.
Note that in an HS-algebra X , we have 1x = x1 = 1 for any x ∈ X .

Definition 2.3 A nonempty subset A of a semigroup S(X) = (X, ·) is said to be left (resp.
right) stable if xa ∈ A (resp. ax ∈ A) , whenever x ∈ S(X) and a ∈ A.
Definition 2.4 A nonempty subset A of an HS-algebra X is called a left (resp. right) deduc-
tive system of X if

(a1) A is a left (resp. right ) stable subset of S(X),
(a2) for any x, y ∈ H(X), x → y ∈ A and x ∈ A imply that y ∈ A.
Note that if A is a left (resp. right )deductive system of X , then 1 ∈ A. Thus A is a

deductive system of H(X).
Example 2.5 Let X = {1, a, b, c}. Define → − operation and multiplication “ · ” by the
following tables:

→ 1 a b c
1 1 a b c
a 1 1 b c
b 1 1 1 c
c 1 1 1 1

· 1 a b c
1 1 1 1 1
a 1 a 1 1
b 1 1 b c
c 1 1 c b

Then X is an HS-algebra. It is to check that A = {1, a} is a deductive system of X .
Definition 2.6 A fuzzy set µ in a semigroup X is called stable if µ(xy) ≥ µ(y)(resp.µ(xy) ≥
µ(x )) for all x, y ∈ X .
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Definition 2.7 A fuzzy set µ in an HS-algebra X is called a fuzzy left (resp. right ) deductive
system of X if

(1) µ is a fuzzy left (resp. fuzzy right) stable set in S(X);
(2) µ(y) ≥ min{µ(x → y), µ(x)} for all x, y ∈ H(X).
In what follows, a(fuzzy) deductive system shall mean a(fuzzy) left deductive system.

Example 2.8 Consider an HS-algebra X = {1, a, b, c} with the following Cayley table:

→ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

· 1 a b c
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
c 1 a b c

Define a fuzzy set µ in X by µ(1) = µ(a) = 0.7 and µ(b) = µ(c) = 0.5. Then µ is a
fuzzy deductive system of X .
Theorem 2.9 Let µ be a fuzzy set in an HS-algebra X . Then µ is a fuzzy deductive system
of X if and only if the nonempty level set U(µ; t) of µ is a deductive system of X for every
t ∈ [0, 1].

Proof Suppose that µ is a fuzzy deductive system of X . Let x ∈ S(X) and y ∈ U(µ; t).
Then µ(y) ≥ t, and that µ(xy) ≥ µ(y) ≥ t, which implies that xy ∈ U(µ; t). Hence U(µ; t)
is a stable subset of S(X). Let x, y ∈ H(X) be such that x → y ∈ U(µ; t) and x ∈ U(µ; t).
Then µ(x → y) ≥ t and µ(x) ≥ t. It follows that µ(y) ≥ min{µ(x → y), µ(x)} ≥ t, and that
y ∈ U(µ; t). Hence U(µ; t) is a deductive system of X .

Conversely, assume that the nonempty level set U(µ; t) of is a deductive system of
X for every t ∈ [0, 1]. If there exist x0, y0 ∈ S(X) such that µ(x0y0) < µ(y0), then
by taking t0 = 1/2(µ(x0y0) + µ(y0)), we have µ(x0y0) < t0 < µ(y0). It follows that
y0 ∈ U(µ; t0) and x0y0 �∈ U(µ; t0). This is a contradiction. Therefore µ is a fuzzy stable
set in S(X). Suppose that µ(y0) < min{µ(x0 → y0), µ(x0)} for some x0, y0 ∈ X . Putting
s0 = 1/2(µ(y0) + min{µ(x0 → y0), µ(x0)}), then µ(y0) < s0 < min{µ(x0 → y0), µ(x0)},
which shows that x0 → y0 ∈ U(µ; s0). x0 ∈ U(µ; s0) and y0 ∈ Uµ; s0.This is impossible.
Therefore µ is a fuzzy deductive system of X .
Corollary 2.10 Let A be a deductive system of an HS- algebra X , and let µ be a fuzzy set
in X defined by

µ(x) =
{

t0 if x ∈ A
t1 otherwise

where t0 > t1 in [0, 1]. Then µ is a fuzzy deductive system of X , and U(µ; t0) = A.
Proof Notice that

U(µ; t) =

⎧⎨
⎩
∅ if t0 < t1,
A if t1 < t < t0,
X if t < t1,

It follows from Theorem 2.9 that µ is a fuzzy deductive system of X . Clearly, we have
U(µ; t0) = A.
Corollary 2.10 suggests that any deductive systems of an HS-algebra X can be realized as a
level deductive system of some fuzzy deductive system of X . We now consider the converse
of Corollary 2.10.
Corollary 2.11 For a nonempty subset A of an HS-algebra X . Let µ be a fuzzy set in X
which is given in Corollary 2.10. If µ is a fuzzy deductive system of X , then A is a deductive
system of X .
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Proof Assume that µ is a fuzzy deductive system of X and let x ∈ S(X) and y ∈ A.
Then µ(xy) ≥ µ(y) ≥ t and so xy ∈ U(µ; t0) = A. Hence A is a stable subset of S(X),
Let x, y ∈ H(X) be such that x → y ∈ A and x ∈ A. It follows that µ(y) ≥ min{µ(x →
y), µ(x)} = t0, so that y ∈ U(µ; t0) = A. This completes the proof.

The following Theorem shows that the concept of a fuzzy deductive system of an HS-
algebra is a generalization of a deductive system. The proof is straightforward by using
Corollary 2.10 and 2.11.
Theorem 2.12 Let A be a nonempty subset of an HS-algebra and let µ be a fuzzy set in
X such that µ is into {0, 1}, so that µ is the characteristic function A. Then µ is a fuzzy
deductive system of X if and only if A is a deductive system of X .
Theorem 2.13 If µ is a fuzzy deductive system of an HS-algebra X , then µ(x) = sup{α ∈
[0, 1] | x ∈ U(µ;α)} for all x ∈ X .

Proof Let β = sup{α ∈ [0, 1] | x ∈ U(µ;α)} and Let ε > 0 be given. Then β − ε <
sup{α ∈ [0, 1] | x ∈ U(µ;α)}, whence β − ε < α for some α ∈ [0, 1] such that x ∈ U(µ;α).
Since µ(x) ≥ α, it follows that β − ε < µ(x), so that β ≤ µ(x) because ε is arbitrary. We
now show that µ(x) ≤ β. To do this, assume that µ(x) = γ. Then x ∈ U(µ; γ) and so
γ ∈ {α ∈ [0, 1] | x ∈ U(µ;α)}. Hence γ ≤ sup{α ∈ [0, 1] | x ∈ U(µ;α)}. Whence µ(x) ≤ β.
Therefore µ(x) = β, as desired.

We note that the intersection of all deductive systems of an HS-algebra X is also a
deductive system of X . Let Λ be a totally ordered set and let {Iα | α ∈ Λ} be a family
of deductive systems of an HS-algebra X such that for all α, β ∈ Λ, β > α if and only if
Iβ ⊂ Iα. Then

⋃
α∈Λ Iα is a deductive system of X .

Now we consider the converse of Theorem 2.13.
Let Λ be a nonempty subset of [0, 1]. There is no loss of generality in using Λ as an

index set in the following results.
Theorem 2.14 Let {Iα | α ∈ Λ} be a collection of deductive systems of an HS-algebra X
such that

(i) X =
⋃

α∈Λ Iα;
(ii) β > α if and only if Iβ ⊂ Iα for all α, β ∈ Λ. Define a fuzzy set µ in X by, for all

x ∈ X , µ(x) = sup{α ∈ Λ | x ∈ Iα}. Then µ is a fuzzy deductive system of X .
Proof For any β ∈ [0, 1], we consider the following two cases:
(i) β = sup{α ∈ Λ | α < β};
(ii) β �= sup{α ∈ Λ | α < β};
For the case (i) we know that x ∈ U(µ;β) ⇔ x ∈ Iα for all α < β ⇔ x ∈ ⋂

α<β Iα

whence U(µ;β) =
⋂

α<β Iα, which is a deductive system of X . Case (ii) implies that there
exists ε > 0 such that (β−ε, β)∩Λ = ∅. We claim that U(µ;β) =

⋃
α≥β Iα. If x ∈ ⋃

α≥β Iα,
then x ∈ Iα for some α ≥ β. It follows that µ(x) ≥ α ≥ β, so that x ∈ U(µ;β). Conversely
if x ∈ ⋃

α≥β Iα, then x ∈ Iα for all α ≥ β, which implies that x ∈ Iα for all α ≥ β − ε,
that is, if x �∈ Iα, then α ≤ β − ε. Thus µ(x) ≤ β − ε, and so x �∈ U(µ;β). Therefore
U(µ;β) =

⋃
α≥β Iα, which is a deductive system of X . Therefore µ is a fuzzy deductive

system of X . Therefore µ is a fuzzy deductive system of X .
Definition 2.15 Let µ and v be fuzzy sets of HS-algebras X1 and X2 respectively. The
product µ × v of µ and v is the element of X1 × X2 which is defined by

(µ × v)(x, y) = min{µ(x), v(y)}, ∀(x, y) ∈ X1 × X2

Theorem 2.16 If µ and v are fuzzy deductive systems of HS-algebras X1 and X2 respectively,
then µ × v is a fuzzy deductive system of X1 × X2

Proof. Let x = (x1, x2), y = (y1, y2) ∈ X1×X2. Then (µ×v)(xy) = (µ×v)((x1, x2)(y1, y2)) =
(µ × v)(x1y1, x2y2) = min {µ(x1y1), v(x2y2)} ≥ min {µ(y1),v(y2)} = (µ × v)(y1,y2) =
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(µ × v)(y); and (µ × v)(y) = (µ × v)(y1,y2) = min {µ(y1),v(y2)} ≥ min{min{µ(x1 →
y1), µ(x1)}, min{v(x2 → y2), v(x2)}} = min {min{µ(x1 → y1), v(x2 → y2)}, min(µ(x1), v(x2))} =
min {(µ × v)(x1 → y1,x2 → y2), (µ × v)(x1,y1)} = min {(µ × v)((x1,x2) → (y1,y2)), (µ ×
v)(x1,x2)} = min {(µ × v)(x → y), (µ × v)(x)}

Hence µ × v is a fuzzy deductive system of X1 × X2.

3. Noetherian HS-algebras
Definition 3.1 An HS-algebra X is said to satisfy the ascending (descending) chain condition
(brief, ACC (DCC)) if for every ascending (descending) sequence A1 ⊆ A2 ⊆ . . . (A1 ⊇ A2 ⊇
. . . ) of deductive systems of X there exists a natural number n such that Ai = An for au
i ≥ n.
Definition 3.2 An HS-algebra X is said to be Noetherian if X satisfies the ACC for deductive
systems.

Let µ be a fuzzy set in X . We note that Imµ is a bounded subset of [0, 1]. Hence we
can consider a sequence of elements of Imµ is either increasing or decreasing.
Theorem 3.3 Let X be an HS-algebra satisfying DCC and let µ be a fuzzy deductive system
of X . If a sequence of elements of Im µ is strictly increasing, then µ has finite numbers of
values.

Proof Let {tn} be a strictly increasing sequence of element of Im µ. Then 0 ≤ t1 < t2 <
. . . ≤ 1. Define U(µ; tr) = {x ∈ X | µ(x) ≥ tr}, r = 2, 3 . . . Then U(µ; tr) is a deductive
system of X . Let x ∈ U(µ; tr). Then µ(x) ≥ tr > tr−1, which implies that x ∈ U(µ; tr−1).
Hence U(µ; tr) ⊆ U(µ; tr−1). Since tr−1 ∈ Imµ, there exists xr−1 ∈ X such that µ(xr−1) =
tr−1. It follows that xr−1 ∈ µr−1, but xr−1 �∈ U(µ; tr). Thus U(µ; tr) � U(µ; tr−1), and
so we obtain a strictly descending sequence U(µ; t1) � U(µ; t2) � U(µ; t3) . . . of deductive
systems of X which is not terminating. This contradicts the assumption X satisfies DCC,
completing the proof.

Now we consider the converse of Theorem 3.3:
Theorem 3.4 Let X be an HS-algebra. If every fuzzy deductive system of X has finite
number of values, then X satisfies DCC.

Proof Suppose that X does not satisfy DCC. Then there exists a strictly descending
chain.

A0 � A1 � A2 � . . .

of deductive systems of X . Define a fuzzy set v in X by

v(x) =
{

n
n+1 if x ∈ An − An+1, n = 0, 1, 2, · · ·
1 if x ∈ ∩∞

n=1An,

where A0 stands for X . We prove that v is a fuzzy deductive system of X . Let x, y ∈ X . If
y ∈ An −An+1 then xy ∈ An since An is a deductive system of X , and that µ(xy) ≥ n

n+1 =
µ(y). Now, let y ∈ ⋂n

n=0. Since An is a deductive systems for any integer numbed n, then⋂n
n=0 An is also a deductive system. Hence xy ∈ ⋂∞

n=0 An, and that µ(xy) = 1 = µ(y).
Therefore µ is a fuzzy stable subset in S(X).

Let x, y ∈ X . Assume that x → y ∈ An−An+1 and x ∈ Ak−Ak+1 for n = 0, 1, 2 . . . ; k =
0, 1, 2, · · · . Without loss of generality, we may assume that n ≤ k. Then clearly x ∈ An,
Since An is a deductive system, we have y ∈ An. Hence v(y) ≥ n

n+1 = min{v(x → y), v(x)}.
If x → y, x ∈ ⋂∞

n=0 An and y ∈ ⋂∞
n=0 An, Thus v(y) = 1 = min{v(x → y), v(x)}. If

x → y �∈ ⋂∞
n=0 An and y ∈ ⋂∞

n=0 An, then there exists k ∈ N, such that x → y ∈ Ak → Ak+1.
It follows that y ∈ Ak, so that v(y) ≥ k

k+1 = min {v(x → y), v(x)}. Finally, assume that
x → y ∈ ⋂∞

n=0 An and x �∈ ⋂∞
n=0 An. Then x ∈ Ar − Ar+1 for some r ∈ N. It follows that

y ∈ Ar, and hence v(y) ≥ k
k+1 = min {v(x → y), v(x)}. Consequently, we find that v is a
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fuzzy deductive system and v has infinite number of different values. This is a contradiction
and the proof is complete.
Theorem 3.5 For any HS-algebra X , the following are equivalent:

(i) X is Noetherian;
(ii) The set of vaults of any fuzzy deductive system on X is a well-ordered subset of

[0, 1].
Proof Suppose that µ is fuzzy deductive system whose set of values is not a well-ordered

subset of [0, 1]. Then there exists a strictly decreasing sequence {tn} such that µ(xn) = tn.
Let Bn = {x ∈ X | µ(x) ∈ tn}. Then B1 � B2 � B3 . . . is a strictly ascending chain of
seductive systems of X , contradicting the assumption that X is Noetherian.

Assume that the condition is satisfied and X is not Noetherian. Then there exists a
strictly ascending chain.

A1 � A2 � A3 � . . .

of deductive system of X . Suppose that A =
⋃

n∈N
An. Then A is a deductive system of X .

Define a fuzzy set v in X by.

v(x) =
{

0 if x �∈ An,
1
k where k = min{n ∈ N | x ∈ An}

We claim that v is a fuzzy deductive system of X . Let x, y ∈ X . If y ∈ An − An−1 for
n = 2, 3 . . . , then xy ∈ An. It follows that v(xy) � 1

n = v(y). If y �∈ An, then v(y) = 0,
and that v(xy) � v(y). Therefore µ is a fuzzy stance set in S(X). Now, let x, y ∈ X . If
x → y, x ∈ An − An−1 for n = 2, 3, . . . , then y ∈ An. It follows that

v(y) ≥ 1
n

= min {v(x → y), v(y)}

Assume that x, y ∈ An and x ∈ An−Am for all m < n. Since An is a deductive
system,therefore y ∈ An. Hence v(y) ≥ min {v(x → y), v(x)}.

Similarly for the case x → y ∈ An − Am and x ∈ An, we have v(y) ≥ min {v(x →
y), v(x)}. Thus v is a fuzzy deductive system of X . Since the chain (∗) is not terminating,
v has a strictly descending sequence of values. This contradicts the assumption that the
value set of any fuzzy deductive system is well-ordered. Hence X is Noetherian.

We note that a set is well-ordered if and only if it does not contain any infinite descending
sequence.
Theorem 3.6 Let S = {t1,t2, . . . }

⋃ {0}, where {tn} is a strictly decreasing sequence in (0, 1).
Then an HS-algebra X is Noetherian if and only if for each fuzzy deductive system µ of X ,
Imµ ⊆ S implies that there exists a positive integer n0 such that Imµ ⊆ {t1, t2, . . . , tn0} ∪
{0}.

Proof If X is a Noetherian HS-algebra, then we know from Theorem 3.5 that Imµ is a
well-ordered subset of [0, 1] and so the condition is necessary.

Conversely, assume that the condition is satisfied. Suppose that X is not Noetherian.
Then there exists a strictly ascending chain of deductive systems A1 � A2 � A3 . . .

Define a fuzzy set µ in X by

µ(x) =

⎧⎨
⎩

t1 if x ∈ A1,
tn if x ∈ An − An−1 n = 2, 3, . . . ,
0 if x ∈ X − ⋃∞

n=1 An,

If y ∈ X − An, then µ(y) = 0. Hence µ(xy) ≥ µ(y). If y ∈ A1, then xy ∈ A1, and
so µ(xy) = t1 = µ(y). If y ∈ An − An−1 for n = 2, 3 . . . . Then xy ∈ An, and hence
µ(xy) ≥ tn = µ(y). Therefore µ is a fuzzy stable subset in S(X).
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Now let x, y ∈ X . If either x → y or X belong to X − An, then either µ(x → y) or
µ(x) is equal to 0. Hence µ(y) ≥ min{µ(x → y), µ(x)}. If x → y, x ∈ A1, then y ∈ A1

and so µ(y) = t1 = min {µ(x → y), µ(x)}. If x → y, x ∈ An − An−1, then y ∈ An. Hence
µ(y) ≥ tn = min {µ(x → y), µ(y)}. Assume that x → y ∈ A1 and x ∈ An − An−1 for
n = 2, 3, 4, . . . . Then y ∈ An and hence µ(y) ≥ tn = min {t1, tn} = min {µ(x → y), µ(x)}.
Similarly for y ∈ A1 and x → y ∈ An − An−1, n = 2, 3, 4, . . . , we obtain µ(y) ≥ tn =
min {µ(x → y), µ(x)}. Hence µ is a fuzzy deductive system of X . this contradicts our
assumption.

4. On homomorphism of HS-algebras
Definition 4.1 A mapping f : X → Y of HS- algebras is called a homomorphism if

(i) f(x → y) = f(x) → f(y) for all x, y ∈ H(X)
(ii) f(xy) = f(x)f(y) for all x, y ∈ S(X)
Note that if f : X → Y is a homomorphism of HS- algebra, then f(1) = 1. Let

f : X → Y be a homomorphism of HS-algebras, For any fuzzy set µ in Y we define a set
µf in X by µf (x) = µ(f(x)) for all x ∈ X .
Theorem 4.2 Let f : X → Y be a homomorphism of HS-algebra. If µ is a fuzzy deductive
system of Y , then µf is a fuzzy deductive system of X .

Proof Assume that µ is a fuzzy deductive system of Y , then µf (xy) = µ(f(xy)) =
µ(f(x)f(y)) ≥ µ(f(y)) = µf (y) and µf (y) = µ(f(y)) ≥ min {µ(f(x) → f(y)), µ(f(x))} =
min {µ(f(x → y)), µ(f(x))} = min {µf (x → y), µf (x)}. Hence µf is a fuzzy deductive
system of X .

If we strengthen the condition f , then the converse of Theorem 4.2 is obtained as follows.
Theorem 4.3 Let f : X → Y be an epimorphism of HS-algebras. If µf is a fuzzy deductive
system of X , then µ is a fuzzy deductive system of Y .

Proof For any x, y ∈ Y , there exist a, b ∈ X such that f(a) = x and f(b) = y.
Then µ(xy) = µ(f(a)f(b)) = µ(f(ab)) = µf (ab) ≥ µf (b) = µ(f(b)) = µ(y) and µ(y) =
µ(f(b)) = µf (b) ≥ min {µf (a → b), µf (a)} = min {µ(f(a → b)), µ(f(a))} = min {µ(f(a) →
f(b)), µ(f(a))} = min {µ(x → y), µ(x)}. Hence µ is a fuzzy deductive system of Y .
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