FUZZY DEDUCTIVE SYSTEMS OF HS-ALGEBRAS

Zhan Jianming & Ma Xueling

Received July 27, 2004

ABSTRACT. In this paper, we introduce the concept of fuzzy deductive systems of HS-algebras, i.e. Hilbert algebras with the additional multiplication distributive with respect to the basic operation, and investigate some related properties. Moreover, we provide characterizations of Noetherian HS-algebra in term of fuzzy deductive systems.

1. Introduction and Preliminaries In 1966, Diego [10] introduced the notion of Hilbert algebras and deductive systems, and provided various properties. The theory of Hilbert algebras and deductive systems was further developed by Busneag in [1, 2, 3]. Y.B.Jun [13, 14, 15] construct an extension of a fuzzy deductive system in a Hilbert algebra. In this paper, we introduce a new class of algebras related to Hilbert algebras and semigroups, called an HS-algebra. We fuzzify the concept of deductive systems of HS-algebras and investigate some related properties. Moreover, we provide characterizations of Noetherian HS-algebra in term of fuzzy deductive systems.

We now review some concepts and properties that will be useful in our results. Definition 1.1 ([10]) A Hilbert algebra H is an algebra $(H, \rightarrow, 1)$ satisfying the following conditions.

(i) $x \to (y \to x) = 1$,

(ii) $(x \to (y \to z)) \to ((x \to y) \to (x \to z)) = 1$,

(iii) if $x \to y = y \to x = 1$, then x = y.

If A is a Hilbert algebra, then the relation $x \leq y$ if and only if $x \to y = 1$ is a partial ordering on A; which is called the natural ordering on A; with respect to this ordering 1 is the largest element of A.

A bounded Hilbert algebra is a Hilbert algebra with a smallest element 1 relative to natural ordering.

A subset S of a bounded Hilbert algebra H is called a Hilbert subalgebra of H if $1 \in S$ and $x, y \in S \Rightarrow x \to y \in S$.

Proposition 1.2 ([6]) A Hilbert algebra H has the following properties for any $x, y, z \in H$: (1) $x \leq y \to x$

 $(1) \begin{array}{l} x \rightarrow y \rightarrow z \\ (2) \begin{array}{l} x \rightarrow 1 = 1 \\ (3) \begin{array}{l} x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z) \\ (4) \begin{array}{l} (x \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) = (y \rightarrow x) \rightarrow ((x \rightarrow y) \rightarrow y) \\ (5) \begin{array}{l} x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) \\ (6) \begin{array}{l} x \leq (x \rightarrow y) \rightarrow y \\ (7) \begin{array}{l} ((x \rightarrow y) \rightarrow y) \rightarrow y = x \rightarrow y \\ (8) \begin{array}{l} 1 \rightarrow x = x \\ (9) \begin{array}{l} x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z) \end{array} \end{array}$

(10) if $x \leq y$, then $z \to x \leq z \to y$ and $y \to z \leq x \to z$

2000 Mathematics Subject Classification. 03G25, 06F99.

Key words and phrases. Fuzzy deductive system, HS-algebras, Noetherian HS-algebras.

Definition 1.3 ([8]) A subset A of a Hilbert algebra H is called a deductive system of H if it satisfies:

(i) $1 \in A$

(ii) if $x, x \to y \in A$, then $y \in A$.

We now review some fuzzy logic concepts. A fuzzy set in a set X is a function $\mu : X \to [0,1]$. For any $t \in [0,1]$, the set $U(\mu;t) = \{x \in X \mid \mu(x) \ge t\}$ is called a level subset of μ . Definition 1.4 A fuzzy set μ in a Hilbert algebra H is called a fuzzy deductive system of H if

(i) $\mu(1) \ge \mu(x)$ for $x \in H$

(ii) $\mu(y) \ge \min\{\mu(x), \mu(x \to y)\}$ for all $x, y \in H$.

2. Fuzzy deductive systems

Definition 2.1 A nonempty set X with two binary operation " \rightarrow " and " \cdot " and constant 1 is called an HS-algebra if X satisfies the axioms:

(I) $H(X) = (X, \rightarrow, 1)$ is a Hilbert algebra.

(II) $S(X) = (X, \cdot)$ is a semigroup.

(III) The operation " · " is distribute over the operation " \rightarrow ", that is, $x \cdot (y \rightarrow z) = (x \cdot y) \rightarrow (x \cdot z)$ and $(x \rightarrow y) \cdot z = (x \cdot z) \rightarrow (y \cdot z)$ for all $x, y, z \in X$.

For convenience, we use the multiplication
$$x \cdot y$$
 by xy .

Example 2.2 Let $X = \{1, a, b, c\}$. Define \rightarrow – operation and multiplication " \cdot " by the following tables:

\rightarrow	1	a	b	c	•	1	a	b	c
1	1	a	b	c	1	1	1	1	1
a	1	1	b	c	a	1	a	1	a
b	1	a	1	c	b	1	1	b	b
c	1	a	b	1	c	1	a	b	c

By routine calculations, we can see that X is an HS-algebra.

Note that in an HS-algebra X, we have 1x = x1 = 1 for any $x \in X$. Definition 2.3 A nonempty subset A of a semigroup $S(X) = (X, \cdot)$ is said to be left (resp.

right) stable if $xa \in A$ (resp. $ax \in A$), whenever $x \in S(X)$ and $a \in A$.

Definition 2.4 A nonempty subset A of an HS-algebra X is called a left (resp. right) deductive system of X if

(a₁) A is a left (resp. right) stable subset of S(X),

(a₂) for any $x, y \in H(X), x \to y \in A$ and $x \in A$ imply that $y \in A$.

Note that if A is a left (resp. right)deductive system of X, then $1 \in A$. Thus A is a deductive system of H(X).

Example 2.5 Let $X = \{1, a, b, c\}$. Define \rightarrow – operation and multiplication " \cdot " by the following tables:

\rightarrow	1	a	b	c	•	1	a	b	c
1	1	a	b	c	1	1	1	1	1
a	1	1	b	c	a	1	a	1	1
b	1	1	1	c	b	1	1	b	c
c	1	1	1	1	c	1	1	c	b

Then X is an HS-algebra. It is to check that $A = \{1, a\}$ is a deductive system of X. Definition 2.6 A fuzzy set μ in a semigroup X is called stable if $\mu(xy) \ge \mu(y)(\operatorname{resp.}\mu(xy) \ge \mu(x))$ for all $x, y \in X$. Definition 2.7 A fuzzy set μ in an HS-algebra X is called a fuzzy left (resp. right) deductive system of X if

(1) μ is a fuzzy left (resp. fuzzy right) stable set in S(X);

(2) $\mu(y) \ge \min\{\mu(x \to y), \mu(x)\}$ for all $x, y \in H(X)$.

In what follows, a(fuzzy) deductive system shall mean a(fuzzy) left deductive system. Example 2.8 Consider an HS-algebra $X = \{1, a, b, c\}$ with the following Cayley table:

\rightarrow	1	a	b	c		1	a	b	c
1	1	a	b	c	1	1	1	1	1
a	1	1	b	c	a	1	a	1	a
b	1	a	1	c	b	1	1	b	b
c	1	a	b	1	c	1	a	b	c

Define a fuzzy set μ in X by $\mu(1) = \mu(a) = 0.7$ and $\mu(b) = \mu(c) = 0.5$. Then μ is a fuzzy deductive system of X.

Theorem 2.9 Let μ be a fuzzy set in an HS-algebra X. Then μ is a fuzzy deductive system of X if and only if the nonempty level set $U(\mu; t)$ of μ is a deductive system of X for every $t \in [0, 1]$.

Proof Suppose that μ is a fuzzy deductive system of X. Let $x \in S(X)$ and $y \in U(\mu; t)$. Then $\mu(y) \ge t$, and that $\mu(xy) \ge \mu(y) \ge t$, which implies that $xy \in U(\mu; t)$. Hence $U(\mu; t)$ is a stable subset of S(X). Let $x, y \in H(X)$ be such that $x \to y \in U(\mu; t)$ and $x \in U(\mu; t)$. Then $\mu(x \to y) \ge t$ and $\mu(x) \ge t$. It follows that $\mu(y) \ge \min\{\mu(x \to y), \mu(x)\} \ge t$, and that $y \in U(\mu; t)$. Hence $U(\mu; t)$ is a deductive system of X.

Conversely, assume that the nonempty level set $U(\mu;t)$ of is a deductive system of X for every $t \in [0,1]$. If there exist $x_0, y_0 \in S(X)$ such that $\mu(x_0y_0) < \mu(y_0)$, then by taking $t_0 = 1/2(\mu(x_0y_0) + \mu(y_0))$, we have $\mu(x_0y_0) < t_0 < \mu(y_0)$. It follows that $y_0 \in U(\mu;t_0)$ and $x_0y_0 \notin U(\mu;t_0)$. This is a contradiction. Therefore μ is a fuzzy stable set in S(X). Suppose that $\mu(y_0) < \min\{\mu(x_0 \to y_0), \mu(x_0)\}$ for some $x_0, y_0 \in X$. Putting $s_0 = 1/2(\mu(y_0) + \min\{\mu(x_0 \to y_0), \mu(x_0)\})$, then $\mu(y_0) < s_0 < \min\{\mu(x_0 \to y_0), \mu(x_0)\}$, which shows that $x_0 \to y_0 \in U(\mu;s_0)$. $x_0 \in U(\mu;s_0)$ and $y_0 \in U\mu;s_0$. This is impossible. Therefore μ is a fuzzy deductive system of X.

Corollary 2.10 Let A be a deductive system of an HS- algebra X, and let μ be a fuzzy set in X defined by

$$\mu(x) = \begin{cases} t_0 & \text{if } x \in A \\ t_1 & \text{otherwise} \end{cases}$$

where $t_0 > t_1$ in [0, 1]. Then μ is a fuzzy deductive system of X, and $U(\mu; t_0) = A$.

Proof Notice that

$$U(\mu; t) = \begin{cases} \varnothing & \text{if} & t_0 < t_1, \\ A & \text{if} & t_1 < t < t_0, \\ X & \text{if} & t < t_1, \end{cases}$$

It follows from Theorem 2.9 that μ is a fuzzy deductive system of X. Clearly, we have $U(\mu; t_0) = A$.

Corollary 2.10 suggests that any deductive systems of an HS-algebra X can be realized as a level deductive system of some fuzzy deductive system of X. We now consider the converse of Corollary 2.10.

Corollary 2.11 For a nonempty subset A of an HS-algebra X. Let μ be a fuzzy set in X which is given in Corollary 2.10. If μ is a fuzzy deductive system of X, then A is a deductive system of X.

Proof Assume that μ is a fuzzy deductive system of X and let $x \in S(X)$ and $y \in A$. Then $\mu(xy) \ge \mu(y) \ge t$ and so $xy \in U(\mu; t_0) = A$. Hence A is a stable subset of S(X), Let $x, y \in H(X)$ be such that $x \to y \in A$ and $x \in A$. It follows that $\mu(y) \ge \min\{\mu(x \to y), \mu(x)\} = t_0$, so that $y \in U(\mu; t_0) = A$. This completes the proof.

The following Theorem shows that the concept of a fuzzy deductive system of an HSalgebra is a generalization of a deductive system. The proof is straightforward by using Corollary 2.10 and 2.11.

Theorem 2.12 Let A be a nonempty subset of an HS-algebra and let μ be a fuzzy set in X such that μ is into $\{0, 1\}$, so that μ is the characteristic function A. Then μ is a fuzzy deductive system of X if and only if A is a deductive system of X.

Theorem 2.13 If μ is a fuzzy deductive system of an HS-algebra X, then $\mu(x) = \sup\{\alpha \in [0,1] \mid x \in U(\mu; \alpha)\}$ for all $x \in X$.

Proof Let $\beta = \sup\{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\}$ and Let $\varepsilon > 0$ be given. Then $\beta - \varepsilon < \sup\{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\}$, whence $\beta - \varepsilon < \alpha$ for some $\alpha \in [0,1]$ such that $x \in U(\mu;\alpha)$. Since $\mu(x) \ge \alpha$, it follows that $\beta - \varepsilon < \mu(x)$, so that $\beta \le \mu(x)$ because ε is arbitrary. We now show that $\mu(x) \le \beta$. To do this, assume that $\mu(x) = \gamma$. Then $x \in U(\mu;\gamma)$ and so $\gamma \in \{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\}$. Hence $\gamma \le \sup\{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\}$. Whence $\mu(x) \le \beta$. Therefore $\mu(x) = \beta$, as desired.

We note that the intersection of all deductive systems of an HS-algebra X is also a deductive system of X. Let Λ be a totally ordered set and let $\{I_{\alpha} \mid \alpha \in \Lambda\}$ be a family of deductive systems of an HS-algebra X such that for all $\alpha, \beta \in \Lambda, \beta > \alpha$ if and only if $I_{\beta} \subset I_{\alpha}$. Then $\bigcup_{\alpha \in \Lambda} I_{\alpha}$ is a deductive system of X.

Now we consider the converse of Theorem 2.13.

Let Λ be a nonempty subset of [0, 1]. There is no loss of generality in using Λ as an index set in the following results.

Theorem 2.14 Let $\{I_{\alpha} \mid \alpha \in \Lambda\}$ be a collection of deductive systems of an HS-algebra X such that

(i) $X = \bigcup_{\alpha \in \Lambda} I_{\alpha};$

(ii) $\beta > \alpha$ if and only if $I_{\beta} \subset I_{\alpha}$ for all $\alpha, \beta \in \Lambda$. Define a fuzzy set μ in X by, for all $x \in X, \mu(x) = \sup\{\alpha \in \Lambda \mid x \in I_{\alpha}\}$. Then μ is a fuzzy deductive system of X.

Proof For any $\beta \in [0, 1]$, we consider the following two cases:

(i) $\beta = \sup\{\alpha \in \Lambda \mid \alpha < \beta\};$

(ii) $\beta \neq \sup\{\alpha \in \Lambda \mid \alpha < \beta\};$

For the case (i) we know that $x \in U(\mu; \beta) \Leftrightarrow x \in I_{\alpha}$ for all $\alpha < \beta \Leftrightarrow x \in \bigcap_{\alpha < \beta} I_{\alpha}$ whence $U(\mu; \beta) = \bigcap_{\alpha < \beta} I_{\alpha}$, which is a deductive system of X. Case (ii) implies that there exists $\varepsilon > 0$ such that $(\beta - \varepsilon, \beta) \cap A = \emptyset$. We claim that $U(\mu; \beta) = \bigcup_{\alpha \ge \beta} I_{\alpha}$. If $x \in \bigcup_{\alpha \ge \beta} I_{\alpha}$, then $x \in I_{\alpha}$ for some $\alpha \ge \beta$. It follows that $\mu(x) \ge \alpha \ge \beta$, so that $x \in U(\mu; \beta)$. Conversely if $x \in \bigcup_{\alpha \ge \beta} I_{\alpha}$, then $x \in I_{\alpha}$ for all $\alpha \ge \beta$, which implies that $x \in I_{\alpha}$ for all $\alpha \ge \beta - \varepsilon$, that is, if $x \notin I_{\alpha}$, then $\alpha \le \beta - \varepsilon$. Thus $\mu(x) \le \beta - \varepsilon$, and so $x \notin U(\mu; \beta)$. Therefore $U(\mu; \beta) = \bigcup_{\alpha \ge \beta} I_{\alpha}$, which is a deductive system of X. Therefore μ is a fuzzy deductive system of X.

Definition 2.15 Let μ and v be fuzzy sets of HS-algebras X_1 and X_2 respectively. The product $\mu \times v$ of μ and v is the element of $X_1 \times X_2$ which is defined by

$$(\mu \times v)(x, y) = \min\{\mu(x), v(y)\}, \quad \forall (x, y) \in X_1 \times X_2$$

Theorem 2.16 If μ and v are fuzzy deductive systems of HS-algebras X_1 and X_2 respectively, then $\mu \times v$ is a fuzzy deductive system of $X_1 \times X_2$

Proof. Let $x = (x_1, x_2), y = (y_1, y_2) \in X_1 \times X_2$. Then $(\mu \times v)(xy) = (\mu \times v)((x_1, x_2)(y_1, y_2)) = (\mu \times v)(x_1y_1, x_2y_2) = \min \{\mu(x_1y_1), v(x_2y_2)\} \ge \min \{\mu(y_{1,1}, v_1), v(y_2)\} = (\mu \times v)(y_{1,1}y_2) = (\mu \times v)(y_1,y_2) = (\mu \times v)(y_$

 $\begin{array}{l} (\mu \times v)(y); \text{ and } (\mu \times v)(y) &= (\mu \times v)(y_{1},y_{2}) = \min \left\{ \mu(y_{1},v(y_{2})\right\} \geq \min \{\min\{\mu(x_{1} \to y_{1}), \mu(x_{1})\}, \min\{v(x_{2} \to y_{2}), v(x_{2})\}\} = \min \left\{\min\{\mu(x_{1} \to y_{1}), v(x_{2} \to y_{2})\}, \min(\mu(x_{1}), v(x_{2}))\} = \min \left\{(\mu \times v)(x_{1} \to y_{1}, x_{2} \to y_{2}), (\mu \times v)(x_{1}, y_{1})\right\} = \min \left\{(\mu \times v)((x_{1}, x_{2}) \to (y_{1}, y_{2})), (\mu \times v)(x_{1}, x_{2})\right\} = \min \left\{(\mu \times v)(x \to y), (\mu \times v)(x)\right\}\end{array}$

Hence $\mu \times v$ is a fuzzy deductive system of $X_1 \times X_2$.

3. Noetherian HS-algebras

Definition 3.1 An HS-algebra X is said to satisfy the ascending (descending) chain condition (brief, ACC (DCC)) if for every ascending (descending) sequence $A_1 \subseteq A_2 \subseteq \ldots (A_1 \supseteq A_2 \supseteq \ldots)$ of deductive systems of X there exists a natural number n such that $A_i = A_n$ for au $i \ge n$.

Definition 3.2 An HS-algebra X is said to be Noetherian if X satisfies the ACC for deductive systems.

Let μ be a fuzzy set in X. We note that Im μ is a bounded subset of [0, 1]. Hence we can consider a sequence of elements of Im μ is either increasing or decreasing.

Theorem 3.3 Let X be an HS-algebra satisfying DCC and let μ be a fuzzy deductive system of X. If a sequence of elements of Im μ is strictly increasing, then μ has finite numbers of values.

Proof Let $\{t_n\}$ be a strictly increasing sequence of element of Im μ . Then $0 \leq t_1 < t_2 < \ldots \leq 1$. Define $U(\mu; t_r) = \{x \in X \mid \mu(x) \geq t_r\}, r = 2, 3 \ldots$ Then $U(\mu; t_r)$ is a deductive system of X. Let $x \in U(\mu; t_r)$. Then $\mu(x) \geq t_r > t_{r-1}$, which implies that $x \in U(\mu; t_{r-1})$. Hence $U(\mu; t_r) \subseteq U(\mu; t_{r-1})$. Since $t_{r-1} \in Im\mu$, there exists $x_{r-1} \in X$ such that $\mu(x_{r-1}) = t_{r-1}$. It follows that $x_{r-1} \in \mu_{r-1}$, but $x_{r-1} \notin U(\mu; t_r)$. Thus $U(\mu; t_r) \subsetneq U(\mu; t_{r-1})$, and so we obtain a strictly descending sequence $U(\mu; t_1) \supseteq U(\mu; t_2) \supseteq U(\mu; t_3) \ldots$ of deductive systems of X which is not terminating. This contradicts the assumption X satisfies DCC, completing the proof.

Now we consider the converse of Theorem 3.3:

Theorem 3.4 Let X be an HS-algebra. If every fuzzy deductive system of X has finite number of values, then X satisfies DCC.

Proof Suppose that X does not satisfy DCC. Then there exists a strictly descending chain.

$$A_0 \supsetneq A_1 \supsetneq A_2 \supsetneq \dots$$

of deductive systems of X. Define a fuzzy set v in X by

$$v(x) = \begin{cases} \frac{n}{n+1} & \text{if } x \in A_n - A_{n+1}, n = 0, 1, 2, \cdots \\ 1 & \text{if } x \in \bigcap_{n=1}^{\infty} A_n, \end{cases}$$

where A_0 stands for X. We prove that v is a fuzzy deductive system of X. Let $x, y \in X$. If $y \in A_n - A_{n+1}$ then $xy \in A_n$ since A_n is a deductive system of X, and that $\mu(xy) \ge \frac{n}{n+1} = \mu(y)$. Now, let $y \in \bigcap_{n=0}^{n} S$ ince A_n is a deductive systems for any integer numbed n, then $\bigcap_{n=0}^{n} A_n$ is also a deductive system. Hence $xy \in \bigcap_{n=0}^{\infty} A_n$, and that $\mu(xy) = 1 = \mu(y)$. Therefore μ is a fuzzy stable subset in S(X).

Let $x, y \in X$. Assume that $x \to y \in A_n - A_{n+1}$ and $x \in A_k - A_{k+1}$ for $n = 0, 1, 2 \dots; k = 0, 1, 2, \dots$. Without loss of generality, we may assume that $n \leq k$. Then clearly $x \in A_n$, Since A_n is a deductive system, we have $y \in A_n$. Hence $v(y) \geq \frac{n}{n+1} = \min\{v(x \to y), v(x)\}$. If $x \to y, x \in \bigcap_{n=0}^{\infty} A_n$ and $y \in \bigcap_{n=0}^{\infty} A_n$, Thus $v(y) = 1 = \min\{v(x \to y), v(x)\}$. If $x \to y \notin \bigcap_{n=0}^{\infty} A_n$ and $y \in \bigcap_{n=0}^{\infty} A_n$, then there exists $k \in \mathbb{N}$, such that $x \to y \in A_k \to A_{k+1}$. It follows that $y \in A_k$, so that $v(y) \geq \frac{k}{k+1} = \min\{v(x \to y), v(x)\}$. Finally, assume that $x \to y \in \bigcap_{n=0}^{\infty} A_n$ and $x \notin \bigcap_{n=0}^{\infty} A_n$. Then $x \in A_r - A_{r+1}$ for some $r \in \mathbb{N}$. It follows that $y \in A_r$, and hence $v(y) \geq \frac{k}{k+1} = \min\{v(x \to y), v(x)\}$. Consequently, we find that v is a

fuzzy deductive system and v has infinite number of different values. This is a contradiction and the proof is complete.

Theorem 3.5 For any HS-algebra X, the following are equivalent:

(i) X is Noetherian;

(ii) The set of vaults of any fuzzy deductive system on X is a well-ordered subset of [0, 1].

Proof Suppose that μ is fuzzy deductive system whose set of values is not a well-ordered subset of [0, 1]. Then there exists a strictly decreasing sequence $\{t_n\}$ such that $\mu(x_n) = t_n$. Let $B_n = \{x \in X \mid \mu(x) \in t_n\}$. Then $B_1 \subsetneq B_2 \subsetneq B_3 \dots$ is a strictly ascending chain of seductive systems of X, contradicting the assumption that X is Noetherian.

Assume that the condition is satisfied and X is not Noetherian. Then there exists a strictly ascending chain.

$$A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \dots$$

of deductive system of X. Suppose that $A = \bigcup_{n \in \mathbb{N}} A_n$. Then A is a deductive system of X. Define a fuzzy set v in X by.

$$v(x) = \begin{cases} 0 & \text{if } x \notin A_n, \\ \frac{1}{k} & \text{where } k = \min\{n \in \mathbb{N} \mid x \in A_n\} \end{cases}$$

We claim that v is a fuzzy deductive system of X. Let $x, y \in X$. If $y \in A_n - A_{n-1}$ for n = 2, 3..., then $xy \in A_n$. It follows that $v(xy) \ge \frac{1}{n} = v(y)$. If $y \notin A_n$, then v(y) = 0, and that $v(xy) \ge v(y)$. Therefore μ is a fuzzy stance set in S(X). Now, let $x, y \in X$. If $x \to y, x \in A_n - A_{n-1}$ for n = 2, 3, ..., then $y \in A_n$. It follows that

$$v(y) \ge \frac{1}{n} = \min\left\{v(x \to y), v(y)\right\}$$

Assume that $x, y \in A_n$ and $x \in A_{n-}A_m$ for all m < n. Since A_n is a deductive system, therefore $y \in A_n$. Hence $v(y) \ge \min \{v(x \to y), v(x)\}$.

Similarly for the case $x \to y \in A_n - A_m$ and $x \in A_n$, we have $v(y) \ge \min \{v(x \to y), v(x)\}$. Thus v is a fuzzy deductive system of X. Since the chain (*) is not terminating, v has a strictly descending sequence of values. This contradicts the assumption that the value set of any fuzzy deductive system is well-ordered. Hence X is Noetherian.

We note that a set is well-ordered if and only if it does not contain any infinite descending sequence.

Theorem 3.6 Let $S = \{t_1, t_2, \dots\} \bigcup \{0\}$, where $\{t_n\}$ is a strictly decreasing sequence in (0, 1). Then an HS-algebra X is Noetherian if and only if for each fuzzy deductive system μ of X, $I_m \mu \subseteq S$ implies that there exists a positive integer n_0 such that $Im \mu \subseteq \{t_1, t_2, \dots, t_{n_0}\} \cup \{0\}$.

Proof If X is a Noetherian HS-algebra, then we know from Theorem 3.5 that $Im\mu$ is a well-ordered subset of [0, 1] and so the condition is necessary.

Conversely, assume that the condition is satisfied. Suppose that X is not Noetherian. Then there exists a strictly ascending chain of deductive systems $A_1 \subsetneq A_2 \subsetneq A_3 \dots$

Define a fuzzy set μ in X by

$$\mu(x) = \begin{cases} t_1 & \text{if } x \in A_1, \\ t_n & \text{if } x \in A_n - A_{n-1} \\ 0 & \text{if } x \in X - \bigcup_{n=1}^{\infty} A_n, \end{cases} n = 2, 3, \dots,$$

If $y \in X - A_n$, then $\mu(y) = 0$. Hence $\mu(xy) \ge \mu(y)$. If $y \in A_1$, then $xy \in A_1$, and so $\mu(xy) = t_1 = \mu(y)$. If $y \in A_n - A_{n-1}$ for n = 2, 3... Then $xy \in A_n$, and hence $\mu(xy) \ge t_n = \mu(y)$. Therefore μ is a fuzzy stable subset in S(X). Now let $x, y \in X$. If either $x \to y$ or X belong to $X - A_n$, then either $\mu(x \to y)$ or $\mu(x)$ is equal to 0. Hence $\mu(y) \ge \min\{\mu(x \to y), \mu(x)\}$. If $x \to y, x \in A_1$, then $y \in A_1$ and so $\mu(y) = t_1 = \min\{\mu(x \to y), \mu(x)\}$. If $x \to y, x \in A_n - A_{n-1}$, then $y \in A_n$. Hence $\mu(y) \ge t_n = \min\{\mu(x \to y), \mu(y)\}$. Assume that $x \to y \in A_1$ and $x \in A_n - A_{n-1}$ for $n = 2, 3, 4, \ldots$. Then $y \in A_n$ and hence $\mu(y) \ge t_n = \min\{t_1, t_n\} = \min\{\mu(x \to y), \mu(x)\}$. Similarly for $y \in A_1$ and $x \to y \in A_n - A_{n-1}, n = 2, 3, 4, \ldots$, we obtain $\mu(y) \ge t_n = \min\{\mu(x \to y), \mu(x)\}$. Hence μ is a fuzzy deductive system of X. this contradicts our assumption.

4. On homomorphism of HS-algebras

Definition 4.1 A mapping $f: X \to Y$ of HS- algebras is called a homomorphism if

(i) $f(x \to y) = f(x) \to f(y)$ for all $x, y \in H(X)$

(ii) f(xy) = f(x)f(y) for all $x, y \in S(X)$

Note that if $f : X \to Y$ is a homomorphism of HS- algebra, then f(1) = 1. Let $f : X \to Y$ be a homomorphism of HS-algebras, For any fuzzy set μ in Y we define a set μ^f in X by $\mu^f(x) = \mu(f(x))$ for all $x \in X$.

Theorem 4.2 Let $f: X \to Y$ be a homomorphism of HS-algebra. If μ is a fuzzy deductive system of Y, then μ^f is a fuzzy deductive system of X.

Proof Assume that μ is a fuzzy deductive system of Y, then $\mu^f(xy) = \mu(f(xy)) = \mu(f(xy)) \geq \mu(f(y)) \geq \mu(f(y)) = \mu^f(y)$ and $\mu^f(y) = \mu(f(y)) \geq \min \{\mu(f(x) \to f(y)), \mu(f(x))\} = \min \{\mu(f(x \to y)), \mu(f(x))\} = \min \{\mu^f(x \to y), \mu^f(x)\}$. Hence μ^f is a fuzzy deductive system of X.

If we strengthen the condition f, then the converse of Theorem 4.2 is obtained as follows. Theorem 4.3 Let $f: X \to Y$ be an epimorphism of HS-algebras. If μ^f is a fuzzy deductive system of X, then μ is a fuzzy deductive system of Y.

Proof For any $x, y \in Y$, there exist $a, b \in X$ such that f(a) = x and f(b) = y. Then $\mu(xy) = \mu(f(a)f(b)) = \mu(f(ab)) = \mu^f(ab) \ge \mu^f(b) = \mu(f(b)) = \mu(y)$ and $\mu(y) = \mu(f(b)) = \mu^f(b) \ge \min \{\mu^f(a \to b), \mu^f(a)\} = \min \{\mu(f(a \to b)), \mu(f(a))\} = \min \{\mu(f(a) \to f(b)), \mu(f(a))\} = \min \{\mu(x \to y), \mu(x)\}$. Hence μ is a fuzzy deductive system of Y.

Acknowledgements The authors would like to thank Professor Wieslaw A. Dudek for his valuable comments given to this paper.

References

- [1] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math. 2(1985), 29–35.
- D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J Math 5(1988), 161-172.
- [3] D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotiemts, Math. Japon 39(1993), 461-469.
- [4] D. Busneag, On extensions of pseudo-valuations of hilbert algebras, Discrete Math. 263 (2003), 11-24.
- [5] S. Celani, A note on homomorphism of Hilbert algebras, Int. J. Math. Sci. 29 (2002), 55-61.
- [6] I. Chajda, R. Halaš, Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999), 429 - 432.
- [7] I. Chajda, R. Halaš, Stabilizers in Hilbert algebras, Multiple-valued logic in Eastern Europe, Multi.-Valued Log. 8 (2002), 139 – 148.
- [8] I. Chajda, R. Halaš, Y.B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Comment. Math. Univ. Carolin. 43 (2002), 407 – 417.
- [9] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84(1981), 264–269.

- [10] A. Diego, Sur les algebras de Hilbert, in Hermann, Ed. Collection de Logique Math. Serie A, 21(1966).
- [11] W. A. Dudek, Y.B. Jun, On fuzzy ideals in Hilbert algebras, Novi Sad J. Math. 29 (1999), 193-207.
- [12] W. A. Dudek, Y.B. Jun, Remarks on fuzzy topological subalgebras in Hilbert algebras, Filomat 13 (1999), 15 – 23.
- [13] Y. B. Jun, Commutative Hilbert algebras. Soochow J. Math. 22(1996), 477–484.
- [14] Y. B. Jun, Extensions of fuzzy deductive systems in Hilbert algebras, Fuzzy Sets and Systems, 79(1996), 263—265.
- [15] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japon 43(1996), 51-54.
- [16] Y. B. Jun, Characterizations of Noetherian BCK-algebras via fuzzy ideals, Fuzzy Sets and Systems, 108(1999), 231—234.
- [17] Y. B. Jun, S.M.Hong & E.H.Roh, BCI-semigroups, Honam Math. J. 15(1993), 59-64.
- [18] Y. B. Jun & K. H. Kim, Intuitionistic fuzzy ideals of BCK-algebras, Int. J. Math. & Math Sci. 24(2000), 839-849.
- [19] Y. B. Jun & E. H. Koh, Fuzzy p & φ -ideals in IS-algebras, J.Fuzzy Math. 7(1999), 473–480.
- [20] E. H. Roh, Y. B. Jun & W. H. Shim, Fuzzy associative φ -ideals of IS-algebras, Int. J. Math & Math Sci 24(2000), 729–735.
- [21] A. Rosenfeld. Fuzzy groups, J. Math. Anal. Appl. 35(1971), 512-517.
- [22] L. A. Zadeh, Fuzzy sets, Inform. & Control, 8(1965), 338-353.
- [23] J. Zhan & Z. Tan, Intuitionistic fuzzy k-ideals of IS-algebras, Sci. Math. Japon 57(2003),447-450.
- [24] J. Zhan & Z. Tan, Intuitionistic fuzzy deductive systems of Hilbert algebras, SEA Bull Math, to appear.
- [25] J. Zhan & Z. Tan, T-fuzzy multiply positive implicative BCC-ideals of BCC-algebras. Int J Math & Math Sci, 42(2003),2653-2666.

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P.R. China

E-mail: zhanjianming@hotmail.com

162