MOND-PEČARIĆ METHOD FOR A MEAN-LIKE TRANSFORMATION OF OPERATOR FUNCTIONS

Akemi Matsumoto* and Masaru Tominaga**

Received May 20, 2004

ABSTRACT. As a generalization of the quasi-arithmetic mean, we consider a mean-like transformation of operator functions. Let Φ be a unital positive linear map of B(H), the algebra of all bounded linear operators on a Hilbert space H, and f(t) (resp. g(t)) a continuous function on an interval [m, M] (resp. f([m, M])). Then it is defined by $(g \circ \Phi \circ f)(A)$ for a selfadjoint operator A with $m \leq A \leq M$. We give a lower bound of the difference between $(g \circ \Phi \circ f)(A)$ and $\Phi(A)$. Precisely we prove that if f(t) is concave on [m, M] and g(t) is increasing and convex on f([m, M]), then for each $\lambda \in \mathbb{R}$, $(g \circ \Phi \circ f)(A) - \lambda \Phi(A) \geq \min_{t \in [m, M]} \{g(\alpha_f t + \beta_f) - \lambda t\}$ where $\alpha_f := \frac{f(M) - f(m)}{M - m}$ and $\beta_f := \frac{Mf(m) - mf(M)}{M - m}$. It is an extension of our previous estimation for $\Phi = \omega_x$, the vector state for a unit vector $x \in H$.

1 Introduction Let f(t) be a strictly monotone, continuous function on an interval [m, M] and $w = (w_1, \ldots, w_n)$ a weight, i.e., $\sum_{i=1}^n w_i = 1$ and $w_i \ge 0$. Then the quasi-arithmetic mean is defined by $f^{-1}(\sum_{i=1}^n w_i f(t_i))$ for $t_1, \ldots, t_n \in [m, M]$, cf.[2], [1]. Moreover if f(t) is concave on [m, M], then the quasi-arithmetic mean and arithmetic mean inequality

$$f^{-1}\left(\sum_{i=1}^{n} w_i f(t_i)\right) \le \sum_{i=1}^{n} w_i t_i$$

follows from the classical Jensen inequality (see (7)).

It can be expressed as

(1)
$$f^{-1}(\langle f(A)x, x \rangle) \le \langle Ax, x \rangle$$

for a selfadjoint operator A on H with $m \leq A \leq M$ and a unit vector $x \in H$. By the way, replacing f^{-1} in (1) to an increasing function g on f([m, M]), we considered a low bound of $g(\langle f(A)x, x \rangle)$ by the arithmetic mean $\langle Ax, x \rangle$ in our previous notes [6], [7] and [8]. As a matter of fact, we showed that for every real number $\lambda > 0$

(2)
$$g\left(\langle f(A)x, x \rangle\right) - \lambda \langle Ax, x \rangle \ge \min_{t \in [m, M]} \{g(\alpha_f t + \beta_f) - \lambda t\}$$

holds for all unit vectors $x \in H$ where

$$\alpha_f := \frac{f(M) - f(m)}{M - m}$$
 and $\beta_f := \frac{Mf(m) - mf(M)}{M - m}$

It suggests us that a unital positive linear map Φ on B(H), the algebra of all bounded linear operators on H, is regarded as a mean-like transformation of operator functions.

²⁰⁰⁰ Mathematics Subject Classification. 47A63.

Key words and phrases. positive linear map, quasi-arithmetic mean, arithmetic mean, operator inequality, Mond-Pečarić method.

Namely we can define a new operator function $g \circ \Phi \circ f$ for given f and g. For example, if we take $\Phi(A) = \langle Ax, x \rangle$ for some unit vector $x \in H$, then (1) is rephrased by $(f^{-1} \circ \Phi \circ f)(A) \leq \Phi(A)$.

As a continuation of our previous notes, we estimate a lower bound of the difference between $(g \circ \Phi \circ f)(A)$ and $\Phi(A)$ in this note. As an application of Mond-Pečarić method [5], we prove: Let A be a selfadjoint operator on a Hilbert space H with $m \leq A \leq M$. Let f(t) be a concave function on [m, M] and g(t) an increasing convex function on f([m, M]). Then for every real number λ

$$g(\Phi(f(A))) - \lambda \Phi(A) \ge \min_{t \in [m,M]} \left\{ g(\alpha_f t + \beta_f) - \lambda t \right\}.$$

2 Estimations of $g(\Phi(f(A))) - \lambda \Phi(A)$ We give a lower bound of $g(\Phi(f(A)))$ by $\Phi(A)$ without the convexity of g(t).

Theorem 1. Let A be a selfadjoint operator on a Hilbert space H with $m \leq A \leq M$ for some m < M. Let f(t) be a concave function on [m, M] with $f(m) \neq f(M)$ and g(t) be a continuous function on f([m, M]). Let Φ be a unital positive linear map on B(H). Then for every real number λ with $\lambda \alpha_f > 0$

(3)
$$g(\Phi(f(A))) - \lambda \Phi(A) \ge \min_{u \in f([m,M])} \left\{ g(u) - \frac{\lambda}{\alpha_f} (u - \beta_f) \right\}.$$

Precisely, if $\lambda > 0$ and $\alpha_f > 0$ (resp. $\lambda < 0$ and $\alpha_f < 0$), then

(4)
$$g(\Phi(f(A))) - \lambda \Phi(A) \ge \min_{t \in \left[m, \frac{f_{\max} - \beta_f}{\alpha_f}\right]} \left\{g(\alpha_f t + \beta_f) - \lambda t\right\}$$

(5)
$$\left(resp. \ g(\Phi(f(A))) - \lambda \Phi(A) \ge \min_{t \in \left[\frac{f\max - \beta_f}{\alpha_f}, M\right]} \left\{ g(\alpha_f t + \beta_f) - \lambda t \right\} \right)$$

where $f_{\max} := \max_{t \in [m,M]} f(t)$.

Proof. Since f(t) is concave, we have $f(A) \ge \alpha_f A + \beta_f$, and hence $\Phi(f(A)) \ge \alpha_f \Phi(A) + \beta_f$. So it follows from $\lambda \alpha_f > 0$ that

$$\lambda \Phi(A) \le \frac{\lambda}{\alpha_f} \left(\Phi(f(A)) - \beta_f \right),$$

so that

$$g(\Phi(f(A))) - \lambda \Phi(A) \ge g\left(\Phi(f(A))\right) - \frac{\lambda}{\alpha_f} \left(\Phi(f(A)) - \beta_f\right)$$
$$\ge \min_{u \in f([m,M])} \left\{g(u) - \frac{\lambda}{\alpha_f} (u - \beta_f)\right\}$$

by $\sigma(\Phi(f(A))) \subset f([m, M])$.

Moreover if $\lambda > 0$ (and $\alpha_f > 0$), then for every $u \in f([m, M]) = [f(m), f_{\max}]$ the equation $u = \alpha_f t + \beta_f$ has a unique solution $t = t_u = \frac{u - \beta_f}{\alpha_f} \in \left[m, \frac{f_{\max} - \beta_f}{\alpha_f}\right]$. Since

$$g(u) - \frac{\lambda}{\alpha_f}(u - \beta_f) = g(\alpha_f t_u + \beta_f) - \lambda t_u,$$

(3) assures (4).

On the other hand, if $\lambda < 0$ and $\alpha_f < 0$, the proof of (5) is similar to the above. \Box

We here note that the condition $\lambda \alpha_f > 0$ in Theorem 1 is needed.

Remark. Let $f(t) := 2 - (t-1)^2$ on some closed interval I_f and $g(t) := (t-\frac{7}{3})^2$ on [-2, 2]. Suppose that $\Phi(C) := VCV^*$ for all $C \in M_4(\mathbb{C})$ where $V = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 & 0\\ 0 & 1 & -1 & 1 \end{bmatrix}$. Then (3) does not hold for $\lambda \alpha_f = -\frac{2}{3}$. Indeed,

(i) Let $I_f = [-1, 2]$ and $A := \begin{bmatrix} 2 & 0 \\ & -1 & 1 \end{bmatrix}$. Then we have $\alpha_f = 1$ (> 0), $\beta_f = -1$, $f(A) = \begin{bmatrix} 1 & 1 \\ & -2 & 2 \end{bmatrix}$, $\Phi(A) = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\Phi(f(A)) = \frac{1}{3} \begin{bmatrix} 0 & 5 \\ 3 & 1 \end{bmatrix}$ and $g(\Phi(f(A))) = \frac{1}{9} \begin{bmatrix} 64 & -65 \\ -39 & 51 \end{bmatrix}$. This implies that

$$\min_{u \in f([m,M])} \left\{ g(u) - \frac{\lambda}{\alpha_f} (u - \beta_f) \right\} = \min_{u \in [-2,2]} \left\{ \left(u - \frac{7}{3} \right)^2 - \lambda (u+1) \right\}$$
$$= \min_{u \in [-2,2]} \left\{ \left(u - \frac{14 + 3\lambda}{6} \right)^2 - \frac{\lambda^2}{4} - \frac{10\lambda}{3} \right\}$$

Here we put $\lambda = -\frac{2}{3}$ (< 0). Then we have $\min_{u \in f([m,M])} \left\{ g(u) - \frac{\lambda}{\alpha_f} (u - \beta_f) \right\} = \frac{19}{9}$ and so

$$g(\Phi(f(A))) - \lambda \Phi(A) - \min_{t \in [m,M]} \{g(\alpha_f t + \beta_f) - \lambda t\}$$

= $\frac{1}{9} \begin{bmatrix} 64 & -65 \\ -39 & 51 \end{bmatrix} - \left(-\frac{2}{3}\right) \times \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} - \frac{19}{9} = \frac{1}{9} \begin{bmatrix} 47 & -63 \\ -37 & 32 \end{bmatrix} \not\ge 0.$

(ii) Let $I_f = [0,3]$ and $A := \begin{bmatrix} 0 & 2 \\ & 3 \\ & 1 \end{bmatrix}$. As in the above (i), we have $\alpha_f = -1$ (< 0), $\beta_f = 1$, $\Phi(A) = \frac{1}{3} \begin{bmatrix} 5 & -1 \\ -1 & 6 \end{bmatrix}$ and $g(\Phi(f(A))) = \frac{1}{9} \begin{bmatrix} 58 & -39 \\ -39 & 45 \end{bmatrix}$. Moreover for $\lambda = \frac{2}{3}$ (> 0), it follows that

$$\min_{u \in f([m,M])} \left\{ g(u) - \frac{\lambda}{\alpha_f} (u - \beta_f) \right\} = \min_{u \in [-2,2]} \left\{ \left(u - \frac{14 - 3\lambda}{6} \right)^2 - \frac{\lambda^2}{4} + \frac{4\lambda}{3} \right\} = \frac{7}{9}$$

so that

$$g(\Phi(f(A))) - \lambda \Phi(A) - \min_{t \in [m,M]} \left\{ g(\alpha_f t + \beta_f) - \lambda t \right\} = \frac{1}{9} \begin{bmatrix} 41 & -37 \\ -37 & 26 \end{bmatrix} \not\ge 0.$$

In Theorem 1, if f(t) is increasing (resp. decreasing), then $f_{\text{max}} = f(M)(= \alpha_f M + \beta_f)$ (resp. $f_{\text{max}} = f(m)(= \alpha_f m + \beta_f)$). So the following corollary is easily obtained and corresponds to (2):

Corollary 2. Let the hypothesis of Theorem 1 be satisfied and f(t) be monotone. Then for every real number λ with $\lambda \alpha_f > 0$

$$g(\Phi(f(A))) - \lambda \Phi(A) \ge \min_{t \in [m,M]} \{g(\alpha_f t + \beta_f) - \lambda t\}.$$

3 The main result Let f(t) be a concave function on [m, M]. In this section, we give a lower bound of $g(\Phi(f(A))) - \lambda \Phi(A)$ assuming the convexity of g(t). First of all, suppose that g(t) is increasing and g(t) > 0. Since f(t) is concave, it follows that $\Phi(f(A)) \ge \alpha_f \Phi(A) + \beta_f$. By [3, Theorem 2.2], we have $g(\Phi(f(A))) \ge \left\{ \min_{r \in I_f} \frac{g(r)}{\alpha_{fg}r + \beta_{fg}} \right\} g(\alpha_f \Phi(A) + \beta_f)$ where $\alpha_{fg} := \frac{g(f_{\max}) - g(f_{\min})}{f_{\max} - f_{\min}}$ and $\beta_{fg} := \frac{f_{\max}g(f_{\min}) - f_{\min}g(f_{\max})}{f_{\max} - f_{\min}}$ for $f_{\max} := \max_{t \in [m,M]} f(t)$ and $f_{min} := \min_{t \in [m,M]} f(t)$ and I_f is the closed interval by f(m) and f(M). Hence it follows that for every $\lambda > 0$

(6)
$$g(\Phi(f(A))) - \lambda \Phi(A) \ge \min_{t \in [m,M]} \left[\left\{ \min_{r \in I_f} \frac{g(r)}{\alpha_{fg}r + \beta_{fg}} \right\} g(\alpha_f t + \beta_f) - \lambda t \right].$$

As compared with (2), we think about the necessity of the constant $\min_{r \in I_f} \frac{g(r)}{\alpha_{fg}r + \beta_{fg}}$ in (6). We pay our attention to the Jensen inequality in [4]: Let C be a selfadjoint operator on a Hilbert space H. Let f(t) be a concave function on an interval containing $\sigma(C)$. Then for every unit vector $x \in H$

(7)
$$\langle f(C)x,x\rangle \leq f(\langle Cx,x\rangle)$$

Theorem 3. Let A be a selfadjoint operator on a Hilbert space H with $m \leq A \leq M$ for some m < M. Let f(t) be a concave function on [m, M] and g(t) be an increasing convex function on f([m, M]). Let Φ be a unital positive linear map on B(H). Then for every real number λ

(8)
$$g(\Phi(f(A))) - \lambda \Phi(A) \ge \min_{t \in [m,M]} \left\{ g(\alpha_f t + \beta_f) - \lambda t \right\}.$$

Proof. Since f(t) is concave, we have $f(A) \ge \alpha_f A + \beta_f$. So the inequality $\Phi(f(A)) \ge \alpha_f \Phi(A) + \beta_f$ holds, i.e.,

$$\langle \Phi(f(A))x, x \rangle \ge \alpha_f \langle \Phi(A)x, x \rangle + \beta_f$$

for all unit vectors $x \in H$. Since g(t) is an increasing convex function on f([m, M]), we have

$$\langle g(\Phi(f(A)))x, x \rangle \ge g(\langle \Phi(f(A))x, x \rangle) \ge g(\alpha_f \langle \Phi(A)x, x \rangle + \beta_f)$$

by (7). Hence it follows from $m \leq \Phi(A) \leq M$ that

$$\begin{split} \langle g(\Phi(f(A))x,x) \rangle &-\lambda \langle \Phi(A)x,x \rangle \geq g(\alpha_f \langle \Phi(A)x,x \rangle + \beta_f) - \lambda \langle \Phi(A)x,x \rangle \\ &\geq \min_{t \in [m,M]} \{ g(\alpha_f t + \beta_f) - \lambda t \}, \end{split}$$

and the proof is complete.

Comparing with Remark of Theorem 1, we mention the case $\lambda \alpha_f < 0$ in Theorem 3.

Corollary 4. Let A be a selfadjoint operator on H with $m \le A \le M$ for some m < M. Let f(t) be a concave function on [m, M] and g(t) be an increasing function on f([m, M]). Let Φ be a unital positive linear map on B(H). (i) If $\alpha_f > 0$, then for every $\lambda < 0$

$$g(\Phi(f(A))) - \lambda \Phi(A) \ge g(\alpha_f m + \beta_f) - \lambda m.$$

(ii) If $\alpha_f < 0$, then for every $\lambda > 0$

$$g(\Phi(f(A))) - \lambda \Phi(A) \ge g(\alpha_f M + \beta_f) - \lambda M.$$

Proof. If $\alpha_f > 0$, then $f(t) \ge f(m)$ for all $t \in [m, M]$ by the concavity of f(t). Hence we have $f(A) \ge f(m)$, and so $\Phi(f(A)) \ge f(m)$. Since g(t) is increasing and for $\lambda < 0$,

$$g(\Phi(f(A))) - \lambda \Phi(A) \ge g(f(m)) - \lambda m = g(\alpha_f m + \beta_f) - \lambda m.$$

The latter is shown similarly.

References

- P.S. Bullen, D.S. Mitrinović and P.M. Vasić, *Means and Their Inequalities*, D. Reidel Publishing Company, 1988.
- [2] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalitilies, Cambridge University Press, 1934.
- [3] S. Izumino and R. Nakamoto, Functional orders of positive operators induced from Mond-Pečarić convex inequalities, Sci. Math., 2(1999), 195-200.
- [4] B. Mond and J.E. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19(1993), 405-420.
- [5] B. Mond and J.E. Pečarić, Bounds for Jensen's inequality for several operators, Houston J. Math., 20(1994), 645-651.
- [6] M. Tominaga, Estimations of reverse inequalities for convex functions Operator inequality derived from quasi-arithmetic mean -, Trends in Mathematics, 6(2003), 129–139.
- [7] M. Tominaga, Estimations of Jensen's type inequalities and their applications, preprint.
- [8] M. Tominaga, Estimations of operator inequalities related to the quasi-arithmetic mean, preprint.

*) HIGASHI TOYONAKA SENIOR HIGHSCHOOL, TOYONAKA, OSAKA 565-0084, JAPAN. *Email address* : m@higashitoyonaka.osaka-c.ed.jp

**) IKUEI-NISHI SENIOR HIGHSCHOOL, MIMATSU, NARA 631-0074, JAPAN *Email address* : m-tommy@sweet.ocn.ne.jp