MOND-PEČARIĆ METHOD FOR A MEAN-LIKE TRANSFORMATION OF OPERATOR FUNCTIONS

Akemi Matsumoto* and Masaru Tominaga**

Received May 20, 2004

Abstract

As a generalization of the quasi-arithmetic mean, we consider a mean-like transformation of operator functions. Let Φ be a unital positive linear map of $B(H)$, the algebra of all bounded linear operators on a Hilbert space H, and $f(t)$ (resp. $g(t)$) a continuous function on an interval $[m, M]$ (resp. $f([m, M])$). Then it is defined by $(g \circ \Phi \circ f)(A)$ for a selfadjoint operator A with $m \leq A \leq M$. We give a lower bound of the difference between $(g \circ \Phi \circ f)(A)$ and $\Phi(A)$. Precisely we prove that if $f(t)$ is concave on $[m, M]$ and $g(t)$ is increasing and convex on $f([m, M])$, then for each $\lambda \in \mathbb{R}$, $(g \circ \Phi \circ f)(A)-\lambda \Phi(A) \geq \min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\}$ where $\alpha_{f}:=\frac{f(M)-f(m)}{M-m}$ and $\beta_{f}:=\frac{M f(m)-m f(M)}{M-m}$. It is an extension of our previous estimation for $\Phi=\omega_{x}$, the vector state for a unit vector $x \in H$.

1 Introduction Let $f(t)$ be a strictly monotone, continuous function on an interval $[m, M]$ and $w=\left(w_{1}, \ldots, w_{n}\right)$ a weight, i.e., $\sum_{i=1}^{n} w_{i}=1$ and $w_{i} \geq 0$. Then the quasiarithmetic mean is defined by $f^{-1}\left(\sum_{i=1}^{n} w_{i} f\left(t_{i}\right)\right)$ for $t_{1}, \ldots, t_{n} \in[m, M]$, cf.[2], [1]. Moreover if $f(t)$ is concave on $[m, M]$, then the quasi-arithmetic mean and arithmetic mean inequality

$$
f^{-1}\left(\sum_{i=1}^{n} w_{i} f\left(t_{i}\right)\right) \leq \sum_{i=1}^{n} w_{i} t_{i}
$$

follows from the classical Jensen inequality (see (7)).
It can be expressed as

$$
\begin{equation*}
f^{-1}(\langle f(A) x, x\rangle) \leq\langle A x, x\rangle \tag{1}
\end{equation*}
$$

for a selfadjoint operator A on H with $m \leq A \leq M$ and a unit vector $x \in H$. By the way, replacing f^{-1} in (1) to an increasing function g on $f([m, M])$, we considered a low bound of $g(\langle f(A) x, x\rangle)$ by the arithmetic mean $\langle A x, x\rangle$ in our previous notes [6], [7] and [8]. As a matter of fact, we showed that for every real number $\lambda>0$

$$
\begin{equation*}
g(\langle f(A) x, x\rangle)-\lambda\langle A x, x\rangle \geq \min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\} \tag{2}
\end{equation*}
$$

holds for all unit vectors $x \in H$ where

$$
\alpha_{f}:=\frac{f(M)-f(m)}{M-m} \quad \text { and } \quad \beta_{f}:=\frac{M f(m)-m f(M)}{M-m} .
$$

It suggests us that a unital positive linear map Φ on $B(H)$, the algebra of all bounded linear operators on H, is regarded as a mean-like transformation of operator functions.

[^0]Namely we can define a new operator function $g \circ \Phi \circ f$ for given f and g. For example, if we take $\Phi(A)=\langle A x, x\rangle$ for some unit vector $x \in H$, then (1) is rephrased by $\left(f^{-1} \circ \Phi \circ f\right)(A) \leq$ $\Phi(A)$.

As a continuation of our previous notes, we estimate a lower bound of the difference between $(g \circ \Phi \circ f)(A)$ and $\Phi(A)$ in this note. As an application of Mond-Pečarić method [5], we prove: Let A be a selfadjoint operator on a Hilbert space H with $m \leq A \leq M$. Let $f(t)$ be a concave function on $[m, M]$ and $g(t)$ an increasing convex function on $f([m, M])$. Then for every real number λ

$$
g(\Phi(f(A)))-\lambda \Phi(A) \geq \min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\}
$$

2 Estimations of $g(\Phi(f(A)))-\lambda \Phi(A)$ We give a lower bound of $g(\Phi(f(A)))$ by $\Phi(A)$ without the convexity of $g(t)$.

Theorem 1. Let A be a selfadjoint operator on a Hilbert space H with $m \leq A \leq M$ for some $m<M$. Let $f(t)$ be a concave function on $[m, M]$ with $f(m) \neq f(M)$ and $g(t)$ be a continuous function on $f([m, M])$. Let Φ be a unital positive linear map on $B(H)$. Then for every real number λ with $\lambda \alpha_{f}>0$

$$
\begin{equation*}
g(\Phi(f(A)))-\lambda \Phi(A) \geq \min _{u \in f([m, M])}\left\{g(u)-\frac{\lambda}{\alpha_{f}}\left(u-\beta_{f}\right)\right\} \tag{3}
\end{equation*}
$$

Precisely, if $\lambda>0$ and $\alpha_{f}>0$ (resp. $\lambda<0$ and $\left.\alpha_{f}<0\right)$, then

$$
\begin{gather*}
g(\Phi(f(A)))-\lambda \Phi(A) \geq \min _{t \in\left[m, \frac{f_{\max }-\beta_{f}}{\alpha_{f}}\right]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\} \tag{4}\\
\left(\operatorname{resp} g(\Phi(f(A)))-\lambda \Phi(A) \geq \min _{t \in\left[\frac{f_{\max }-\beta_{f}}{\alpha_{f}}, M\right]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\}\right) \tag{5}
\end{gather*}
$$

where $f_{\max }:=\max _{t \in[m, M]} f(t)$.
Proof. Since $f(t)$ is concave, we have $f(A) \geq \alpha_{f} A+\beta_{f}$, and hence $\Phi(f(A)) \geq \alpha_{f} \Phi(A)+\beta_{f}$. So it follows from $\lambda \alpha_{f}>0$ that

$$
\lambda \Phi(A) \leq \frac{\lambda}{\alpha_{f}}\left(\Phi(f(A))-\beta_{f}\right)
$$

so that

$$
\begin{aligned}
g(\Phi(f(A)))-\lambda \Phi(A) & \geq g(\Phi(f(A)))-\frac{\lambda}{\alpha_{f}}\left(\Phi(f(A))-\beta_{f}\right) \\
& \geq \min _{u \in f([m, M])}\left\{g(u)-\frac{\lambda}{\alpha_{f}}\left(u-\beta_{f}\right)\right\}
\end{aligned}
$$

by $\sigma(\Phi(f(A))) \subset f([m, M])$.
Moreover if $\lambda>0$ (and $\left.\alpha_{f}>0\right)$, then for every $u \in f([m, M])=\left[f(m), f_{\max }\right]$ the equation $u=\alpha_{f} t+\beta_{f}$ has a unique solution $t=t_{u}=\frac{u-\beta_{f}}{\alpha_{f}} \in\left[m, \frac{f_{\max }-\beta_{f}}{\alpha_{f}}\right]$. Since

$$
g(u)-\frac{\lambda}{\alpha_{f}}\left(u-\beta_{f}\right)=g\left(\alpha_{f} t_{u}+\beta_{f}\right)-\lambda t_{u}
$$

(3) assures (4).

On the other hand, if $\lambda<0$ and $\alpha_{f}<0$, the proof of (5) is similar to the above.
We here note that the condition $\lambda \alpha_{f}>0$ in Theorem 1 is needed.
Remark. Let $f(t):=2-(t-1)^{2}$ on some closed interval I_{f} and $g(t):=\left(t-\frac{7}{3}\right)^{2}$ on $[-2,2]$. Suppose that $\Phi(C):=V C V^{*}$ for all $C \in M_{4}(\mathbb{C})$ where $V=\frac{1}{\sqrt{3}}\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1\end{array}\right]$. Then (3) does not hold for $\lambda \alpha_{f}=-\frac{2}{3}$. Indeed,
(i) Let $I_{f}=[-1,2]$ and $A:=\left[\begin{array}{llll}2 & & & \\ & 0 & & \\ & & -1 & \\ & & 1\end{array}\right]$. Then we have $\alpha_{f}=1(>0), \beta_{f}=-1, f(A)=$ $\left[\begin{array}{lll}1 & & \\ & 1 & \\ & -2 & \\ & & 2\end{array}\right], \Phi(A)=\frac{1}{3}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right], \Phi(f(A))=\frac{1}{3}\left[\begin{array}{ll}0 & 5 \\ 3 & 1\end{array}\right]$ and $g(\Phi(f(A)))=\frac{1}{9}\left[\begin{array}{cc}64 & -65 \\ -39 & 51\end{array}\right]$. This implies that

$$
\begin{aligned}
\min _{u \in f([m, M])}\left\{g(u)-\frac{\lambda}{\alpha_{f}}\left(u-\beta_{f}\right)\right\} & =\min _{u \in[-2,2]}\left\{\left(u-\frac{7}{3}\right)^{2}-\lambda(u+1)\right\} \\
& =\min _{u \in[-2,2]}\left\{\left(u-\frac{14+3 \lambda}{6}\right)^{2}-\frac{\lambda^{2}}{4}-\frac{10 \lambda}{3}\right\} .
\end{aligned}
$$

Here we put $\lambda=-\frac{2}{3}(<0)$. Then we have $\min _{u \in f([m, M])}\left\{g(u)-\frac{\lambda}{\alpha_{f}}\left(u-\beta_{f}\right)\right\}=\frac{19}{9}$ and so

$$
\begin{aligned}
& g(\Phi(f(A)))-\lambda \Phi(A)-\min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\} \\
= & \frac{1}{9}\left[\begin{array}{cc}
64 & -65 \\
-39 & 51
\end{array}\right]-\left(-\frac{2}{3}\right) \times \frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]-\frac{19}{9}=\frac{1}{9}\left[\begin{array}{cc}
47 & -63 \\
-37 & 32
\end{array}\right] \nsupseteq 0 .
\end{aligned}
$$

(ii) Let $I_{f}=[0,3]$ and $A:=\left[\begin{array}{llll}0 & & & \\ & & & \\ & & \\ & & 1\end{array}\right]$. As in the above (i), we have $\alpha_{f}=-1(<0), \beta_{f}=1$, $\Phi(A)=\frac{1}{3}\left[\begin{array}{cc}5 & -1 \\ -1 & 6\end{array}\right]$ and $g(\Phi(f(A)))=\frac{1}{9}\left[\begin{array}{cc}58 & -39 \\ -39 & 45\end{array}\right]$. Moreover for $\lambda=\frac{2}{3}(>0)$, it follows that

$$
\min _{u \in f([m, M])}\left\{g(u)-\frac{\lambda}{\alpha_{f}}\left(u-\beta_{f}\right)\right\}=\min _{u \in[-2,2]}\left\{\left(u-\frac{14-3 \lambda}{6}\right)^{2}-\frac{\lambda^{2}}{4}+\frac{4 \lambda}{3}\right\}=\frac{7}{9}
$$

so that

$$
g(\Phi(f(A)))-\lambda \Phi(A)-\min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\}=\frac{1}{9}\left[\begin{array}{cc}
41 & -37 \\
-37 & 26
\end{array}\right] \nsupseteq 0 .
$$

In Theorem 1, if $f(t)$ is increasing (resp. decreasing), then $f_{\max }=f(M)\left(=\alpha_{f} M+\beta_{f}\right)$ (resp. $\left.\quad f_{\max }=f(m)\left(=\alpha_{f} m+\beta_{f}\right)\right)$. So the following corollary is easily obtained and corresponds to (2):

Corollary 2. Let the hypothesis of Theorem 1 be satisfied and $f(t)$ be monotone. Then for every real number λ with $\lambda \alpha_{f}>0$

$$
g(\Phi(f(A)))-\lambda \Phi(A) \geq \min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\}
$$

3 The main result Let $f(t)$ be a concave function on $[m, M]$. In this section, we give a lower bound of $g(\Phi(f(A)))-\lambda \Phi(A)$ assuming the convexity of $g(t)$. First of all, suppose that $g(t)$ is increasing and $g(t)>0$. Since $f(t)$ is concave, it follows that $\Phi(f(A)) \geq \alpha_{f} \Phi(A)+\beta_{f}$. By [3, Theorem 2.2], we have $g(\Phi(f(A))) \geq\left\{\min _{r \in I_{f}} \frac{g(r)}{\alpha_{f g} r+\beta_{f g}}\right\} g\left(\alpha_{f} \Phi(A)+\beta_{f}\right)$ where $\alpha_{f g}:=\frac{g\left(f_{\max }\right)-g\left(f_{\min }\right)}{f_{\max }-f_{\min }}$ and $\beta_{f g}:=\frac{f_{\max } g\left(f_{\min }\right)-f_{\min } g\left(f_{\max }\right)}{f_{\max }-f_{\min }}$ for $f_{\max }:=\max _{t \in[m, M]} f(t)$ and $f_{\text {min }}:=\min _{t \in[m, M]} f(t)$ and I_{f} is the closed interval by $f(m)$ and $f(M)$. Hence it follows that for every $\lambda>0$

$$
\begin{equation*}
g(\Phi(f(A)))-\lambda \Phi(A) \geq \min _{t \in[m, M]}\left[\left\{\min _{r \in I_{f}} \frac{g(r)}{\alpha_{f g} r+\beta_{f g}}\right\} g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right] \tag{6}
\end{equation*}
$$

As compared with (2), we think about the necessity of the constant $\min _{r \in I_{f}} \frac{g(r)}{\alpha_{f g} r+\beta_{f g}}$ in (6). We pay our attention to the Jensen inequality in [4]: Let C be a selfadjoint operator on a Hilbert space H. Let $f(t)$ be a concave function on an interval containing $\sigma(C)$. Then for every unit vector $x \in H$

$$
\begin{equation*}
\langle f(C) x, x\rangle \leq f(\langle C x, x\rangle) \tag{7}
\end{equation*}
$$

Theorem 3. Let A be a selfadjoint operator on a Hilbert space H with $m \leq A \leq M$ for some $m<M$. Let $f(t)$ be a concave function on $[m, M]$ and $g(t)$ be an increasing convex function on $f([m, M])$. Let Φ be a unital positive linear map on $B(H)$. Then for every real number λ

$$
\begin{equation*}
g(\Phi(f(A)))-\lambda \Phi(A) \geq \min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\} \tag{8}
\end{equation*}
$$

Proof. Since $f(t)$ is concave, we have $f(A) \geq \alpha_{f} A+\beta_{f}$. So the inequality $\Phi(f(A)) \geq$ $\alpha_{f} \Phi(A)+\beta_{f}$ holds, i.e.,

$$
\langle\Phi(f(A)) x, x\rangle \geq \alpha_{f}\langle\Phi(A) x, x\rangle+\beta_{f}
$$

for all unit vectors $x \in H$. Since $g(t)$ is an increasing convex function on $f([m, M])$, we have

$$
\langle g(\Phi(f(A))) x, x\rangle \geq g(\langle\Phi(f(A)) x, x\rangle) \geq g\left(\alpha_{f}\langle\Phi(A) x, x\rangle+\beta_{f}\right)
$$

by (7). Hence it follows from $m \leq \Phi(A) \leq M$ that

$$
\begin{aligned}
\langle g(\Phi(f(A)) x, x)\rangle-\lambda\langle\Phi(A) x, x\rangle & \geq g\left(\alpha_{f}\langle\Phi(A) x, x\rangle+\beta_{f}\right)-\lambda\langle\Phi(A) x, x\rangle \\
& \geq \min _{t \in[m, M]}\left\{g\left(\alpha_{f} t+\beta_{f}\right)-\lambda t\right\},
\end{aligned}
$$

and the proof is complete.
Comparing with Remark of Theorem 1, we mention the case $\lambda \alpha_{f}<0$ in Theorem 3.
Corollary 4. Let A be a selfadjoint operator on H with $m \leq A \leq M$ for some $m<M$. Let $f(t)$ be a concave function on $[m, M]$ and $g(t)$ be an increasing function on $f([m, M])$. Let Φ be a unital positive linear map on $B(H)$.
(i) If $\alpha_{f}>0$, then for every $\lambda<0$

$$
g(\Phi(f(A)))-\lambda \Phi(A) \geq g\left(\alpha_{f} m+\beta_{f}\right)-\lambda m
$$

(ii) If $\alpha_{f}<0$, then for every $\lambda>0$

$$
g(\Phi(f(A)))-\lambda \Phi(A) \geq g\left(\alpha_{f} M+\beta_{f}\right)-\lambda M
$$

Proof. If $\alpha_{f}>0$, then $f(t) \geq f(m)$ for all $t \in[m, M]$ by the concavity of $f(t)$. Hence we have $f(A) \geq f(m)$, and so $\Phi(f(A)) \geq f(m)$. Since $g(t)$ is increasing and for $\lambda<0$,

$$
g(\Phi(f(A)))-\lambda \Phi(A) \geq g(f(m))-\lambda m=g\left(\alpha_{f} m+\beta_{f}\right)-\lambda m
$$

The latter is shown similarly.

References

[1] P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and Their Inequalities, D. Reidel Publishing Company, 1988.
[2] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalitilies, Cambridge University Press, 1934.
[3] S. Izumino and R. Nakamoto, Functional orders of positive operators induced from MondPec̆arić convex inequalities, Sci. Math., 2(1999), 195-200.
[4] B. Mond and J.E. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19(1993), 405-420.
[5] B. Mond and J.E. Pečarić, Bounds for Jensen's inequality for several operators, Houston J. Math., 20(1994), 645-651.
[6] M. Tominaga, Estimations of reverse inequalities for convex functions - Operator inequality derived from quasi-arithmetic mean -, Trends in Mathematics, 6(2003), 129-139.
[7] M. Tominaga, Estimations of Jensen's type inequalities and their applications, preprint.
[8] M. Tominaga, Estimations of operator inequalities related to the quasi-arithmetic mean, preprint.
*) Higashi Toyonaka Senior Highschool, Toyonaka, Osaka 565-0084, Japan.
Email address : m@higashitoyonaka.osaka-c.ed.jp
${ }^{* *}$) Ikuei-nishi Senior Highschool, Mimatsu, Nara 631-0074, Japan
Email address : m-tommy@sweet.ocn.ne.jp

[^0]: 2000 Mathematics Subject Classification. 47A63.
 Key words and phrases. positive linear map, quasi-arithmetic mean, arithmetic mean, operator inequality, Mond-Pečarić method.

