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Abstract. We shall give a useful decomposition of function related to its non-increasing
rearrangement in order to get some extrapolation estimates “nearer” to L1 which contain
Yano’s classical work.

1. Introduction and Result

Let (Ω, µ) be a σ-finite measure space. In extrapolation theory on Lp-spaces, we treat
the operator which satisfies the following assumptions, so called ”Yano’s condition”:

Condition . Let 1 < p1 < ∞ and fix it.
1. T is a sub-additive operator on Lp(Ω, µ) for any p, 1 < p ≤ p1, i.e. |T (f + g)| ≤

|Tf | + |Tg| a.e. for any f, g ∈ Lp(Ω, µ).
2. For any f ∈ Lp(Ω, µ), 1 < p ≤ p1,

‖Tf‖Lp(Ω) ≤ A

(p − 1)α
‖f‖Lp(Ω)(1.1)

Here, positive constants A and α are independent of p and f .

We can find many operators satisfying such conditions: Hilbert transform, Riesz trans-
form, Calderon-Zygmund operators, multiple Wiener integral operators, Hardy-Littlewood
many maximal operator, etc. For such operators, we cannot get L1 boundedness but,
instead of it, S.Yano proved that such T is bounded from L1 logα L to L1 in the case
µ(Ω) < ∞(Yano’s extrapolation theorem [8]).

In general case, µ(Ω) ≤ ∞, the author proved the following extrapolation estimates
between some Orlicz spaces which include Yano’s result([6],[7]): For 1 < q ≤ p1,

‖Tf‖L1+Lq(Ω) ≤ C

(q − 1)α
‖f‖L1 logα L+Lq(Ω)(1.2)

and, as its consequece,

‖Tf‖L1+L1 log−α−ε L(Ω) ≤ Cε‖f‖L1 logα L+L1 log−ε L(Ω),(1.3)

for ε > 0. Here we denote LΦ0 + LΦ1(Ω) = LΦ(Ω), Φ = min{Φ0, Φ1} for any two Orlicz
classes LΦ0(Ω) and LΦ1(Ω).

Our aim is to get some boundedness between function spaces “near to L1”, however,
counter examples are known to (1.3) for ε = 0. In this paper, instead of it, we shall show
the following estimate:
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Theorem 1. Fix α > 0 and 1 < p1 < ∞. Let T be a sub-additive operator on Lp(Ω, µ) for
any p, 1 < p ≤ p1, i.e.

|T (f + g)| ≤ |Tf |+ |Tg| a.e.µ

for any simple function f and g and satisfy weak Lp boundedness

‖Tf‖(p,∞) ≤ A

(p − 1)α
‖f‖p,1(1.4)

for any p, 1 < p < p1. Then, we have

‖Tf‖(1,∞;0,−α) ≤ C‖f‖1,1;α,0(1.5)

for any f ∈ L1 + L1 logα L(Ω). Here,

‖g‖p,1;α0,α∞ =
∫ ∞

0

t
1
p (1 + log+ 1

t
)α0(1 + log+ t)α∞g∗(t)

dt

t
,

‖g‖(p,∞;α0,α∞) = sup
t>0

(
t

1
p (1 + log+ 1

t
)α0(1 + log+ t)α∞g∗∗(t)

)(1.6)

for α0, α∞ ∈ R, with

g∗(t) = inf{λ > 0; µ({x ∈ Ω : |g(x)| > λ}) ≤ t} and g∗∗(t) =
1
t

∫ t

0

g∗(s)ds

for t ∈ (0,∞) and we write ‖g‖p,1 = ‖g‖p,1;0,0 and ‖g‖(p,∞) = ‖g‖(p,∞;0,0), simply.

Moreover, we can also show the following Koizumi type estimate after (1.2) (also see [4]),
similarly and indendently to Theorem 1.

Theorem 2. Under the same assumption of Theorem 1, we have

‖Tf‖m(1,q),1;0,0 ≤ C‖f‖m(1,q),1;α,0(1.7)

for any f ∈ Lm(1,q),1;α,0, 1 < q < p1 and

‖Tf‖m(1,p1),1;0,0 ≤ C‖f‖m(1,p1),1;α,1(1.8)

Here,

‖g‖m(p,q),1;α0,α∞ =
∫ ∞

0

min(t
1
p , t

1
q )(1 + log+ 1

t
)α0(1 + log+ t)α∞g∗(t)

dt

t
.

Remark 1. For any α ≥ 0, we may prove

‖f‖1,1;α,0 =
∫ ∞

0

(1 + log+ 1
t
)αf∗(t)dt ≈

∫
Ω

|f(x)|(1 + log+ |f(x)|)αdµ(x)

and L1 + L1 logα L(Ω) = {f : ‖f‖1,1;α,0 < ∞} (see [1]).

Remark 2. As is known, the condition (1.4) is weaker than (1.1). On the left hand side of
(1.5),

‖Tf‖(1,∞;0,−α) = sup
t>0

∫ t

0 (Tf)∗(s)ds

(1 + log+ t)α
=
∫ 1

0

(Tf)∗(s)ds + sup
t>1

∫ t

1 (Tf)∗(s)ds

(1 + log t)α

and ∫ 1

0

(Tf)∗(s)ds ≥
∫
|Tf |≥M

|Tf(x)|dµ(x)

for some M > 0. Therefore, in the case µ(Ω) < ∞, our result implies Yano’s theorem. After
Remark 1 above, it is easy to show that (1.7) or (1.8) does so, too.
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2. Proof of the theorems

We note that f∗(t) → 0 (t → ∞) and |f | < ∞, µ-a.e. for any f ∈ L1 + L1 logα L(Ω).
Now, we shall decompose every function f ∈ L1 + L1 logα L as follows.

First, we consider a family of pairwise disjoint measurable sets

En = {x ∈ Ω : f∗(2n+1) < |f(x)| ≤ f∗(2n)}, n ∈ Z.(2.1)

Here, if f∗(2n) = f∗(2n+1), we define En = ∅. Now, we put

fn(x) =

{
f(x) x ∈ En

0 otherwise.
(n ∈ Z).(2.2)

It is easy to show

1. f(x) =
∑∞

n=−∞ fn(x) for any x ∈ Ω,
2. µ(En) ≤ 2n+1,
3. |fn(x)|, (fn)∗(t) ≤ f∗(2n)

for any n.
For simplicity, we shall write ρ(p) = A(p − 1)−α. ¿From the assumption (1.4), we may

have

s
1
p (Tfn)∗∗(s) ≤ ρ(p)

∫ ∞

0

t
1
p f∗

n(t)
dt

t

≈ ρ(p)
∞∑

i=−∞
(2i)

1
p f∗

n(2i) = ρ(p)
n+1∑

i=−∞
(2i)

1
p f∗

n(2i)

≤ 2ρ(p)(2n+1)
1
p f∗(2n) ≤ 4ρ(p)(2n)

1
p f∗(2n)

for any n ∈ Z. Put s = 2k, k ∈ Z, we have

(Tfn)∗∗(2k) ≤ 4ρ(p)(2n−k)
1
p f∗(2n)

(−∞ < k < ∞, −∞ < n < ∞). Taking infimum with respect to p, we may get

(Tfn)∗∗(2k) ≤ 4 inf
p

(
ρ(p)(2n−k)

1
p

)
f∗(2n)(2.3)

Summing up with respect to n,

(Tf)∗∗(2k) ≤
∞∑

n=−∞
(Tfn)∗∗(2k)

≤ 4
∞∑

n=−∞
inf
p

(
ρ(p)(2n−k)

1
p

)
f∗(2n)

(2.4)

and we call it “almost pointwise estimate”. Note,

inf
1<p<p1

(
p

p − 1

)α

(2n−k)
1
p ≈

{
(k − n)α2n−k (n < k)

(2n−k)
1

p1 (n ≥ k),
(2.5)

we conclude

(Tf)∗∗(2k) ≤
k−1∑

n=−∞
(k − n)α2n−kf∗(2n) +

∞∑
n=k

(2n−k)
1

p1 f∗(2n).(2.6)
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Multiplying 2k, we have

sup
0<t<1

t(Tf)∗∗(t) ≈ sup
k≤0

2k(Tf)∗∗(2k)

≤ sup
k≤0

[
k−1∑

n=−∞
(k − n)α2nf∗(2n) +

∞∑
n=k

(2k)1−
1

p1 (2n)
1

p1 f∗(2n)

]

≤ sup
k≤0

[
k−1∑

n=−∞
(0 − n)α2nf∗(2n) +

∞∑
n=k

2nf∗(2n)

]

≤
0∑

n=−∞
(1 − n)α2nf∗(2n) +

∞∑
n=1

2nf∗(2n)

≈
∫ 1

0

(1 − log t)αf∗(t)dt +
∫ ∞

1

f∗(t)dt.

(2.7)

On the other hand, multiplying 2k/kα, we get

sup
k≥1

2k

kα
(Tf)∗∗(2k) ≈ sup

1≤t<∞

t(Tf)∗∗(t)
(1 + log t)α

≤ sup
k≥1

[
k−1∑

n=−∞
(1 − n

k
)α2nf∗(2n) +

∞∑
n=k

2k

kα
(2n−k)

1
p1 f∗(2n)

]

≤ sup
k≥1

[ −1∑
n=−∞

(1 − n

k
)α2nf∗(2n) +

k−1∑
n=0

(1 − n

k
)α2nf∗(2n) +

∞∑
n=k

2nf∗(2n)

]

≤
0∑

n=−∞
(1 − n)α2nf∗(2n) +

∞∑
n=0

2nf∗(2n)

≈
∫ 1

0

(1 − log t)αf∗(t)dt +
∫ ∞

1

f∗(t)dt

(2.8)

and Theorem 1 is proved.
Next, we assume f ∈ Lm(1,p1),1;α,1(Ω) and use the decomposition (2.6). Putting k = 0

in (2.6),

(Tf)∗∗(1) =
∫ 1

0

s(Tf)∗(s)
ds

s

≤
−1∑

n=−∞
(1 − n)α2nf∗(2n) +

∞∑
n=0

(2n)
1

p1 f∗(2n)

≈
∫ 1

0

(1 − log t)αf∗(t)dt +
∫ ∞

1

t
1

p1 f∗(t)
dt

t
.

(2.9)
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On the other hand, multiplying (2k)
1

p1 to the left hand side of (2.6) and summing up with
respect to k, we have

∞∑
k=0

(2k)
1

p1 (Tf)∗∗(2k)

≈
∞∑

k=0

(2k)
1

p1
1
2k

k∑
n=−∞

2n(Tf)∗(2n)

≥
∞∑

k=0

k∑
n=0

(2k)
1

p1 2−k2n(Tf)∗(2n) =
∞∑

n=0

∞∑
k=n

(2k)
1

p1 2−k2n(Tf)∗(2n)

≈
∞∑

n=0

(2n)
1

p1 (Tf)∗(2n) ≈
∫ ∞

1

t
1

p1 (Tf)∗(t)
dt

t

(2.10)

and from the right handside,
∞∑

k=0

[
k−1∑

n=−∞
(k − n)α2n(2k)

1
p1

−1
f∗(2n) +

∞∑
n=k

(2n)
1

p1 f∗(2n)

]

=
∞∑

k=0

[(
0∑

n=−∞
+

k∑
n=1

)
(k − n)α2n(2k)

1
p1

−1f∗(2n) +
∞∑

n=k

(2n)
1

p1 f∗(2n)

]

≤
0∑

n=−∞
2n(1 − n)α

∞∑
k=1

(1 + k)α(2k)
1

p1
−1

f∗(2n)

+
∞∑

n=0

(2n)
1

p1

∞∑
k=0

kα(2k)
1

p1
−1

f∗(2n) +
∞∑

n=0

n(2n)
1

p1 f∗(2n)

≈
0∑

n=−∞
2n(1 − n)αf∗(2n) +

∞∑
n=0

n(2n)
1

p1 f∗(2n)

≈
∫ 1

0

(1 + log
1
t
)αf∗(t)dt +

∫ ∞

1

t
1

p1 (1 + log t)f∗(t)dt.

(2.11)

Therefore, we conclude

(2.12)
∫ 1

0

(Tf)∗(t)dt +
∫ ∞

1

t
1

p1 (Tf)∗(t)
dt

t

≤ C

[∫ 1

0

(1 + log
1
t
)αf∗(t)dt +

∫ ∞

1

t
1

p1 (1 + log t)f∗(t)
dt

t

]
and (1.8) is proved.

For f ∈ Lm(1,q),1;α,0(Ω), 1 < q < p1, we may get∫ 1

0

s(Tf)∗(s)
ds

s
≤ C

[∫ 1

0

(1 − log t)αf∗(t)dt +
∫ ∞

1

t
1

p1 f∗(t)
dt

t

]
(2.13)

similarly to (2.9). Moreover, multiplying (2k)
1
q to (2.6) and summing up with respect to k,

we get
∞∑

k=0

(2k)
1

p1 (Tf)∗∗(2k) ≤ C

[∫ 1

0

(1 + log
1
t
)αf∗(t)dt +

∫ ∞

1

t
1
q f∗(t)

dt

t

]
(2.14)

similarly to (2.10) and (2.11). Therefore (1.7), then, Theorem 2 is proved.
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