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ON THE UNIFORM CONVEXITY OF SUBSETS OF BANACH SPACES
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Abstract. In this paper, we introduce the uniform convex-like property, which is a
new method of scaling the convexity of subsets of Banach spaces. All bounded closed
convex subsets of uniformly convex Banach spaces and all compact convex subsets of
strictly convex Banach spaces are uniform convex-like. Using this concept, we prove
a fixed point theorem in a Banach space. We also show the existence of ergodic
retractions for nonexpansive mappings in a Banach space.

1 Introduction Let E be a real Banach space and C be a nonempty bounded closed
convex subset of E. A mapping T of C into E is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for
every x, y ∈ C. In 1965, Browder [4] and Göhde [11] proved that if E is uniformly convex
then every nonexpansive mapping T of C into itself has a fixed point, while Kirk [15] proved
that if E is reflexive and C has normal structure then T has a fixed point. We also know
some results concerning the geometry of Banach spaces. Bae [2] and Maluta [18] proved
that if E has uniform normal structure then E is reflexive and C has normal structure.
Casini and Maluta [8] proved that if E has uniform normal structure then every uniformly
γ-Lipschitz mapping of C into itself with γ2Ñ(E) < 1 has a fixed point; see Section 2 for
the definition of Ñ(E). Ishihara and Takahashi [14] proved that if C has uniform normal
structure then C is weakly compact and C has normal structure. They also extended Casini
and Maluta’s fixed point theorem to uniformly γ-Lipschitz semigroups.

On the other hand, the first nonlinear ergodic theorem for nonexpansive mappings was
established in 1975 by Baillon [3]: Let C be a closed convex subset of a Hilbert space and
let T be a nonexpansive mapping of C into itself. If the set F (T ) of fixed points of T is
nonempty, then for each x ∈ C, the Cesàro means

Sn(x) =
1
n

n−1∑
k=0

T kx

converge weakly to some z ∈ F (T ). In this case, putting z = Px for every x ∈ C, P is
a nonexpansive retraction of C onto F (T ) such that PT = TP = P and Px ∈ co{T nx :
n ≥ 0}. Such a retraction was first called “an ergodic retraction” by Takahashi [20] and
then has been studied by many authors; see, for example, [13, 16, 17, 21]. Bruck [5] also
proved that if C is a bounded closed convex subset of a uniformly convex Banach space E
with a Fréchet differentiable norm and T is a nonexpansive mapping of C into itself then
the Cesàro means of T converge weakly to some z ∈ F (T ). For the purpose of proving
the previous theorem, Bruck introduced the concept of type (γ) for mappings and obtained
interesting results concerning type (γ). Later, Atsushiba and Takahashi [1] proved that if
C is a compact convex subset of a strictly convex Banach space E and T is a nonexpansive
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mapping of C into itself then the Cesàro means of T converge weakly to some z ∈ F (T ) by
using an idea of Bruck [5].

In this paper, we introduce the notion of uniformly convex-like (ucl) subset in a Banach
space. We show that every bounded closed convex subset of a uniformly convex Banach
space is (ucl), and that every compact convex subset of a strictly convex Banach space is
also. If a bounded closed convex subset C of a Banach space is (ucl), then C is weakly
compact and has normal structure. Further, we show that every nonexpansive mapping of
C into itself is of type (γ). To show the weak compactness of C, we also introduce the
notion of strong normal structure (sns). In addition, we give an extension of Casini and
Maluta’s fixed point theorem by using the concept of (sns). Further, we also try to show
the existence of ergodic retractions of nonexpansive mappings in a Banach space by using
the concept of (ucl) and the convex approximation property. This paper is organized as
follows: In Section 2, we define some terminologies that we use in this paper. In Section 3,
we define the notion of (ucl) subset in a Banach space and show some propositions. In
Section 4, we define the notion of (sns) and prove the weak compactness of bounded closed
convex subsets with (sns). In Section 5, we give a fixed point theorem for bounded closed
convex subsets with (sns). In Section 6, we deal with type (γ) property of (ucl) subsets. In
Sections 7 and 8, we obtain the existence of ergodic retractions for nonexpansive mappings
on some (ucl) subsets in a Banach space.

2 Preliminaries Throughout this paper, E is a real Banach space with norm ‖ ‖. We
denote by E∗ the dual of E. We denote by N the set of all positive integers and by R the
set of all reals. Let M be a nonempty subset of E. For p ∈ N, let us define

cop M =

{
p∑

i=1

λixi : λi ≥ 0,

p∑
i=1

λi = 1, xi ∈ M

}
.

We also denote by coM the convex hull of M , i.e., co M =
⋃∞

p=1 cop M , and by co M the
closure of coM . For a nonempty subset C of E, let us define

I(C) = {‖x − y‖ : x, y ∈ C}.
We denote by d(C) the diameter of C, i.e., d(C) = sup I(C). If C is convex, I(C) is a convex
interval [0, d(C)) or [0, d(C)]. E is said to be strictly convex if ‖x‖ = ‖y‖ = ‖(x + y)/2‖
implies x = y. The modulus of convexity of E is the function δ : [0, 2] → [0, 1] defined by

δ(ε) = inf
{

1 −
∥∥∥∥x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}
.

E is said to be uniformly convex if δ(ε) > 0 for each ε ∈ (0, 2]. Let C be a nonempty convex
subset of a Banach space E with d(C) > 0. Ishihara and Takahashi [14] defined a function
δC : [0, 2] → [0, 1] called the modulus of uniform convexity on C as follows:

δC(ε) = inf
{

1 − 1
r

∥∥∥∥u + v

2
− w

∥∥∥∥ : r > 0, u, v, w ∈ C, ‖u − w‖ ≤ r, ‖v − w‖ ≤ r, ‖u − v‖ ≥ εr

}
.

A nonempty convex subset C of E with d(C) > 0 is said to be uniformly convex if δC(ε) > 0
for each ε ∈ (0, 2]. Note that δC(ε) ≥ δE(ε) = δ(ε) for every ε ∈ [0, 2].

Let D be a bounded closed convex subset of E. Then we define

r(x,D) = sup{‖x − y‖ : y ∈ D}
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for every x ∈ D and

r(D) = inf{r(x,D) : x ∈ D}.
A nonempty closed convex subset C of E is said to have normal structure if r(D) < d(D)
for every bounded closed convex subset D of C with d(D) > 0. A nonempty closed convex
subset C of E is said to have uniform normal structure if there exists a constant k < 1 such
that for every bounded nonempty closed convex subset D of C,

r(D) ≤ kd(D).

Let C be a closed convex subset of E with d(C) > 0. As in Maluta[18], we define

Ñ(C) = sup
{

r(D)
d(D)

: D ⊂ C is bounded, closed, convex and d(D) > 0
}

.

Clearly, if Ñ(C) < 1, then C has uniform normal structure. If E has uniform normal
structure, then every nonempty closed convex subset C of E also has uniform normal
structure. Further, if d(C) > 0, then Ñ(C) ≤ Ñ(E).

3 Uniformly convex-like subsets Let C be a nonempty bounded convex subset of a
Banach space E. Then we define a function ηC : I(C) → [0,∞) as follows:

ηC(t) = inf
{

(‖x − z‖ ∨ ‖y − z‖) −
∥∥∥∥x + y

2
− z

∥∥∥∥ : x, y, z ∈ C, ‖x − y‖ ≥ t

}

for each t ∈ I(C), where ‖x − z‖∨‖y − z‖ = max{‖x − z‖ , ‖y − z‖}. A nonempty bounded
convex subset C in a Banach space is said to be uniformly convex-like ((ucl) for short) if
ηC(t) > 0 for each t ∈ I(C) \ {0}.
Proposition 3.1. Let C be a bounded convex subset of a Banach space with d(C) > 0. If
C is uniformly convex, then C is (ucl). Moreover, for each t ∈ I(C),

t

2
· δC

(
t

d(C)

)
≤ ηC(t).

Proof. Let t ∈ I(C) with t > 0. Choose x, y, z ∈ C with ‖x − y‖ ≥ t. Put r = ‖x − z‖ ∨
‖y − z‖. Note that t/2 ≤ r ≤ d(C). Then, we have ‖x − z‖ ≤ r, ‖y − z‖ ≤ r and

‖x − y‖ ≥ t ≥ t

d(C)
· r.

Therefore we have

(‖x − z‖ ∨ ‖y − z‖) −
∥∥∥∥x + y

2
− z

∥∥∥∥ = r ·
(

1 − 1
r

∥∥∥∥x + y

2
− z

∥∥∥∥
)

≥ t

2
· δC

(
t

d(C)

)
.

Hence we have

ηC(t) ≥ t

2
δC

(
t

d(C)

)
> 0.

It is obvious that ηC(t) ≥ (t/2)δC(t/d(C)) for each t ∈ I(C).
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Proposition 3.2. Let C be a nonempty bounded convex subset of a uniformly convex Ba-
nach space E. Then C is (ucl).

Proof. We may assume that d(C) > 0. Since E is uniformly convex, then C is also uniformly
convex. By Proposition 3.1, then C is (ucl).

Proposition 3.3. Let C be a compact convex subset of a strictly convex Banach space E.
Then C is (ucl).

Proof. Let t ∈ I(C) \ {0}. Since C is compact, there exists (u, v, w) ∈ C ×C ×C such that
‖u − v‖ ≥ t and that

(‖u − w‖ ∨ ‖v − w‖) −
∥∥∥∥u + v

2
− w

∥∥∥∥ = ηC(t).

Suppose ηC(t) = 0. Then we have

‖u − w‖ = ‖v − w‖ =
∥∥∥∥u + v

2
− w

∥∥∥∥ .

Since E is strictly convex, it follows that u = v. This contradicts that ‖u − v‖ ≥ t > 0.
Therefore we have ηC(t) > 0.

4 Strong normal structure Let C be a nonempty closed convex subset of a Banach
space E. Then, for each t ≥ 0, we define νC(t) by

νC(t) = sup{r(D) : D ⊂ C is nonempty, closed, convex and d(D) ≤ t}.
Proposition 4.1. Let C be a nonempty closed convex subset of a Banach space E. Then
νC : [0,∞) → [0,∞) satisfies the following:

1. νC(t) ≤ t;

2. t1 ≤ t2 =⇒ νC(t1) ≤ νC(t2);

3. 0 < t1 ≤ t2 =⇒ νC(t1)/t1 ≥ νC(t2)/t2;

4. νC is continuous.

Proof. (1) and (2) are clear. We show (3). Take t1, t2 with 0 < t1 ≤ t2. Let D2 be a
nonempty closed convex subset of C with d(D2) ≤ t2. Take a z ∈ D2 and put D1 =
(1 − (t1/t2))z + (t1/t2)D2. Then, we have

d(D1) = (t1/t2)d(D2) ≤ t1

and also

νC(t1) ≥ r(D1) = (t1/t2)r(D2).

Therefore, we have νC(t1) ≥ (t1/t2)νC(t2) and obtain (3). Let us prove (4). From (1), νC

is continuous at 0. Let s, t > 0. From (2) and (3), it follows that
s

t
νC(t) ≤ νC(s) ≤ νC(t), if s < t;

νC(t) ≤ νC(s) ≤ s

t
νC(t), if s > t.

Hence, we have lims→t νC(s) = νC(t) for each t > 0. Therefore, νC is continuous. This
completes the proof.
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Let C be a closed convex subset of a Banach space E with d(C) > 0. Let t > 0. Then,
for every closed convex subset D of C with 0 < d(D) ≤ t, we have

r(D) ≤ r(D)
d(D)

· t ≤ Ñ(C) · t.

So, we have that νC(t) ≤ Ñ(C) · t for each t ≥ 0. A nonempty closed convex subset C of
a Banach space E is said to have strong normal structure ((sns), for short) if νC(t) < t for
each t > 0. Clearly, if C has uniform normal structure, then C has (sns). Further, if C has
(sns), then C has normal structure. In fact, let D be a bounded closed convex subset of C
with d(D) > 0. Then we have r(D) ≤ νC(d(D)) < d(D). Hence C has normal structure.

Theorem 4.2. Let C be a nonempty bounded closed convex subset of a Banach space E.
If C is (ucl), then C has (sns).

Proof. Let t ∈ (0, d(C)] and put s = t/2. We first prove that νC(t) ≤ max{s, t − ηC(s)}.
In fact, let D be a nonempty closed convex subset of C with d(D) ≤ t. To complete the
inequality, it is sufficient to show that r(D) ≤ max{s, t − ηC(s)}. We may assume that
d(D) ≥ r(D) > s. So, we can take some x, y ∈ D with ‖x − y‖ ≥ s. Put w = (x + y)/2.
Let z ∈ D be arbitrary. From the definition of ηC(s), we have

‖w − z‖ ≤ (‖x − z‖ ∨ ‖y − z‖) − ηC(s) ≤ d(D) − ηC(s) ≤ t − ηC(s).

Therefore, we have

r(D) ≤ r(w,D) ≤ t − ηC(s).

Further, since C is (ucl), we have ηC(s) > 0. So we get

νC(t) ≤ max{s, t − ηC(s)} < t.

This completes the proof.

Bae[2] and Maluta [18] proved that if a Banach space E satisfies Ñ(E) < 1 then E is
reflexive. Afterward, Ishihara and Takahashi [14] proved that every bounded closed convex
subset C with Ñ(C) < 1 is weakly compact. We shall show that if C has (sns), then C is
weakly compact. For prove it, we need the following lemma.

Lemma 4.3. Let C be a nonempty bounded closed convex subset of a Banach space E. If
C has (sns), then there exists a function bC : [0, d(C)] → [0,∞) such that

1. t1 ≤ t2 =⇒ bC(t1) ≤ bC(t2);

2. bC(tn) → 0 =⇒ tn → 0;

3. if D is a nonempty closed convex subset of C, then there exists an x ∈ D with r(x,D) ≤
d(D) − bC(d(D)).

Proof. We define bC : [0, d(C)] → [0,∞) as follows:

bC(t) =
t − νC(t)

2
for each t ∈ [0, d(C)].
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To prove (1), let t1, t2 ∈ [0, d(C)] with t1 ≤ t2. Without loss of generality, we may assume
t2 > 0. From Proposition 4.1, it follows that νC(t1) ≥ (t1/t2)νC(t2). So, we have

bC(t1) =
1
2
(t1 − νC(t1)) ≤ 1

2

(
t1 − t1

t2
· νC(t2)

)

=
t1
t2

· 1
2
(t2 − νC(t2)) =

t1
t2

· bC(t2)

≤ bC(t2).

We show (2). Suppose bC(tn) → 0 and tn 
→ 0. Then, there exists a subsequence {tnj} of
{tn} such that tnj ≥ ε > 0. From (1) and the property of (sns) of C, we get

bC(tnj ) ≥ bC(ε) =
ε − νC(ε)

2
> 0

This contradicts bC(tn) → 0. So, we obtain (2). We show (3). Let D be a nonempty
closed convex subset of C. If d(D) = 0, then D = {x} for some x ∈ C and therefore
r(x,D) = 0 = d(D) − bC(d(D)). We may assume that d(D) > 0. Since νC(d(D)) < d(D),
we have

r(D) ≤ νC(d(D)) <
νC(d(D)) + d(D)

2
= d(D) − bC(d(D)).

So, there exists an x ∈ D such that r(x,D) < d(D) − bC(d(D)). This completes the
proof.

To prove Theorem 4.4, we shall use Šmulian’s theorem: Let C be a nonempty closed convex
subset of a Banach space E. Then C is weakly compact if and only if every decreasing
sequence of nonempty closed convex subsets of C has a nonempty intersection; see [9,
pp. 430–434] for more details.

Theorem 4.4. Let C be a nonempty bounded closed convex subset of a Banach space E.
If C has (sns), then C is weakly compact and has normal structure.

Proof. Suppose C has (sns). We have already shown that if C has (sns) then C has normal
structure. We shall show that C is weakly compact. Let {Cn}∞n=1 be a sequence of nonempty
closed convex subsets of C such that C1 ⊃ C2 ⊃ C3 ⊃ · · · . To complete the proof, by
Šmulian’s theorem, it is sufficient that we show

⋂∞
n=1 Cn 
= ∅. For each m = 0, 1, 2, . . . ,

we construct a sequence {C(m)
n }∞n=1 of subsets of C and a sequence {x(m)

n }∞n=1 of C by the
following steps: We give {C(0)

n }∞n=1 by C
(0)
n = Cn for each n. If {C(m)

n }∞n=1 is given, by
Lemma 4.3, there exists x

(m)
n ∈ C

(m)
n such that

r(x(m)
n , C(m)

n ) ≤ d(C(m)
n ) − bC(d(Cm

n ))

for each n. Next we give {C(m+1)
n }∞n=0 by C

(m+1)
n = co{x(m)

k : k ≥ n} for each n. Here bC

is as in Lemma 4.3. Note that Cn ⊃ C
(m)
n ⊃ C

(m+1)
n and C

(m)
n ⊃ C

(m)
n+1 for each n and m.

Put

a = inf
n,m

bC(d(C(m)
n )) = lim

n,m→∞ bC(d(C(m)
n )).
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Then, we have a = 0. In fact, for each m, we have

d(C(m+1)
1 ) = d(co{x(m)

k : k ≥ 1}) = sup
i,j

∥∥∥x
(m)
i − x

(m)
j

∥∥∥
= sup

i
sup
j≥i

∥∥∥x
(m)
i − x

(m)
j

∥∥∥ ≤ sup
i

r(x(m)
i , C

(m)
i )

≤ sup
i

(
d(C(m)

i ) − bC(d(C(m)
i ))

)
≤ sup

i
d(C(m)

i ) − a

= d(C(m)
1 ) − a.

So, we have

ma ≤
m−1∑
k=0

(
d(C(k)

1 ) − d(C(k+1)
1 )

)
≤ d(C(0)

1 ) < ∞.

Since m is arbitrary, we have that a = 0. Now, there exist increasing sequences {nk}
and {mk} of integers such that limk→∞ bC(d(C(mk)

nk )) = 0. By Lemma 4.3 (2), we have
limk→∞ d(C(mk)

nk ) = 0. Then, by Cantor’s theorem, we have
∞⋂

n=1

Cn =
∞⋂

k=0

Cnk
⊃

∞⋂
k=0

C(mk)
nk


= ∅.

This completes the proof.

Corollary 4.5 (Ishihara and Takahashi [14]). Let C be a nonempty bounded closed
convex subset of a Banach space E with d(C) > 0. If C has uniform normal structure,
then C is weakly compact and has normal structure.

Proof. Since C has uniform normal structure, we have C is (sns). Hence, by Theorem 4.4,
C is weakly compact and has normal structure.

The following is a direct consequence of Theorems 4.2 and 4.4.

Corollary 4.6. Let C be a nonempty bounded closed convex subset of a Banach space E.
If C is (ucl), then C is weakly compact and has normal structure.

5 Fixed point theorem Throughout this section, C is a weakly compact convex subset
of a Banach space E and T is a mapping of C into itself. Let x ∈ C. Then we define
Km(x) = co{T kx : k ≥ m} for each m ≥ 0 and define K(x) =

⋂
m≥0 Km(x). Note that

Km(x) is a nonempty closed convex subset of C for each m ≥ 0, and hence K(x) is also
nonempty, closed and convex. We define, for every x ∈ C,

dx = inf
m

d(Km(x)) = lim
m→∞ d(Km(x)),

gx(y) = lim sup
n→∞

‖T nx − y‖ for every y ∈ C, and

Ax(D) = {z ∈ D : gx(z) = inf
y∈D

gx(y)}

for every nonempty closed convex subset D of C. It is easy to see that gx : C → R is
continuous and convex. Therefore, since D is weakly compact, Ax(D) is nonempty, closed
and convex.

The argument in this section mainly depends on Casini and Maluta [8].
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Lemma 5.1. If z ∈ K(x), then ‖z − y‖ ≤ gx(y) for every y ∈ C.

Proof. Let m ≥ 0 be arbitrary. Since z ∈ Km(x), then

‖z − y‖ ≤ sup{‖w − y‖ : w ∈ Km(x)} = sup
k≥m

∥∥T kx − y
∥∥ .

Since m ≥ 0 is arbitrary, we have the conclusion.

Lemma 5.2. Let x ∈ C. Then there exists z ∈ K(x) such that gx(z) ≤ νC(dx).

Proof. Since Ax(Km(x)) is nonempty for each m, we can take a zm ∈ Ax(Km(x)). Then,
we have

gx(zm) = lim sup
k→∞

∥∥T kx − zm

∥∥
≤ sup

k≥m

∥∥T kx − zm

∥∥
= r(zm, Km(x))
= r(Km(x))
≤ νC(d(Km(x))).

Since C is weakly compact, there exists a subsequence {zmj} of {zm} converging weakly to
some z ∈ C. Since zm ∈ Km(x), we have

z ∈
⋂
j

Kmj (x) =
⋂
m

Km(x) = K(x).

So,

gx(z) ≤ lim inf
j→∞

gx(zmj )

= lim inf
j→∞

inf{gx(y) : y ∈ Kmj (x)}
= lim

m→∞ inf{gx(y) : y ∈ Km(x)}
≤ inf{gx(y) : y ∈ K(x)}
≤ gx(z).

Therefore, noting that νC is continuous (Proposition 4.1), we have

gx(z) = lim
m→∞ inf{gx(y) : y ∈ Km(x)}

= lim
m→∞ gx(zm)

≤ lim sup
m→∞

νC(d(Km(x)))

= νC(dx).

This completes the proof.

Theorem 5.3. Let C be a nonempty bounded closed convex subset of a Banach space E.
Suppose C is (sns). Let ϕ be a continuous nondecreasing function of [0, d(C)] into itself.
Suppose there exists a ∈ [0, 1) such that (ϕ ◦ νC ◦ ϕ)(t) ≤ at for each t ∈ [0, d(C)], and
suppose that there exists M ≥ 0 such that ϕ(t) ≤ Mt for each t ∈ [0, d(C)]. If a mapping T
of C into itself satisfies

‖T nx − T ny‖ ≤ ϕ(‖x − y‖) for every x, y ∈ C and n ≥ 0,

then T has a fixed point.
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Proof. Suppose dx = 0 for some x ∈ C. Then, we have

dx = inf
m

d(Km(x)) = inf
m

sup
i,j≥m

∥∥T ix − T jx
∥∥ = 0.

This means that {T nx} is a Cauchy sequence. Put z = limn→∞ T nx. Then we have

z = lim
n→∞ T nx = lim

n→∞T n+1x = T ( lim
n→∞T nx) = Tz

and hence z ∈ F (T ). Now we may assume that dx > 0 for any x ∈ C. We construct a
sequence {xn}∞n=0 as follows: x0 ∈ C and xn+1 ∈ K(xn) such that gxn(xn+1) ≤ νC(dxn)
for each n. Put r(y) = supk≥0

∥∥y − T ky
∥∥ for every y ∈ C. Now, we have

gxn(xn+1) ≤ νC(dxn) = lim
m→∞ νC(d(Km(xn)))

= lim
m→∞ νC

(
sup

i,j≥m

∥∥T ixn − T jxn

∥∥)

≤ νC

(
ϕ
(
sup

k

∥∥xn − T kxn

∥∥))
= νC(ϕ(r(xn))).

For each N , we have

gxn(T Nxn+1) = lim sup
k→∞

∥∥T kxn − T Nxn+1

∥∥ = lim sup
k→∞

∥∥T NT kxn − T Nxn+1

∥∥
≤ lim sup

k→∞
ϕ
(∥∥T kxn − xn+1

∥∥)
= ϕ

(
lim sup

k→∞

∥∥T kxn − xn+1

∥∥)
= ϕ(gxn(xn+1)).

So, since xn+1 ∈ K(xn), from Lemma 5.1, we have

r(xn+1) = sup
N

∥∥xn+1 − T Nxn+1

∥∥ ≤ sup
N

gxn(T Nxn+1)

≤ ϕ(gxn(xn+1)) ≤ ϕ(νC(ϕ(r(xn))))
≤ ar(xn).

Therefore, {xn} is a Cauchy sequence. In fact, we have, for each k,

‖xn+1 − xn‖ ≤ ∥∥xn+1 − T kxn

∥∥ +
∥∥T kxn − xn

∥∥
≤ ∥∥xn+1 − T kxn

∥∥ + r(xn).

Putting k → ∞, we have

‖xn+1 − xn‖ ≤ gxn(xn+1) + r(xn)
≤ νC(ϕ(r(xn))) + r(xn)
≤ (M + 1)r(xn)
≤ (M + 1)anr(x0).

This follows that {xn} is a Cauchy sequence. Put z = limn→∞ xn. Then, we have

‖z − Tz‖ = lim
n→∞ ‖xn − Txn‖ ≤ lim

n→∞ r(xn) = 0.

Hence z = Tz. This completes the proof.
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The following result was proved by Casini and Maluta [8] in the case that E has uniform
normal structure. Ishihara and Takahashi [14] obtained more general results for uniformly
Lipschitz semigroups.

Corollary 5.4. Let C be a nonempty bounded closed convex subset of a Banach space E.
Suppose C has uniform normal structure. Let γ > 0 satisfy γ2Ñ(C) < 1. Then every
uniformly γ-Lipschitzian mappings on C has a fixed point.

Proof. Let T be a uniformly γ-Lipschitzian mapping on C. Put ϕ(t) = γt for each t ∈
[0, d(C)]. Then, ϕ : [0, d(C)] → [0, d(C)] is continuous and nondecreasing, and satisfies

‖T nx − T ny‖ ≤ γ ‖x − y‖ = ϕ(‖x − y‖)

for every x, y ∈ C and each n. Further, since νC(t) ≤ Ñ(C) · t for each t ≥ 0, we have

(ϕ ◦ νC ◦ ϕ)(t) ≤ γ · νC(ϕ(t)) ≤ γÑ(C) · ϕ(t)

= γ2Ñ(C) · t

By Theorem 5.3, putting a = γ2Ñ(C) and M = γ, T has a fixed point.

6 Mappings of type (γ) Throughout this section, C is a nonempty bounded closed
convex subset of a Banach space E and B is a nonempty convex subset of E. We denote
by Γ the set of all strictly increasing, continuous and convex functions γ : [0,∞) → [0,∞)
with γ(0) = 0. Let γ ∈ Γ. A mapping T of B into E is said to be of type (γ) [5] if for every
x, y ∈ B and c ∈ [0, 1],

γ(‖cTx + (1 − c)Ty − T (cx + (1 − c)y)‖) ≤ ‖x − y‖ − ‖Tx− Ty‖ .

Clearly if a mapping T of B into E is of type (γ) then T is nonexpansive. Bruck [5] proved
that if E is uniformly convex and B is bounded closed and convex then there exists γ ∈ Γ
such that every nonexpansive mapping of B into E is of type (γ). This result is very
important and useful to prove nonlinear ergodic theorems for nonexpansive mappings. In
this section, we shall try to extend the result of Bruck.

Lemma 6.1. ηC(t) ≤ t/2 for each t ∈ I(C).

Proof. Let t ∈ I(C). Then we can take some x, y ∈ C such that ‖x − y‖ = t. Put
z = (x + y)/2. Then we have ‖x − z‖ ∨ ‖y − z‖ = t/2, and hence ηC(t) ≤ t/2.

Lemma 6.2. For each s, t ∈ I(C) \ {0} with s ≤ t,

ηC(s)
s

≤ ηC(t)
t

≤ 1
2
.

Proof. Take x, y, z ∈ C with ‖x − y‖ ≥ t. Put c = s/t, u = cx+(1−c)z and v = cy+(1−c)z.
Then, we have u, v ∈ C and ‖u − v‖ ≥ s. It follows that

ηC(s) ≤ (‖u − z‖ ∨ ‖v − z‖) −
∥∥∥∥u + v

2
− z

∥∥∥∥
= c

(
(‖x − z‖ ∨ ‖y − z‖) −

∥∥∥∥x + y

2
− z

∥∥∥∥
)

.

Hence we have ηC(s) ≤ c · ηC(t). So, we obtain the conclusion.
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Lemma 6.3. Let u, v, w ∈ C, R ≥ 0 and t ∈ I(C) satisfy ‖u − w‖ ≤ R, ‖v − w‖ ≤ R and
‖u − v‖ ≥ t. Then

‖cu + (1 − c)v − w‖ ≤ R − 2 min{c, 1 − c}ηC(t)
≤ R − 2c(1 − c)ηC(t)

for each c ∈ [0, 1].

Proof. Without loss of generality, we may assume c ≤ 1/2. By the definition of ηC(t), we
have ∥∥∥∥u + v

2
− w

∥∥∥∥ ≤ R − ηC(t).

Then we have

‖cu + (1 − c)v − w‖ =
∥∥∥∥2c

u + v

2
+ (1 − 2c)v − w

∥∥∥∥
≤ 2c

∥∥∥∥u + v

2
− w

∥∥∥∥ + (1 − 2c) ‖v − w‖

≤ 2c(R − ηC(t)) + (1 − 2c)R
= R − 2cηC(t)
= R − 2 min{c, 1 − c}ηC(t)
≤ R − 2c(1 − c)ηC(t).

This completes the proof.

Theorem 6.4. Let C be a nonempty bounded closed convex subset of a Banach space E.
Suppose C is (ucl). Then there exists γ ∈ Γ such that for every nonempty convex subset B
of E and for every nonexpansive mapping T of B into C, T is of type (γ).

Proof. For every s > 0, we define

f(s) =

{
ηC(s)/s if s ∈ I(C) \ {0};
1/2 if s ∈ (0,∞) \ I(C).

From Lemma 6.2, the function f : (0,∞) → (0,∞) is nondecreasing. We define a function
γ : [0,∞) → [0,∞) as

γ(t) = 2
∫ t

0

f(s) ds for each t ≥ 0.

Then we have γ ∈ Γ. Let B be a convex subset of E and let T be a nonexpansive mapping
of B into C. Let x, y ∈ B and c ∈ (0, 1). Put

t0 = ‖cTx + (1 − c)Ty − T (cx + (1 − c)y)‖ .

and put u, v, w ∈ C as

u = cTx + (1 − c)Ty,

v = T (cx + (1 − c)y)
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and

w = cT (cx + (1 − c)y) + (1 − c)Ty.

Then we have

‖u − w‖ = c ‖Tx − T (cx + (1 − c)y)‖ ≤ c(1 − c) ‖x − y‖ ,

‖v − w‖ = (1 − c) ‖T (cx + (1 − c)y) − Ty‖ ≤ c(1 − c) ‖x − y‖ ,

‖u − v‖ = ‖cTx + (1 − c)Ty − T (cx + (1 − c)y)‖ = t0

and

‖(1 − c)u + cv − w‖ = c(1 − c) ‖Tx − Ty‖ .

By Lemma 6.3, we have

c(1 − c) ‖Tx − Ty‖ ≤ c(1 − c) ‖x − y‖ − 2c(1 − c)ηC(t0)

and hence

‖Tx − Ty‖ ≤ ‖x − y‖ − 2ηC(t0).

From this, we have

γ(t0) ≤ 2 · t0f(t0) = 2 · t0 · ηC(t0)
t0

= 2ηC(t0) ≤ ‖x − y‖ − ‖Tx− Ty‖ .

This completes the proof.

The following is Bruck’s result [5, Lemma 1.1].

Corollary 6.5. Let B be a nonempty bounded convex subset of a uniformly convex Banach
space E. Then there exists γ ∈ Γ such that every nonexpansive mapping T of B into E is
of type (γ).

Proof. Put C = {y ∈ E : ‖y‖ ≤ d(B)}. From Proposition 3.2 and Theorem 6.4, there
exists γ ∈ Γ such that every nonexpansive mapping of B into C is of type (γ). Let T be
an arbitrary nonexpansive mapping of B into E. Take an x0 ∈ B. Define a nonexpansive
mapping T̃ of B into E as follows:

T̃ (x) = T (x) − T (x0) for every x ∈ B.

It is clear that T̃ (x) ∈ C for every x ∈ B. Therefore T̃ is of type (γ). This implies that T
is of type (γ).

Bruck [5, Remark] also obtained the following result, which was completely proved by
Atsushiba and Takahashi [1].

Corollary 6.6. Let C be a compact convex subset of a strictly convex Banach space E.
Then there exists γ ∈ Γ such that every nonexpansive mapping T of C into itself is of
type (γ).

Proof. By Proposition 3.3 and Theorem 6.4 (putting B = C), we obtain the conclusion.
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7 The convex approximation property and means Let C be a convex subset of a
Banach space E. Then, C is said to have the convex approximation property if for each
ε > 0 there exists a positive integer p such that for each subset M of C,

coM ⊂ cop M + Bε,

where Bε = {x ∈ E : ‖x‖ ≤ ε}; see also [6].
We denote by N (C) the set of all nonexpansive mappings of C into itself. For γ ∈ Γ,

we also denote by N γ(C) the set of all mappings of type (γ) of C into itself. Theorem 6.4
shows that if C is (ucl) then there exists γ ∈ Γ such that N (C) = N γ(C).

Lemma 7.1. Let C be a nonempty bounded closed convex subset of a Banach space E.
Suppose C is (ucl) and has the convex approximation property. Then, for each ε > 0 there
exists δ > 0 such that for every T ∈ N (C),

coFδ(T ) ⊂ Fε(T ),

where Ft(T ) = {x ∈ C : ‖x − Tx‖ ≤ t} for t > 0.

Proof. We follow an idea in [6]. Since C is (ucl), by Theorem 6.4, there exists γ ∈ Γ such
that N (C) = N γ(C). By [5, Lemma 1.2], the inverse function σ of t �→ γ−1(2t) + t satisfies

co2 Fσ(t)(T ) ⊂ Ft(T )

for each t > 0 and every T ∈ N γ(C) = N (C). Hence by induction, we have

co2n Fσn(t)(T ) = co2

(
co2n−1 Fσn(t)(T )

) ⊂ co2 Fσ(t)(T ) ⊂ Ft(T )

for each n ≥ 1, t > 0 and T ∈ N (C). Let ε > 0 be arbitrary. Since C has the convex
approximation property, there exists a positive integer p such that

coM ⊂ cop M + Bε/3

for every M ⊂ C. Take a large n with 2n ≥ p and put δ = σn(ε/3). Let T ∈ N (C) be
arbitrary. Then, we have

coFδ(T ) ⊂ co2n Fδ(T ) + Bε/3 ⊂ Fε/3(T ) + Bε/3.

Therefore we have coFδ(T ) ⊂ Fε(T ). In fact, for every z ∈ coFδ(T ), there exists y ∈
Fε/3(T ) such that ‖z − y‖ ≤ ε/3. Since

‖z − Tz‖ = ‖z − y‖ + ‖y − Ty‖ + ‖Ty − Tz‖
≤ 2 ‖z − y‖ + ‖y − Ty‖
≤ 2 · ε/3 + ε/3 = ε,

we have z ∈ Fε(T ). Since Fε(T ) is closed, we have coFδ(T ) ⊂ Fε(T ).

The following lemma was proved by Bruck [5, Lemma 1.5].

Lemma 7.2. Let C be a nonempty bounded closed convex subset of a Banach space E.
Let γ ∈ Γ and let T ∈ N γ(C). Suppose sequences {yi} and {zi} of C and δn > 0 satisfy
that (1/n)

∑n−1
i=0 ‖yi+1 − Tyi‖ ≤ δn and (1/n)

∑n−1
i=0 ‖zi+1 − Tzi‖ ≤ δn. Then, for each

λ ∈ [0, 1],

1
n

n−1∑
i=0

‖λyi+1 + (1 − λ)zi+1 − T (λyi + (1 − λ)zi)‖ ≤ γ−1(d(C)/n + 2δn) + δn.
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To obtain Theorem 7.4, we need the following lemma.

Lemma 7.3. Let C be a nonempty bounded closed convex subset of a Banach space E.
Suppose C is (ucl). Let ε > 0. Then there exist p ∈ N, δ > 0 and N ∈ N such that for
every T ∈ N (C) and every sequence {xi} of C with ‖xi+1 − Txi‖ ≤ δ for each i,

1
n

n−1∑
i=0

∥∥∥xp
i − Txp

i

∥∥∥ < ε for each n ≥ N ,

where xp
i = (1/p)

∑p−1
j=0 xj+i.

Proof. Since C is (ucl), there exists γ ∈ Γ such that N (C) = N γ(C). Choose p ∈ N

with d(C)/p < ε/2. Put σ(t) = γ−1(2t) + t and choose δ > 0 with σp−1(δ) < ε/2. Put
σn(t) = γ−1(d(C)/n+2t)+t. By the continuity of γ−1, it follows that limn→∞ σn(t) = σ(t).
So, there exists N ∈ N such that σp−1

n (δ) < ε/2 for each n ≥ N . Let T ∈ N (C) = N γ(C)
and let {xi} be a sequence C with ‖xi+1 − Txi‖ ≤ δ for each i. Then, for each i,∥∥∥xp

i+1 − xp
i

∥∥∥ =
1
p
‖xp+i − xi‖ ≤ d(C)

p
<

ε

2
.

We also have, for each n ∈ N and q ∈ N with 1 ≤ q ≤ p,

1
n

n−1∑
i=0

∥∥∥xq
i+1 − Txq

i

∥∥∥ ≤ σq−1
n (δ).

In fact, if q = 1, we have

1
n

n−1∑
i=0

∥∥∥x1
i+1 − Tx1

i

∥∥∥ =
1
n

n−1∑
i=0

‖xi+1 − Txi‖ ≤ 1
n

n−1∑
i=0

δ = δ.

If 2 ≤ q ≤ p, by induction, it follows from Lemma 7.2 that

1
n

n−1∑
i=0

∥∥∥xq
i+1 − Txq

i

∥∥∥
= 1

n

∑n−1
i=0

∥∥∥(
1 − 1

q

)
xq−1

i+1 + 1
q xq+i − T

((
1 − 1

q

)
xq−1

i + 1
q xq+i−1

)∥∥∥
≤ σn

(
max

{
1
n

∑n−1
i=0

∥∥∥xq−1
i+1 − Txq−1

i

∥∥∥ , 1
n

∑n−1
i=0 ‖xq+i − xq+i−1‖

})
≤ σn(max{σq−2

n (δ), δ})
= σn(σq−2

n (δ)) = σq−1
n (δ).

In particular, if q = p and n ≥ N , we have

1
n

n−1∑
i=0

∥∥∥xp
i+1 − Txp

i

∥∥∥ ≤ σp−1
n (δ) < ε/2.

Therefore, we obtain

1
n

n−1∑
i=0

∥∥∥xp
i − Txp

i

∥∥∥ ≤ 1
n

n−1∑
i=0

(∥∥∥xp
i+1 − xp

i

∥∥∥ +
∥∥∥xp

i+1 − Txp
i

∥∥∥)
< ε/2 + ε/2 = ε

for each n ≥ N .
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Theorem 7.4. Let C be a nonempty bounded closed convex subset of a Banach space E.
Suppose C is (ucl) and has the convex approximation property. Let ε > 0. Then there exist
p ∈ N, δ > 0 and N ∈ N satisfying the following: For every nonexpansive mapping T of C
into itself and every sequence {xi} of C with ‖xi+1 − Txi‖ ≤ δ for each i,

1
n

n−1∑
i=0

xi ∈ Fε(T ) for each n ≥ N .

Proof. By Lemma 7.1, there exists η > 0 such that

2η · d(C) ≤ ε/3 and coFη(T ) ⊂ Fε/3(T ).

By Lemma 7.3, there exist p ∈ N, δ > 0 and N ∈ N such that for every T ∈ N (C) and
every sequence {xi} of C with ‖xi+1 − Txi‖ ≤ δ for each i,

1
n

n−1∑
i=0

‖wi − Twi‖ < η2 for each n ≥ N ,

where wi = xp
i = (1/p)

∑p−1
j=0 xj+i. We may also assume p/N ≤ η. Put

A(n) = {i ∈ N : 0 ≤ i ≤ n − 1 and ‖wi − Twi‖ ≥ η}
and

B(n) = {i ∈ N : 0 ≤ i ≤ n − 1 and ‖wi − Twi‖ < η}.
Fix n ≥ N . Since

∑n−1
i=0 ‖wi − Twi‖ ≤ nη2, we have 	A(n) < nη, where 	 denotes cardinal-

ity. On the other hand, by Corollary 4.6, C is weakly compact and has normal structure.
So, by Kirk’s fixed point theorem, T has a fixed point. Let z ∈ F (T ). Then, we have

1
n

n−1∑
i=0

wi =

⎛
⎝ 	A(n)

n
z +

1
n

∑
i∈B(n)

wi

⎞
⎠ +

1
n

∑
i∈A(n)

(wi − z)

∈ coFη(T ) + Bη·d(C).

From

1
n

n−1∑
i=0

xi =
1
n

n−1∑
i=0

wi +
1
np

p−1∑
i=0

(p − 1 − i)(xi − xi+n)

and ∥∥∥∥∥ 1
np

p−1∑
i=0

(p − 1 − i)(xi − xi+n)

∥∥∥∥∥ ≤ 1
np

· p2 · d(C) ≤ p

N
· d(C) ≤ η · d(C),

we have

1
n

n−1∑
i=0

xi ∈ co Fη(T ) + Bη·d(C) + Bη·d(C)

= coFη(T ) + B2η·d(C)

⊂ Fε/3(T ) + Bε/3.

As in the proof of Lemma 7.1, we have Fε/3(T ) + Bε/3 ⊂ Fε(T ). This completes the
proof.
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As a direct consequence of Theorem 7.4, we have the following result.

Corollary 7.5. Let C be a nonempty bounded closed convex subset of a Banach space E
and suppose C is (ucl) and has the convex approximation property. Then

lim
n→∞ sup

{∥∥∥∥∥ 1
n

n−1∑
i=0

T ix − T

(
1
n

n−1∑
i=0

T ix

)∥∥∥∥∥ : x ∈ C, T ∈ N (C)

}
= 0.

8 Existence of ergodic retraction We denote by l∞ the Banach space of all bounded
sequences of reals with supremum norm. µ ∈ (l∞)∗ is said to be a mean on l∞ if ‖µ‖ =
µ(1) = 1. Let {un} be a sequence of E such that co{un} is weakly compact, and let µ be a
mean on l∞. Then, by [12], there exists a unique uµ ∈ co{un} such that

〈uµ, x∗〉 = µn〈un, x∗〉 for every x∗ ∈ E∗.

Here the right-hand side means the value of µ at f = {f (n)} ∈ l∞, where f(n) = 〈un, x∗〉
for each n. For more details, see [12, 22].

Theorem 8.1. Let C be a nonempty bounded closed convex subset of a Banach space E.
Suppose that C is (ucl) and has the convex approximation property. Let T be a nonexpansive
mapping of C into itself. Then there exists a nonexpansive retraction P of C onto F (T )
such that PT = TP = P and Px ∈ co{T nx : n ∈ N} for every x ∈ C.

Proof. Since C is (ucl), by Corollary 4.6, C is weakly compact. Let µ be a Banach limit.
Then, for every x ∈ C there exists Px ∈ co{T nx : n ∈ N} such that 〈Px, x∗〉 = µn〈T nx, x∗〉
for every x∗ ∈ E∗. Since

〈Px − Py, x∗〉 = µn〈T nx − T ny, x∗〉
≤ µn(‖T nx − T ny‖ ‖x∗‖)
≤ ‖x − y‖ ‖x∗‖

for every x∗ ∈ E∗, P is nonexpansive. Since

〈Px, x∗〉 = µn〈T nx, x∗〉
= µn

〈
T n+1x, x∗〉

= µn〈T nTx, x∗〉
= 〈PTx, x∗〉 ,

we have P = PT . For every z ∈ F (T ), we have

〈Pz, x∗〉 = µn〈T nz, x∗〉 = 〈z, x∗〉
and hence Pz = z. To finish the proof, we shall show Px ∈ F (T ) for every x ∈ C. Let
ε > 0 be arbitrary. By Lemma 7.1, there exists δ > 0 such that coFδ(T ) ⊂ Fε(T ). By
Corollary 7.5, there exists n ∈ N such that (1/n)

∑n−1
i=0 T iy ∈ Fδ(T ) for every y ∈ C. Since

〈Px, x∗〉 = µk

〈
T kx, x∗〉

=
1
n

n−1∑
i=0

µk

〈
T i+kx, x∗〉

= µk

〈
1
n

n−1∑
i=0

T iT kx, x∗
〉

,
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we have

Px ∈ co

{
1
n

n−1∑
i=0

T iT kx : k ≥ 0

}

⊂ coFδ(T ) ⊂ Fε(T ).

Since ε > 0 is arbitrary, we have Px ∈ F (T ). This completes the proof.
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