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(α, β)-FUZZY SUBALGEBRAS IN LATTICE IMPLICATION ALGEBRAS
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Abstract. Using the notion of “belongingness (∈)” and “quasi-coincidence (q)” of fuzzy
points with fuzzy sets, the concept of (α, β)-fuzzy subalgebra where α, β are any two of
{∈, q,∈∨q, ın∧ q} with α �=∈∧ q is introduced, and related properties are investigated.

1. Introduction

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [4],
played a vital role to generate some different types of fuzzy subgroups, called (α, β)-fuzzy
subgroups, introduced by Bhakat and Das [1]. In particular, (∈,∈ ∨ q)-fuzzy subgroup is
an important and useful generalization of Rosenfeld’s fuzzy subgroup. It is now natural to
investigate similar type of generalizations of the existing fuzzy subsystems of other algebraic
structures. With this objective in view, the concept of (α, β)-fuzzy (quasi) subalgebra of
a lattice implication algebra is introduced and related results are discussed in the present
paper.

2. Preliminaries

A lattice implication algebra is defined to be a bounded lattice (L,∨,∧, 0, 1) with order-
reversing involution “ ′ ” and a binary operation “ � ” satisfying the following axioms:

(I1) x � (y � z) = y � (x � z),
(I2) x � x = 1,
(I3) x � y = y′ � x′,
(I4) x � y = y � x = 1 ⇒ x = y,
(I5) (x � y) � y = (y � x) � x,
(L1) (x ∨ y) � z = (x � z) ∧ (y � z),
(L2) (x ∧ y) � z = (x � z) ∨ (y � z),

for all x, y, z ∈ L
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Example 2.1. [2] Let L = {0, a, b, c, d, 1} be a set with Hasse diagram and Cayley tables
as follows:

�

0
�� ��

��
�

d � c

��� b���a

�

1
x x′

0 1
a c
b d
c a
d b
1 0

� 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

Define ∨- and ∧-operations on L as follows:

x ∨ y := (x � y) � y, x ∧ y := ((x′ � y′) � y′)′,

for all x, y ∈ L. Then L is a lattice implication algebra.

We can define a partial ordering “ ≤ ” on a lattice implication algebra L by x ≤ y if and
only if x � y = 1.

In a lattice implication algebra L, the following hold (see [5]):
(z1) 0 � x = 1, 1 � x = x and x � 1 = 1.
(z2) x � y ≤ (y � z) � (x � z).
(z3) x ≤ y implies y � z ≤ x � z and z � x ≤ z � y.
(z4) x′ = x � 0.
(z5) x ∨ y = (x � y) � y.
(z6) ((y � x) � y′)′ = x ∧ y = ((x � y) � x′)′.
(z7) x ≤ (x � y) � y.

A subset S of a lattice implication algebra L is called a subalgebra of L (see [6]) if it
satisfies the following conditions

• 0 ∈ S,
• (∀x, y ∈ S) (x � y ∈ S).
A subset S of a lattice implication algebra L is called a quasi subalgebra of L (see [3]) if

it is closed under the operation � .
A fuzzy set A in a set L of the form

A(y) :=
{

t ∈ (0, 1] if y = x,
0 if y �= x,

is said to be a fuzzy point with support x and value t and is denoted by xt.
For a fuzzy point xt and a fuzzy set A in a set L, Pu and Liu [4] gave meaning to the

symbol xtαA, where α ∈ {∈, q,∈∨ q,∈∧ q}.
To say that xt ∈ A (resp. xtqA) means that A(x) ≥ t (resp. A(x) + t > 1), and in this

case, xt is said to belong to (resp. be quasi-coincident with) a fuzzy set A.
To say that xt ∈∨ q A (resp. xt ∈∧ q A) means that xt ∈ A or xtqA (resp. xt ∈ A and

xtqA). For all t1, t2 ∈ [0, 1], min{t1, t2} will be denoted by M(t1, t2).
A fuzzy set A in a lattice implication algebra L is called a fuzzy subalgebra of L (see [7])

if it satisfies
(a1) A(1) = A(0),
(a2) (∀x, y ∈ L) (A(x � y) ≥ M(A(x),A(y))).

If the condition (a1) does not hold, we say that A is a fuzzy quasi subalgebra of L.

Proposition 2.2. [7] Let A be a fuzzy set in a lattice implication algebra L. Then A is a
fuzzy subalgebra of L if and only if At := {x ∈ L | A(x) ≥ t} is a subalgebra of L for all
t ∈ (0, 1], for our convenience, the empty set ∅ is regarded as a subalgebra of L.
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3. (α, β)-fuzzy subalgebras

In what follows let L denote a lattice implication algebra, and α and β will denote any
one of ∈, q, ∈∨ q, or ∈∧ q unless otherwise specified. To say that xtαA means that xtαA
does not hold.

Proposition 3.1. For any fuzzy set A in L, the condition (a2) is equivalent to the following
condition

(∀x, y ∈ L) (∀t1, t2 ∈ (0, 1]) (xt1 , yt2 ∈ A ⇒ (x � y)M(t1,t2) ∈ A).(1)

Proof. Assume that the condition (a2) is valid. Let x, y ∈ L and t1, t2 ∈ (0, 1] be such that
xt1 , yt2 ∈ A. Then A(x) ≥ t1 and A(y) ≥ t2, which imply from (a2) that

A(x � y) ≥ M(A(x),A(y)) ≥ M(t1, t2).

Hence (x � y)M(t1,t2) ∈ A.
Conversely suppose that the condition (1) is valid. Note that xA(x) ∈ A and yA(y) ∈ A for

all x, y ∈ L. Thus (x � y)M(A(x),A(y)) ∈ A by (1), and so A(x � y) ≥ M(A(x),A(y)).

A fuzzy set A in L is said to be an (α, β)-fuzzy subalgebra of L, where α �= ∈∧ q, if it
satisfies the following conditions:
(a1) A(1) = A(0),
(a3) (∀x, y ∈ L) (∀t1, t2 ∈ (0, 1]) (xt1αA, yt2αA ⇒ (x � y)M(t1,t2)βA.)

If the condition (a1) does not hold, we say that A is an (α, β)-fuzzy quasi subalgebra of
L.

Note that if A is a fuzzy set in L defined by A(x) ≤ 0.5 for all x ∈ L, then the set
{xt | xt ∈∧ q A} is empty.

Example 3.2. Let L = {0, a, b, c, 1} be a set with the following Hasse diagram as a partial
ordering, and define a unary operation “′” and a binary operation “�” as follows:

�

0
�� ��
�a �b�� ��

�c

�1
x x′

0 1
a b
b a
c c
1 0

� 0 a b c 1
0 1 1 1 1 1
a b 1 c 1 1
b a c 1 1 1
c c c c 1 1
1 0 a b c 1

Define ∨- and ∧-operations on L as follows:

x ∨ y := (x � y) � y and x ∧ y := ((x′ � y′) � y′)′

for all x, y ∈ L. Then L is a lattice implication algebra. Let A be a fuzzy set in L given by
A(1) = A(0) = 0.77, A(a) = 0.9, A(b) = 0.8, and A(c) = 0.7. Then A is an (∈,∈∨ q)-fuzzy
subalgebra of L.

For a fuzzy set A in L, we denote L0 := {x ∈ L | A(x) > 0}.
Theorem 3.3. If A is a nonzero (∈,∈)-fuzzy subalgebra of L, then the set L0 is a subalgebra
of L.

Proof. Assume that A(0) = 0. Since A is nonzero, there exists x ∈ L such that A(x) =
t > 0. It follows that xt ∈ A so that 1t = (x � x)M(t,t) ∈ A by (I2) and (a3). Hence
0 = A(0) = A(1) ≥ t > 0, which is a contradiction. Therefore A(0) > 0 and so 0 ∈ L0. Let
x, y ∈ L0. Then A(x) > 0 and A(y) > 0. Suppose that A(x � y) = 0. Note that xA(x) ∈ A
and yA(y) ∈ A, but (x � y)M(A(x),A(y))∈A because A(x � y) = 0 < M(A(x),A(y)). This
is a contradiction, and thus A(x � y) > 0, which shows that x � y ∈ L0. Consequently
L0 is a subalgebra of L.
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Theorem 3.4. If A is a nonzero (∈, q)-fuzzy subalgebra of L, then the set L0 is a subalgebra
of L.

Proof. Assume that A(0) = 0. Since A is nonzero, there exists x ∈ L such that A(x) = t > 0.
Then xt ∈ A, and so

A(x � x) + M(t, t) = A(1) + t = A(0) + t = t ≤ 1.

This means that (x � x)M(t,t)qA, which is a contradiction. Hence A(0) > 0 and 0 ∈ L0.
Let x, y ∈ L0. Then A(x) > 0 and A(y) > 0. If A(x � y) = 0, then

A(x � y) + M(A(x),A(y)) = M(A(x),A(y)) ≤ 1.

Hence (x � y)M(A(x),A(y))qA, which is a contradiction si nce xA(x) ∈ A and yA(y) ∈ A.
Thus A(x � y) > 0, and so x � y ∈ L0. Therefore L0 is a subalgebra of L.

Theorem 3.5. If A is a nonzero (q,∈)-fuzzy subalgebra of L, then the set L0 is a subalgebra
of L.

Proof. Assume that A(0) = 0. Since A is nonzero, there exists x ∈ L such that A(x) = t > 0.
Then A(x) + 1 = t + 1 > 1, and so x1 q A. But, since

A(x � x) = A(1) = A(0) = 0 < 1 = M(1, 1),

we have (x � x)M(1,1)∈A. This is impossible, and thus A(0) > 0, i.e., 0 ∈ L0. Let x, y ∈ L0.
Then A(x) > 0 and A(y) > 0. Thus A(x)+1 > 1 and A(y)+1 > 1, which imply that x1 q A
and y1 q A. If A(x � y) = 0, then A(x � y) < 1 = M(1, 1). Therefore (x � y)M(1,1)∈A,
which is a contradiction. It follows that A(x � y) > 0 so that x � y ∈ L0. This completes
the proof.

Theorem 3.6. If A is a nonzero (q, q)-fuzzy subalgebra of L, then the set L0 is a subalgebra
of L.

Proof. Assume that A(0) = 0. Since A is nonzero, there exists x ∈ L such that A(x) = t > 0.
Then A(x) + 1 = t + 1 > 1, and so x1 q A. Since

A(x � x) + M(1, 1) = A(1) + 1 = A(0) + 1 = 1,

we get (x � x)M(1,1) qA. This is a contradiction. Hence A(0) > 0, and thus 0 ∈ L0. Now
let x, y ∈ L0. Then A(x) > 0 and A(y) > 0. Thus A(x) + 1 > 1 and A(y) + 1 > 1, and
therefore x1 q A and y1 q A. If A(x � y) = 0, then A(x � y) + M(1, 1) = 0 + 1 = 1, and
so (x � y)M(1,1) qA. This is impossible, and hence A(x � y) > 0, i.e., x � y ∈ L0. This
completes the proof.

Corollary 3.7. If A is one of the following
(i) a nonzero (∈,∈∧ q)-fuzzy subalgebra of L,
(ii) a nonzero (∈,∈∨ q)-fuzzy subalgebra of L,
(iii) a nonzero (∈∨ q, q)-fuzzy subalgebra of L,
(iv) a nonzero (∈∨ q,∈)-fuzzy subalgebra of L,
(v) a nonzero (∈∨ q,∈∧ q)- fuzzy subalgebra of L,
(vi) a nonzero (q,∈∧ q)-fuzzy subalgebra of L,
(vii) a nonzero (q,∈∨ q)-fuzzy) subalgeb ra of L,

then the set L0 := {x ∈ L | A(x) > 0} is a subalgebra of L.

Proof. The proof is similar to the proof of Theorems 3.3, 3.4, 3.5, and/or 3.6.

Theorem 3.8. If A is a nonzero (q, q)-fuzzy subalgebra of L, then it is constant on L0.
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Proof. Assume that A is not constant on L0. Then there exists y ∈ L0 such that ty =
A(y) �= A(0) = t0. Then either ty > t0 or ty < t0. Suppose ty < t0 and choose t1, t2 ∈ (0, 1]
such that 1 − t0 < t1 < 1 − ty < t2. Then A(1) + t1 = A(0) + t1 = t0 + t1 > 1 and
A(y) + t2 = ty + t2 > 1, and so 1t1qA and yt2qA. Since

A(1 � y) + M(t1, t2) = A(y) + t1 = ty + t1 < 1,

we have (1 � y)M(t1,t2)qA, which is a contradiction. Next assume that ty > t0. Then
A(y) + (1 − t0) = ty + 1 − t0 > 1 and so y1−t0qA. Since

A(y � y) + (1 − t0) = A(1) + 1 − t0 = A(0) + 1 − t0 = t0 + 1 − t0 = 1,

we get (y � y)M(1−t0,1−t0)qA. This is impossible. Therefore A is constant on L0.

Theorem 3.9. Let H be a subalgebra of L and let A be a fuzzy set in L such that A(x) = 0
for all x ∈ L \ H. If any one of the following holds:

(i) A is nonzero constant on H,
(ii) A(0) = A(1) and A(x) ≥ 0.5 for all x ∈ H,

then A is a (q,∈∨ q)-fuzzy subalgebra of L.

Proof. Assume that A is nonzero constant on H. Obviously A(0) = A(1) because 0, 1 ∈ H.
Let x, y ∈ L and t1, t2 ∈ (0, 1] be such that xt1qA and yt2qA. Then either x � y ∈ L \H or
x � y ∈ H. In the first case we have x ∈ L \ H or y ∈ L \ H. Thus A(x) = 0 or A(y) = 0,
and thus t1 > 1 or t2 > 1. This is a contradiction. Hence we know that x � y ∈ H, and
A(x � y) = t > 0. If A(x � y) = t < M(t1, t2), then

A(x � y) + M(t1, t2) = t + M(t1, t2) > 1.

Hence (x � y)M(t1,t2) ∈ ∨ q A, and consequently A is a (q, ∈ ∨ q)-fuzzy subalgebra of L.
Now suppose that A(0) = A(1) and A(x) ≥ 0.5 for all x ∈ H. Let x, y ∈ L and t1, t2 ∈ (0, 1]
be such that xt1qA and yt2qA. Then x, y ∈ H, and so x � y ∈ H. If M(t1, t2) > 0.5, then
A(x � y) + M(t1, t2) > 1, i.e., (x � y)M(t1,t2)qA. If M(t1, t2) ≤ 0.5, then A(x � y) ≥
M(t1, t2), i.e., (x � y)M(t1, t2) ∈ A. Thus in any case we have (x � y)M(t1, t2) ∈ ∨ qA.
Therefore A is a (q,∈∨ q)-fuzzy subalgebra of L.

Theorem 3.10. Let A be a (q,∈∨ q)-fuzzy subalgebra of L such that A is not constant on
L0. Then

(i) there exists x ∈ L such that A(x) ≥ 0.5.
(ii) A(x) ≥ 0.5 for all x ∈ L0.

Proof. (i) Assume that A(x) < 0.5 for all x ∈ L. Since A is not constant on L0, there exists
x ∈ L0 such that tx = A(x) �= A(0) = t0. Then either t0 < tx or t0 > tx. If t0 < tx, choose
δ > 0.5 such that t0 + δ < 1 < tx + δ. Then xδqA. Now

A(x � x) = A(1) = A(0) = t0 < δ = M(δ, δ)

and

A(x � x) + M(δ, δ) = A(1) + δ = A(0) + δ = t0 + δ < 1.

Thus (x � x)M(δ, δ)∈∨ qA, which is impossible. Next if t0 > tx, we can choose δ > 0 such
that tx + δ < 1 < t0 + δ. Then 1δqA and x1 q A, but (1 � x)M(δ,1) = xδ∈∨ qA because
A(x) < 0.5 < δ and A(x) + δ = tx + δ < 1. This leads a contradiction. Hence (i) is valid.

(ii) We first show that A(0) = A(1) ≥ 0.5. If possible, let t0 = A(0) < 0.5. By (i), there
exists x ∈ L such that tx = A(x) ≥ 0.5. It follows that t0 < tx. Choose t1 > t0 such that
t0 + t1 < 1 < tx + t1. Then xt1qA since A(x) + t1 = tx + t1 > 1. Now we have

A(x � x) + M(t1, t1) = A(1) + t1 = A(0) + t1 = t0 + t1 < 1



96 L. B. BEASLEY, G. S. CHEON, Y. B. JUN AND S. Z. SONG

and

A(x � x) = A(1) = A(0) = t0 < t1 = M(t1, t1).

Hence (x � x)M(t1, t1)∈∨ qA, which leads a contradiction. Therefore A(0) = A(1) ≥ 0.5.
Assume that tx = A(x) < 0.5 for some x ∈ L0. Take t > 0 such that tx + t < 0.5. Then
A(x) + 1 = tx + 1 > 1 and A(1) + (0.5 + t) > 1, and thus x1 q A and 10.5+tqA. But
(1 � x)M(1,0.5+t) = x0.5+t ∈∨ q A since A(1 � x) = A(x) < 0.5 + t ≤ M(1, 0.5 + t) and

A(1 � x) + M(1, 0.5 + t) = A(x) + 0.5 + t = tx + 0.5 + t < 0.5 + 0.5 = 1.

This is a contradiction. Hence A(x) ≥ 0.5 for all x ∈ L0. This completes the proof.

Lemma 3.11. Let A be a fuzzy set in L. Then the following are equivalent:
(i) (∀x, y ∈ L) (∀t1, t2 ∈ (0, 1]) (xt1 , yt2 ∈ A ⇒ (x � y)M(t1,t2) ∈∨q A).
(ii) (∀x, y ∈ L) (A(x � y) ≥ M(A(x),A(y), 0.5)).

Proof. Suppose that (i) is valid. Let x, y ∈ L. If M(A(x),A(y)) < 0.5, then A(x � y) ≥
M(A(x),A(y)). For, assume that A(x � y) < M(A(x),A(y)) and choose t such that A(x �
y) < t < M(A(x),A(y)). Then xt ∈ A and yt ∈ A but (x � y)M(t,t) = (x � y)t ∈∨ q A
which contradicts (i). Hence

A(x � y) ≥ M(A(x),A(y)).

Now if M(A(x),A(y)) ≥ 0.5, then A(x � y) ≥ 0.5 because if not then x0.5 ∈ A and y0.5 ∈ A
but (x � y)M(0.5,0.5) = (x � y)0.5 ∈∨ q A, a contradiction. Consequently, (ii) is valid.

Conversely, assume that (ii) holds. Let x, y ∈ L and t1, t2 ∈ (0, 1] be such that xt1 ∈ A
and yt2 ∈ A. Then A(x) ≥ t1 and A(y) ≥ t2. Suppose that A(x � y) < M(t1, t2). Then
M(A(x),A(y)) ≥ 0.5 because if not, then

A(x � y) ≥ M(A(x),A(y), 0.5) ≥ M(A(x),A(y)) ≥ M(t1, t2)

which is a contradiction. It follows that

A(x � y) + M(t1, t2) > 2A(x � y) ≥ 2M (A(x),A(y), 0.5) = 1.

This shows that (x � y)M(t1,t2) ∈∨ q A.

Theorem 3.12. Let A be an (∈,∈∨ q)-fuzzy subalgebra of L.

(i) If there exists x ∈ L such that A(x) ≥ 0.5, then A(0) ≥ 0.5.
(ii) If A(0) < 0.5, then A is an (∈,∈)-fuzzy subalgebra of L.

Proof. (i) Assume that A(x) ≥ 0.5 for some x ∈ L. Then x0.5 ∈ A and so

10.5 = (x � x)0.5 = (x � x)M(0.5,0.5) ∈∨ q A.

It follows that A(1) ≥ 0.5 or A(1) + 0.5 > 1 so that A(0) = A(1) ≥ 0.5.
(ii) Suppose that A(0) < 0.5. Then A(x) < 0.5 for all x ∈ L by (i). Let x, y ∈ L and

t1, t2 ∈ (0, 1] be such that xt1 ∈ A and yt2 ∈ A. Then A(x) ≥ t1 and A(y) ≥ t2. It follows
from Lemma 3.11 that

A(x � y) ≥ M(A(x),A(y), 0.5) = M(A(x),A(y)) ≥ M(t1, t2)

so that (x � y)M(t1,t2) ∈ A. Hence A is an (∈,∈)-fuzzy subalgebra of L.

Theorem 3.13. Let A be a fuzzy set in L. Then At := {x ∈ L | A(x) ≥ t} is a quasi
subalgebra of L for all t ∈ (0.5, 1] if and only if

(∀x, y ∈ L) (max{A(x � y), 0.5} ≥ M(A(x),A(y))).(2)
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Proof. (⇒) Assume that there exists x, y ∈ L such that

max{A(x � y), 0.5} < M(A(x),A(y)) = t.

Then t ∈ (0.5, 1], A(x � y) < t and x, y ∈ At. Since At is a quasi subalgebra of L, it
follows that x � y ∈ At so that A(x � y) ≥ t. This is a contradiction. Hence max{A(x �
y), 0.5} ≥ M(A(x),A(y)) for all x, y ∈ L.

(⇐) Suppose that the condition (2) is valid. Let t ∈ (0.5, 1] and x, y ∈ At. Then

max{A(x � y), 0.5} ≥ M(A(x),A(y)) ≥ t > 0.5,

and so A(x � y) ≥ t. Hence x � y ∈ At, which shows that At is a quasi subalgebra of L
for all t ∈ (0.5, 1].

Lemma 3.14. Every (∈,∈)-fuzzy (quasi) subalgebra is an (∈,∈∨ q)-fuzzy (quasi) subalge-
bra.

Proof. Let A be an (∈,∈)-fuzzy (quasi) subalgebra of L. Let x, y ∈ L and t1, t2 ∈ (0, 1] be
such that xt1 ∈ A and yt2 ∈ A. Then (x � y)M(t1,t2) ∈ A and thus (x � y)M(t1,t2) ∈∨ q A.
Hence A is an (∈,∈∨ q)-fuzzy (quasi) subalgebra of L.

The converse of Lemma 3.14 may not be true in general. For example, the (∈,∈∨ q)-fuzzy
subalgebra of L in Example 3.2 is not an (∈,∈)-fuzzy subalgebra of L because a0.9 ∈ A but
(a � a)M(0.9,0.9) = 10.9 ∈A.

Theorem 3.15. For any subset H of L, χH is an (∈,∈∨ q)-fuzzy quasi subalgebra of L if
and only if H is a quasi subalgebra of L, where χH is the characteristic function of H.

Proof. Let χH be an (∈,∈∨ q)-fuzzy quasi subalgebra of L. Then x, y ∈ H implies χH(x) =
1 and χH(y) = 1. Hence x1, y1 ∈ χH , which implies that (x � y)M(1,1) ∈ ∨ q χH . This
yields χH(x � y) > 0, and so χH(x � y) = 1. Thus x � y ∈ H. Conversely, if H is a
quasi subalgebra of L, then χH is an (∈,∈)-fuzzy quasi subalgebra of L. Therefore χH is
an (∈,∈∨ q)-fuzzy quasi subalgebra of L by Lemma 3.14.

Theorem 3.16. If A is an (∈,∈ ∨ q)-fuzzy quasi subalgebra of L, then At := {x ∈ L |
A(x) ≥ t} is a quasi subalgebra of L for all t ∈ (0, 0.5].

Proof. Let t ∈ (0, 0.5] and x, y ∈ At. Then A(x) ≥ t and A(y) ≥ t, which imply that xt ∈ A
and yt ∈ A. It follows that (x � y)M(t,t) ∈∨ q A so from Lemma 3.11 that

A(x � y) ≥ M(A(x),A(y), 0.5) ≥ M(t, 0.5) = t.

Hence x � y ∈ At, and At is a quasi subalgebra of L.

Theorem 3.17. If A is a fuzzy set in L such that At := {x ∈ L | A(x) ≥ t} is a quasi
subalgebra of L for all t ∈ (0, 0.5], then A is an (∈,∈∨ q)-fuzzy quasi subalgebra of L.

Proof. It is sufficient to show that A(x � y) ≥ M(A(x),A(y), 0.5) for all x, y ∈ L. Assume
that A(x � y) < M(A(x),A(y), 0.5) for some x, y ∈ L. Then there exists t ∈ (0, 1) such
that A(x � y) < t < M(A(x),A(y), 0.5). Thus x, y ∈ At and t < 0.5 and so x � y ∈ At,
that is, A(x � y) ≥ t, a contradiction. Therefore A(x � y) ≥ M(A(x),A(y), 0.5) for all
x, y ∈ L. Consequently A is an (∈,∈∨ q)-fuzzy quasi subalgebra of L.

For any fuzzy set A in L and t ∈ (0, 1], we denote

A1−t := {x ∈ L | xtqA} = {x ∈ L | A(x) + t > 1}
and [A]t := At ∪ A1−t = {x ∈ L | xt ∈∨ q A}.
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Theorem 3.18. A fuzzy set A in L is an (∈,∈∨ q)-fuzzy quasi subalgebra of L if and only
if [A]t is a quasi subalgebra of L for all t ∈ (0, 1], which is called an (∈ ∨ q)-level quasi
subalgebra of A.

Proof. Let A be an (∈,∈∨ q)-fuzzy quasi subalgebra of L. Let x, y ∈ [A]t. Then xt ∈∨ q A
and yt ∈ ∨ q A, that is, A(x) ≥ t or A(x) + t > 1, and A(y) ≥ t or A(y) + t > 1. Since
A(x � y) ≥ M(A(x),A(y), 0.5) by Lemma 3.11, it follows that A(x � y) ≥ M(t, 0.5). For
otherwise, A(x � y) < M(t, 0.5) which implies that xt ∈∨q A or yt ∈∨q A, a contradiction.
If M(t, 0.5) = t, then A(x � y) ≥ M(t, 0.5) = t and so x � y ∈ At ⊂ At ∪ A1−t = [A]t.
If M(t, 0.5) = 0.5, then A(x � y) ≥ M(t, 0.5) = 0.5 which imply that A(x � y) + t > 1
so that x � y ∈ A1−t ⊂ [A]t. Therefore [A]t is a quasi subalgebra of L. Conversely, let A
be a fuzzy set in L such that [A]t is a quasi subalgebra of L for all t ∈ (0, 1]. If possible,
let A(x � y) < t < M(A(x),A(y), 0.5) for some t ∈ (0, 0.5). Then x, y ∈ At ⊂ [A]t, and
so x � y ∈ [A]t. Hence A(x � y) ≥ t or A(x � y) + t > 1, a contradiction. Therefore
A(x � y) ≥ M(A(x),A(y), 0.5) for all x, y ∈ L. Thus A is an (∈,∈ ∨ q)-fuzzy quasi
subalgebra of L.

A fuzzy set A in L is said to be proper if Im(A) has at least two elements. Two fuzzy
sets are said to be equivalent if they have same family of level subsets. Otherwise, they are
said to be non-equivalent.

Theorem 3.19. Let L have proper quasi subalgebras. A proper (∈,∈)-fuzzy quasi subalge-
bra A of L such that #Im(A) ≥ 3 can be expressed as the union of two proper non-equivalent
(∈,∈)-fuzzy quasi subalgebras of L.

Proof. Let A be a proper (∈,∈)-fuzzy quasi subalgebra of L with Im(A) = {t0, t1, · · · , tn},
where t0 > t1 > · · · > tn = L and n ≥ 2. Then

At0 ⊆ At1 ⊆ · · · ⊆ Atn = L

is the chain of ∈-level quasi subalgebras of A. Define fuzzy sets Φ and Ψ in L by

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

r1 if x ∈ At1 ,
t2 if x ∈ At2 \ At1 ,
· · ·
tn if x ∈ Atn \ Atn−1 ,

and

Ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t0 if x ∈ At0 ,
t1 if x ∈ At1 \ At0 ,
r2 if x ∈ At3 \ At1 ,
t4 if x ∈ At4 \ At3 ,
· · ·
tn if x ∈ Atn \ Atn−1 ,

respectively, where t2 < r1 < t1 and t4 < r2 < t2. Then Φ and Ψ are (∈,∈)-fuzzy quasi
subalgebras of L with

At1 ⊆ At2 ⊆ · · · ⊆ Atn = L

and

At0 ⊆ At1 ⊆ At3 ⊆ · · · ⊆ Atn = L

as respective chains of ∈-level quasi subalgebras, and Φ, Ψ ≤ A. Thus Φ and Ψ are non-
equivalent, and obviously Φ ∪ Ψ = A. This completes the proof.



(α, β)-FUZZY SUBALGEBRAS IN LATTICE IMPLICATION ALGEB RAS 99

Theorem 3.20. Let A be a proper (∈,∈∨ q)-fuzzy quasi subalgebra of L such that #{A(x) |
A(x) < 0.5} ≥ 2. Then there exist two proper non-equivalent (∈,∈∨ q)-fuzzy quasi subalge-
bra of L such that A can be expressed as the union of them.

Proof. Let {A(x) | A(x) < 0.5} = {t1, t2, · · · , tn}, where t1 > t2 > · · · > tn and n ≥ 2.
Then the chain of (∈∨ q)-level quasi subalgebras of A is

[A]0.5 ⊆ [A]t1 ⊆ [A]t2 ⊆ · · · ⊆ [A]tn = L.

Let Φ and Ψ be fuzzy sets in L defined by

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

t1 if x ∈ [A]t1 ,
t2 if x ∈ [A]t2 \ [A]t1 ,
· · ·
tn if x ∈ [A]tn \ [A]tn−1 ,

and

Ψ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(x) if x ∈ [A]0.5,
r if x ∈ [A]t2 \ [A]0.5,
t3 if x ∈ [A]t3 \ [A]t2 ,
· · ·
tn if x ∈ [A]tn \ [A]tn−1 ,

respectively, where t3 < r < t2. Then Φ and Ψ are (∈,∈∨ q)-fuzzy quasi subalgebra of L,
and Φ, Ψ ≤ A. The chains of (∈∨ q)-level quasi subalgebras of Φ and Ψ are, respectively,
given by

[A]t1 ⊆ [A]t2 ⊆ · · · ⊆ [A]tn = L

and

[A]0.5 ⊆ [A]t2 ⊆ · · · ⊆ [A]tn = L.

Therefore Φ and Ψ are non-equivalent and clearly A = Φ∪Ψ. This completes the proof.

Theorem 3.21. Let A be an (∈,∈ ∨ q)-fuzzy quasi subalgebra of L such that A(x) > 0.5
for all x ∈ L. Then A can be expressed as the union of two proper non-equivalent (∈,∈∨ q)-
fuzzy quasi subalgebras if and only if there are proper quasi subalgebras G and H of L such
that L = G ∪ H.

Proof. Assume that L = G ∪ H for some proper quasi subalgebras G and H of L. Let Φ
and Ψ be fuzzy sets in L defined by

Φ(x) =
{

A(x) if x ∈ G,
t1 < 0.5 if x ∈ L \ G,

Ψ(x) =
{

A(x) if x ∈ H,
t2 < 0.5 if x ∈ L \ H.

Then Φ, Ψ ≤ A, and they are (∈,∈∨ q)-fuzzy quasi subalgebras of L. The chains of (∈∨ q)-
level quasi subalgebras of Φ and Ψ are G ⊆ L and H ⊆ L, respectively. Thus Φ and Ψ are
non-equivalent and A = Φ ∪ Ψ. Conversely, suppose that A = Φ ∪ Ψ, where Φ and Ψ are
proper non-equivalent (∈,∈∨ q)-fuzzy quasi subalgebras of L. Let

G = {x ∈ L | Φ(x) < 0.5}, H = {x ∈ L | Ψ(x) < 0.5}
and W = {x ∈ L | (Φ∩Ψ)(x) ≥ 0.5}. Since Φ, Ψ ≤ A and they are non-equivalent, we have
G �= ∅ and H �= ∅. Also, W �= ∅ by Theorem 3.12. We now show that G ∪ W is a quasi
subalgebra of L. Let x, y ∈ G ∪ W. If x ∈ G and y ∈ W, then Φ(y) ≥ 0.5, Ψ(y) ≥ 0.5 and
Φ(x) < 0.5. Since A = Φ∪Ψ and A(x) > 0.5 for all x ∈ L, it follows that Ψ(x) ≥ 0.5. Assume
that x � y /∈ G ∪ W. Then x � y /∈ G and x � y /∈ W, and thus Φ(x � y) ≥ 0.5 and
Ψ(x � y) < 0.5. Using Lemma 3.11, we get Ψ(x � y) ≥ M(Ψ(x),Ψ(y), 0.5), which implies
that Ψ(y) < 0.5 because Ψ(x) ≥ 0.5 and Ψ(x � y) < 0.5. This is a contradiction. Similarly
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one can obtain a contradiction if x ∈ W and y ∈ G. Now if x, y ∈ G, then Φ(x) < 0.5
and Φ(y) < 0.5, and so Ψ(x) ≥ 0.5 and Ψ(y) ≥ 0.5. Suppose that x � y /∈ G ∪ W. Then
Φ(x � y) ≥ 0.5 and Ψ(x � y) < 0.5. Using Lemma 3.11 again, Ψ(x � y) < 0.5 implies
Ψ(x) < 0.5 or Ψ(y) < 0.5. This is a contradiction. Therefore x � y ∈ G ∪ W. Finally if
x, y ∈ W, then Φ(x) ≥ 0.5, Φ(y) ≥ 0.5, Ψ(x) ≥ 0.5, and Ψ(y) ≥ 0.5. It follows from Lemma
3.11 that

Φ(x � y) ≥ M(Φ(x),Φ(y), 0.5) ≥ 0.5

and

Ψ(x � y) ≥ M(Ψ(x),Ψ(y), 0.5) ≥ 0.5

so that x � y ∈ W ⊆ G ∪W. Consequently, in any case, G∪W is a quasi subalgebra of L.
Similarly we can show that H ∪W is a quasi subalgebra of L. Also, L = (G∪W )∪(H ∪W ).
This completes the proof.
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