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Abstract. A bounded linear operator T is called ∞-hyponormal if T is p-hyponormal
for every p > 0. In this paper ∞-hyponormality of the Aluthge transformations
of ∞-hyponormal operators is investigated. It is shown that the Aluthge transfor-
mation of an ∞-hyponormal operator is not necessarily ∞-hyponormal. It is also
shown that the (generalized) Aluthge transformation of an ∞-hyponormal operator
T is ∞-hyponormal provided |T ||T ∗| = |T ∗||T |. Moreover we give an example of
an ∞-hyponormal operator T whose Aluthge transformation T̃ is ∞-hyponormal but
|T ||T ∗| �= |T ∗||T |.

1 Introduction A bounded linear operator T on a Hilbert space is called p-hyponormal
if (T ∗T )p ≥ (TT ∗)p (p > 0). (The notion of p-hyponormal operators for p ∈ N was intro-
duced first by Fujii and Nakatsu[6]. A 1-hyponormal operator is nothing but a hyponormal
operator.) Concerning p-hyponormal operators, many interesting results have been obtained
(e.g., [1], [4], [5], [7]–[10], [14]). The unilateral shift is a simple example being p-hyponormal
for every p > 0. In the hope of getting fruitful results, the authors [11], [12] investigated
operators that are p-hyponormal for every p > 0 and they called them ∞-hyponormal. Let
us recall the definition of ∞-hyponormal operators.

Definition. A bounded linear operator T on a Hilbert space is called ∞-hyponormal if
it is p-hyponormal for every p > 0. By the Löwner-Heinz theorem, T is ∞-hyponormal if
and only if (T ∗T )n ≥ (TT ∗)n for every n ∈ N, or |T |n ≥ |T ∗|n for every n ∈ N.

Concerning ∞-hyponormal operators, the authors [11], [12] proved that the outer bound-
ary of the spectrum of a pure ∞-hyponormal operator is the circle with the radius ||T ||,
and showed the existence of non-trivial invariant subspaces for any ∞-hyponormal operator.
(Recall that an operator T is said to be pure if T has no reducing subspace on which it is
normal.) For other facts(e.g., algebraic properties of the set of ∞-hyponormal operators),
see [11].

On the other hand, Aluthge[1] introduced the operator T̃ = |T | 12 U |T | 12 for a p-hypo-
normal operator T , where T = U |T | is the polar decomposition of T . Further Furuta[7]
introduced the operator T̃s,t = |T |sU |T |t for a p-hyponormal operator T and s, t > 0.
The operators T̃ = |T | 12 U |T | 12 and T̃s,t = |T |sU |T |t are called the Aluthge transformation
and the generalized Aluthge transformation of T , respectively. These operators have nice
properties as follows.

Theorem A[1]. For a p-hyponormal (0 < p ≤ 1) operator with the polar decomposition
T = U |T |, Aluthge transformation T̃ = |T | 12 U |T | 12 of T is min{p + 1

2 , 1}-hyponormal.
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Theorem B[8], [9], [14]. Let T be a p-hyponormal (0 < p ≤ 1) operator with the polar
decomposition T = U |T |. Then the following assertions hold.

(1) If s, t > 0, max{s, t} ≥ p hold, then T̃s,t = |T |sU |T |t is p+min{s,t}
s+t -hyponormal.

(2) If s, t > 0, max{s, t} ≤ p hold, then T̃s,t = |T |sU |T |t is hyponormal.

Roughly speaking, these theorems say that the Aluthge transformations or generalized
Aluthge transformations “improve” the degree of hyponormality, although restricted in the
range of 0 < p ≤ 1. So, it is natural to ask whether the Aluthge transformations of
∞-hyponormal operators preserve the ∞-hyponormality or not.

In section 2, we answer the question in the negative by giving an example of an ∞-
hyponormal operator for which the Aluthge transformation is not ∞-hyponormal.

However, for many ∞-hyponormal operators (e.g., the unilateral shift, a unilateral
weighted shift operator with increasing weight sequence, a bilateral weighted shift operator
with increasing weight sequence and a quasinormal operator), their Aluthge transforma-
tions are also ∞-hyponormal. The common properties of these ∞-hyponormal operators
T are that T is hyponormal and |T ||T ∗| = |T ∗||T |. (In [2], [3] and [6], operators satisfying
|T ||T ∗| = |T ∗||T | were investigated and many interesting results were obtained. Especially
Fujii and Nakatsu[6] noted that a hyponormal operator T satisfying |T ||T ∗| = |T ∗||T | is
∞-hyponormal.)

In section 3, we first show that the Aluthge transformation T̃ = |T | 12 U |T | 12 and more
generally the generalized Aluthge transformation T̃s,t = |T |sU |T |t of an ∞-hyponormal
operator T are also ∞-hyponormal provided |T ||T ∗| = |T ∗||T |. Next we show that the
equality |T | |T ∗| = |T ∗| |T | is not a necessary condition for the Aluthge transformation T̃ of
an ∞-hyponormal operator T to be ∞-hyponormal.

2 Example of an ∞-hyponormal operator whose Aluthge transformation is not
∞-hyponormal We show that the Aluthge transformations of ∞-hyponormal operators
are not necessarily ∞-hyponormal by giving an example. To do so, we need the following
lemma, where 2 × 2 matrices are considered as bounded linear operators on the Hilbert
space C2.

Lemma 2.1 Let A and B are positive 2×2 matrices and let p1, p2 (p1 ≤ p2) and q1, q2 (q1 ≤
q2) be eigenvalues of A and B, respectively.

Then An ≥ Bn holds for all n ∈ N if and only if the following assertion (i) or (ii) holds.
(i) q1 ≤ q2 ≤ p1 ≤ p2

(ii) q1 ≤ p1 < q2 ≤ p2 and N (B − q1) = N (A − p1) hold, where N (T ) is the null space
of T .

To prove this lemma, we use the following theorem[13]. For a proof, see [11], [13].

Theorem C [13]. Let A,B be positive operators on a Hilbert space with spectral resolu-
tions A =

∫
λdP (λ), B =

∫
λdQ(λ), respectively. Then An ≥ Bn holds for every n ∈ N if

and only if P (λ) ≤ Q(λ) holds for every λ ≥ 0.

Now we give a proof of Lemma 2.1.

Proof of Lemma 2.1. Suppose that An ≥ Bn holds for every n ∈ N. First we show
that q1 ≤ p1 and q2 ≤ p2. Suppose that q1 > p1 or q2 > p2 holds. Then Q(p1) = 0 < P (p1)
or Q(p2) < I = P (p2), where A =

∫
λdP (λ), B =

∫
λdQ(λ) are spectral resolutions,

respectively. (Q(λ) < P (λ) means Q(λ) ≤ P (λ) and Q(λ) �= P (λ).) This contradicts
Theorem C. Hence q1 ≤ p1 and q2 ≤ p2 hold.
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If q2 ≤ p1, then (i) q1 ≤ q2 ≤ p1 ≤ p2 holds. If q2 > p1, then q1 ≤ p1 < q2 ≤ p2 and
so N (B − q1) = R(Q(q1)) = R(Q(p1)) ⊇ R(P (p1)) = N (A − p1) by Theorem C. (R(T )
denotes the range of T .) Since N (B − q1) and N (A − p1) are not equal to (0) nor C2, we
obtain N (B − q1) = N (A − p1). Hence (ii) holds.

Conversely, suppose that (i) holds. Then P (λ) = 0 ≤ Q(λ) (0 ≤ λ < p1), P (λ) ≤ I =
Q(λ) (q2 ≤ λ). Hence P (λ) ≤ Q(λ) for every λ ≥ 0. By Theorem C, An ≥ Bn holds for
every n ∈ N.

Next suppose that (ii) holds. Since R(Q(q1)) = N (B − q1) = N (A − p1) = R(P (p1))
holds, we obtain P (λ) = 0 ≤ Q(λ) (λ < p1), P (λ) = Q(λ) (p1 ≤ λ < q2) and P (λ) ≤ I =
Q(λ) (q2 ≤ λ). Hence P (λ) ≤ Q(λ) for every λ ≥ 0. By Theorem C, An ≥ Bn holds for
every n ∈ N. �

Remark. If the assertion (i) holds in the above Lemma 2.1, then A ≥ p1I ≥ q2I ≥ B
holds. From this inequality, we can easily obtain the inequality An ≥ pn

1 I ≥ qn
2 I ≥ Bn for

every n ∈ N without using Theorem C.

Now we give an example of an ∞-hyponormal operator for which the Aluthge transfor-
mation is not ∞-hyponormal.

Example 2.2 Let

A1 =
(

2 0
0 0

)
, A2 =

(
3 1
1 3

)
,

and set

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
A1 0

A2 0
A2 0

A2 0
. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

on
⊕∞

n=1 Hn, where Hn = C2 for n ∈ N.
First we show that T is ∞-hyponormal. A calculation yields

|T | = (T ∗T )
1
2 =

⎛
⎜⎜⎜⎜⎜⎝

A1

A2

A2

A2

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

|T ∗| = (TT ∗)
1
2 =

⎛
⎜⎜⎜⎜⎜⎝

0
A1

A2

A2

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

The eigenvalues of A1 and A2 are 0,2 and 2,4, respectively. This implies An
1 ≤ An

2 for
every n ∈ N because of Lemma 2.1 (i). Hence |T |n ≥ |T ∗|n for any n ∈ N, and so T is
∞-hyponormal.
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Next we show that the Aluthge transformation T̃ is not ∞-hyponormal. The polar
decomposition of T is T = V |T |, where

V =

⎛
⎜⎜⎜⎜⎜⎝

0
I 0

I 0
I 0

. . . . . .

⎞
⎟⎟⎟⎟⎟⎠

By a calculation, we obtain

T̃ ∗T̃ = (|T | 12 V |T | 12 )∗(|T | 12 V |T | 12 ) =

⎛
⎜⎜⎜⎜⎜⎝

A
1
2
1 A2A

1
2
1

A2
2

A2
2

A2
2

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

T̃ T̃ ∗ = (|T | 12 V |T | 12 )(|T | 12 V |T | 12 )∗ =

⎛
⎜⎜⎜⎜⎜⎝

0

A
1
2
2 A1A

1
2
2

A2
2

A2
2

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Hence T̃ is ∞-hyponormal if and only if A2n
2 ≥ (A

1
2
2 A1A

1
2
2 )n holds for any n ∈ N. A

calculation yields

A2
2 =

(
10 6
6 10

)
,

A
1
2
2 A1A

1
2
2 =

(
3 + 2

√
2 1

1 3 − 2
√

2

)
,

since

A
1
2
2 =

1
2

(
2 +

√
2 2 −√

2
2 −√

2 2 +
√

2

)
.

The eigenvalues of A2
2 and A

1
2
1 A2A

1
2
1 are 4, 16 and 0, 6, respectively. Since

N (A2
2 − 4) =

{
t

(
1
−1

)
; t ∈ C

}
�= N (A

1
2
1 A2A

1
2
1 ) =

{
t

( −1
3 + 2

√
2

)
; t ∈ C

}
,

there exists an n ∈ N such that An
2 �≥ A

1
2
1 A2A

1
2
1 by Lemma 2.1 (ii). Hence T̃ is not

∞-hyponormal.

3 A sufficient condition for the generalized Aluthge transformations of ∞-
hyponormal operators to be also ∞-hyponormal. We give a sufficient condition
for the generalized Aluthge transformations of ∞-hyponormal operators to be also ∞-
hyponormal.

Theorem 3.1 Let T be an ∞-hyponormal operator with the polar decomposition T = U |T |.
If |T ||T ∗| = |T ||T ∗| holds, then T̃s,t = |T |sU |T |t is ∞-hyponormal for every s, t ≥ 0.
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Proof. Let T = U |T | be the polar decomposition of T , and let T̃s,t = |T |sU |T |t be
the generalized Aluthge transformation of T . If T̃s,t = |T |sU |T |t is ∞-hyponormal for any
s, t > 0, then |T̃ 1

k ,t|p ≥ |T̃ ∗
1
k ,t

|p, |T̃s, 1
k
|p ≥ |T̃ ∗

s, 1
k

|p and |T̃ 1
k , 1

k
|p ≥ |T̃ ∗

1
k , 1

k

|p for k ∈ N, p ≥ 0.

By taking the limit as k → ∞, we see that T̃s,t = |T |sU |T |t is also ∞-hyponormal for s = 0
or t = 0. Hence we may assume that s, t > 0.

It is known that U∗U and UU∗ are the orthogonal projection onto R(|T |) = R(|T |p) =
N (|T |p)⊥ and R(T ) = N (T ∗)⊥ = N (|T ∗|)⊥ = N (|T ∗|p)⊥, respectively, and so |T |pU∗U =
|T |p, |T ∗|pUU∗ = |T ∗|p and U∗U |T |p = |T |, UU∗|T ∗|p = |T ∗|p hold for any p > 0. (R(T )
denotes the closure of the range of T .) Moreover it is also known that |T ∗|p = U |T |pU∗ and
U∗|T ∗|pU = |T |p hold for any p > 0. Hence

|T̃s,t|2 = T̃ ∗
s,tT̃s,t = (|T |tU∗|T |s)(|T |sU |T |t) = (U∗U)|T |tU∗|T |2sU |T |t(U∗U)

= U∗(U |T |tU∗)|T |2s(U |T |tU∗)U = U∗|T ∗|t|T |2s|T ∗|tU

and

|T̃ ∗
s,t|2 = T̃s,tT̃

∗
s,t = (|T |sU |T |t)(|T |tU∗|T |s) = |T |s(U |T |2tU∗)|T |s = |T |s|T ∗|2t|T |s

hold. From the commutativity of |T | and |T ∗|, we obtain

|T̃s,t|2n = U∗|T ∗|nt|T |2ns|T ∗|ntU = U∗(|T ∗|ntUU∗)|T |2ns(UU∗|T ∗|nt)U
= (U∗|T ∗|ntU)U∗|T |2nsU(U∗|T ∗|ntU) = |T |ntU∗|T |2nsU |T |nt

and
|T̃ ∗

s,t|2n = |T |ns|T ∗|2nt|T |ns

for any n ∈ N. Hence T̃s,t is ∞-hyponormal if and only if

|T |ntU∗|T |2nsU |T |nt ≥ |T |ns|T ∗|2nt|T |ns

holds for any n ∈ N. From the ∞-hyponormality of T , |T |p ≥ |T ∗|p holds, and so |T |p ≥
U |T |pU∗ holds for any p > 0. So we obtain U∗|T |pU ≥ |T |p for any p > 0. Hence

|T |ntU∗|T |2nsU |T |nt ≥ |T |nt|T |2ns|T |nt = |T |ns|T |2nt|T |ns ≥ |T |ns|T ∗|2nt|T |ns

holds for any n ∈ N. Hence T̃s,t is ∞-hyponormal. �

Next we give an example of an ∞-hyponormal operator T whose Aluthge transformation
T̃ is also ∞-hyponormal but |T ||T ∗| �= |T ∗||T |.

In [11, p. 365] the authors constructed an ∞-hyponormal operator T satisfying |T ||T ∗| �=
|T ∗||T |. To examine the ∞-hyponormality of the Aluthge transformation of T , we need to
reconstruct T into some operator matrix which is unitarily equivalent to T . The operator
T in the following Example 3.2 is such an operator matrix.

Example 3.2 Let {λn}∞n=0 be a bounded increasing sequence of positive numbers with
λ0 = λ1 and λk < λk+1 for every k ≥ 1, and let

U0 =
1√
2

(
1 1
1 −1

)
, An =

(
λn 0
0 λn+1

)
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for n ≥ 0 and set

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . 0
U0 0

U0 0
U0 0

U0 0

U0 0
. . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
A0

A0

A0

A1

A2

A3

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrices U , A are considered as bounded operators on
⊕∞

n=−∞ Hn, where Hn = C2 for
every n ∈ N.

Consider the operator T = UA. Then T = UA is the polar decomposition of T since
U is unitary and hence T ∗T = AU∗UA = A2. Note that |T | = A, |T ∗| = (TT ∗)

1
2 =

(UA2U∗)
1
2 = UAU∗ hold. By a calculation, we obtain

|T ∗| = UAU∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
B0

B0

B0

B0

B1

B2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Bn = U0AnU∗
0 =

1
2

(
λn + λn+1 λn − λn+1

λn − λn+1 λn + λn+1

)
.

(Note that B0 = A0.)
First we show that T is ∞-hyponormal. A simple calculation yields

Ak
n =

(
λk

n 0
0 λk

n+1

)
,

Bk
n = U0A

k
nU∗

0 =
1
2

(
λk

n + λk
n+1 λk

n − λk
n+1

λk
n − λk

n+1 λk
n + λk

n+1

)
,
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and so

Ak
n+1 − Bk

n =
1
2

(
λk

n+1 − λk
n λk

n+1 − λk
n

λk
n+1 − λk

n 2λk
n+2 − λk

n+1 − λk
n

)
≥ 0

for n, k ≥ 0. The last assertion follows from tr(Ak
n+1 − Bk

n) = (λk
n+2 − λk

n) ≥ 0 and
det(Ak

n+1−Bk
n) = 1

2 (λk
n+2−λk

n+1)(λ
k
n+1−λk

n) ≥ 0, where tr(Ak
n+1−Bk

n) and det(Ak
n+1−Bk

n)
are the trace of (Ak

n+1 − Bk
n) and the determinant of (Ak

n+1 − Bk
n), respectively. Therefore

|T |k ≥ |T ∗|k holds for any k ≥ 0, and hence T is ∞-hyponormal.
Next we show that |T ||T ∗| �= |T ∗||T |. By a calculation, we obtain

An+1Bn =
1
2

(
λn+1(λn + λn+1) λn+1(λn − λn+1)
λn+2(λn − λn+1) λn+2(λn + λn+1)

)
,

BnAn+1 =
1
2

(
λn+1(λn + λn+1) λn+2(λn − λn+1)
λn+1(λn − λn+1) λn+2(λn + λn+1)

)
.

From the assumption, λn+1 �= λn+2, λn+1 − λn > 0 and so BnAn+1 �= An+1Bn hold for
every n ≥ 1. Hence |T ||T ∗| �= |T ∗||T | holds.

Finally we show that the Aluthge transformation T̃ of T is also ∞-hyponormal. By a
calculation, we obtain the following equalities for T̃ = |T | 12 U |T | 12 = A

1
2 UA

1
2 .

T̃ ∗T̃ = A
1
2 U∗AUA

1
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
A2

0

A2
0

C0

C1

C2

C3

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T̃ T̃ ∗ = A
1
2 UAU∗A

1
2 = A

1
2 |T ∗|A 1

2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
A2

0

A2
0

D0

D1

D2

D3

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Cn = A
1
2
nU∗

0 An+1U0A
1
2
n , Dn = A

1
2
n Bn−1A

1
2
n for n ≥ 0 under the convention that

B−1 := B0 = A0. Hence T̃ is ∞-hyponormal if and only if Ck
n ≥ Dk

n for every n, k ≥ 0. Let
p
(n)
1 , p

(n)
2 (p(n)

1 ≤ p
(n)
2 ) be eigenvalues of 2Cn, and let q

(n)
1 , q

(n)
2 (q(n)

1 ≤ q
(n)
2 ) be eigenvalues

of 2Dn. If q
(n)
2 ≤ p

(n)
1 holds for any n ∈ N, then (2Dn)k ≤ (2Cn)k and so Dk

n ≤ Ck
n for

every k ≥ 0 by Lemma 2.1, and hence T̃ is ∞-hyponormal. Therefore it suffices to show
that q

(n)
2 ≤ p

(n)
1 holds for every n ≥ 0.

By a calculation,

Cn =
1
2

(
λn(λn+1 + λn+2)

√
λnλn+1(λn+1 − λn+2)√

λnλn+1(λn+1 − λn+2) λn+1(λn+1 + λn+2)

)
,
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D0 = A
1
2
0 A0A

1
2
0 = A2

0,

Dm =
1
2

(
λm(λm−1 + λm)

√
λmλm+1(λm−1 − λm)√

λmλm+1(λm−1 − λm) λm+1(λm−1 + λm)

)

for n ≥ 0, m ≥ 1. Solving the characteristic equation of matrices 2C0, 2D0, we obtain
q
(0)
1 = q

(0)
2 = p

(0)
1 = 2λ2

1 ≤ p
(0)
2 = 2λ1λ2. Next let us fix an arbitrary n with n ≥ 1. Then

tr(2Cn) = (λn + λn+1)(λn+1 + λn+2), det(2Cn) = 4λnλ2
n+1λn+2,

tr(2Dn) = (λn + λn+1)(λn−1 + λn), det(2Dn) = 4λn−1λ
2
nλn+1

and

p
(n)
1 =

tr(2Cn) − √
tr(2Cn)2 − 4 det(2Cn)

2
,

q
(n)
2 =

tr(2Dn) +
√

tr(2Dn)2 − 4 det(2Dn)
2

.

From these expressions and the fact that tr(2Cn) ≥ tr(2Dn), we can see that q
(n)
2 ≤ p

(n)
1 is

equivalent to
(√

tr(2Dn)2 − 4 det(2Dn) +
√

tr(2Cn)2 − 4 det(2Cn)
)2

≤ (tr(2Cn) − tr(2Dn))2 .

So q
(n)
2 ≤ p

(n)
1 holds if and only if

2
√

tr(2Cn)2 − 4 det(2Cn)
√

tr(2Dn)2 − 4 det(2Dn)(1)

≤ (tr(2Cn) − tr(2Dn))2 − (
tr(2Cn)2 − 4 det(2Cn)

) − (
tr(2Dn)2 − 4 det(2Dn)

)
.

Hereafter, we denote the left-hand side and the right-hand side of (1) by (lhs) and (rhs),
respectively. Moreover we introduce new variables a, x, y and z by setting

λn−1 = a, λn = a + x, λn+1 = a + x + y, λn+2 = a + x + y + z.

Since {λn}∞n=0 is an increasing sequence of positive numbers, a, x, y, z ≥ 0. By using new
variables, we can rewrite (rhs) as

(rhs) = 16a2xy + 32ax2y + 16x3y + 8a2y2 + 36axy2 + 28x2y2 + 8ay3 + 12xy3 + 8a2xz +
16ax2z + 8x3z + 16a2yz + 40axyz + 24x2yz + 12ay2z + 14xy2z,

which shows that (rhs) ≥ 0. Therefore q
(n)
2 ≤ p

(n)
1 holds if and only if (lhs)2 ≤ (rhs)2. By

using new variables, we can write

(rhs)2−(lhs)2 = 192a4x2y2+768a3x3y2+1152a2x4y2+768ax5y2+192x6y2+256a4xy3+
1472a3x2y3 + 2880a2x3y3 + 2368ax4y3 + 704x5y3 + 640a3xy4 + 2240a2x2y4 + 2560ax3y4 +
960x4y4+512a2xy5+1088ax2y5+576x3y5+128axy6+128x2y6+256a4x2yz+1024a3x3yz+
1536a2x4yz+1024ax5yz+256x6yz+640a4xy2z+3072a3x2y2z+5376a2x3y2z+4096ax4y2z+
1152x5y2z +256a4y3z +2304a3xy3z +5696a2x2y3z +5504ax3y3z +1856x4y3z +384a3y4z +
1984a2xy4z + 2880ax2y4z + 1280x3y4z + 128a2y5z + 448axy5z + 320x2y5z + 256a4xyz2 +
1024a3x2yz2 + 1536a2x3yz2 + 1024ax4yz2 + 256x5yz2 + 192a4y2z2 + 1280a3xy2z2 +
2688a2x2y2z2 + 2304ax3y2z2 + 704x4y2z2 + 320a3y3z2 + 1280a2xy3z2 + 1600ax2y3z2 +
640x3y3z2 + 128a2y4z2 + 320axy4z2 + 192x2y4z2.

Hence the inequality (lhs)2 ≤ (rhs)2 holds and hence q
(n)
2 ≤ p

(n)
1 holds for every n ≥ 0 and

so T̃ is ∞-hyponormal.
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From the above Example 3.2, we see that the equality |T ||T ∗| = |T ∗||T | is not necessary
for the Aluthge transformation T̃ of an ∞-hyponormal operator T to be ∞-hyponormal.
Hence there remains the problem of finding a necessary and sufficient condition for the
Aluthge transformation of an ∞-hyponormal operator to be also ∞-hyponormal.
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