ON THE ALUTHGE TRANSFORMATIONS OF ∞-HYPONORMAL OPERATORS

Shizuo MIYAJIMA and Isao SAITO

Received April 7, 2004; revised June 11, 2004

Abstract

A bounded linear operator T is called ∞-hyponormal if T is p-hyponormal for every $p>0$. In this paper ∞-hyponormality of the Aluthge transformations of ∞-hyponormal operators is investigated. It is shown that the Aluthge transformation of an ∞-hyponormal operator is not necessarily ∞-hyponormal. It is also shown that the (generalized) Aluthge transformation of an ∞-hyponormal operator T is ∞-hyponormal provided $|T|\left|T^{*}\right|=\left|T^{*}\right||T|$. Moreover we give an example of an ∞-hyponormal operator T whose Aluthge transformation \tilde{T} is ∞-hyponormal but $|T|\left|T^{*}\right| \neq\left|T^{*}\right||T|$.

1 Introduction A bounded linear operator T on a Hilbert space is called p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}(p>0)$. (The notion of p-hyponormal operators for $p \in \mathbf{N}$ was introduced first by Fujii and Nakatsu[6]. A 1-hyponormal operator is nothing but a hyponormal operator.) Concerning p-hyponormal operators, many interesting results have been obtained (e.g., $[1],[4],[5],[7]-[10],[14])$. The unilateral shift is a simple example being p-hyponormal for every $p>0$. In the hope of getting fruitful results, the authors [11], [12] investigated operators that are p-hyponormal for every $p>0$ and they called them ∞-hyponormal. Let us recall the definition of ∞-hyponormal operators.

Definition. A bounded linear operator T on a Hilbert space is called ∞-hyponormal if it is p-hyponormal for every $p>0$. By the Löwner-Heinz theorem, T is ∞-hyponormal if and only if $\left(T^{*} T\right)^{n} \geq\left(T T^{*}\right)^{n}$ for every $n \in \mathbf{N}$, or $|T|^{n} \geq\left|T^{*}\right|^{n}$ for every $n \in \mathbf{N}$.

Concerning ∞-hyponormal operators, the authors [11], [12] proved that the outer boundary of the spectrum of a pure ∞-hyponormal operator is the circle with the radius $\|T\|$, and showed the existence of non-trivial invariant subspaces for any ∞-hyponormal operator. (Recall that an operator T is said to be pure if T has no reducing subspace on which it is normal.) For other facts(e.g., algebraic properties of the set of ∞-hyponormal operators), see [11].

On the other hand, Aluthge[1] introduced the operator $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ for a p-hyponormal operator T, where $T=U|T|$ is the polar decomposition of T. Further Furuta[7] introduced the operator $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ for a p-hyponormal operator T and $s, t>0$. The operators $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ and $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ are called the Aluthge transformation and the generalized Aluthge transformation of T, respectively. These operators have nice properties as follows.

Theorem A[1]. For a p-hyponormal $(0<p \leq 1)$ operator with the polar decomposition $T=U|T|$, Aluthge transformation $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ of T is $\min \left\{p+\frac{1}{2}, 1\right\}$-hyponormal.

[^0]Theorem B[8], [9], [14]. Let T be a p-hyponormal $(0<p \leq 1)$ operator with the polar decomposition $T=U|T|$. Then the following assertions hold.
(1) If $s, t>0$, $\max \{s, t\} \geq p$ hold, then $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is $\frac{p+\min \{s, t\}}{s+t}$-hyponormal.
(2) If $s, t>0, \max \{s, t\} \leq p$ hold, then $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is hyponormal.

Roughly speaking, these theorems say that the Aluthge transformations or generalized Aluthge transformations "improve" the degree of hyponormality, although restricted in the range of $0<p \leq 1$. So, it is natural to ask whether the Aluthge transformations of ∞-hyponormal operators preserve the ∞-hyponormality or not.

In section 2, we answer the question in the negative by giving an example of an ∞ hyponormal operator for which the Aluthge transformation is not ∞-hyponormal.

However, for many ∞-hyponormal operators (e.g., the unilateral shift, a unilateral weighted shift operator with increasing weight sequence, a bilateral weighted shift operator with increasing weight sequence and a quasinormal operator), their Aluthge transformations are also ∞-hyponormal. The common properties of these ∞-hyponormal operators T are that T is hyponormal and $|T|\left|T^{*}\right|=\left|T^{*}\right||T|$. (In [2], [3] and [6], operators satisfying $|T|\left|T^{*}\right|=\left|T^{*}\right||T|$ were investigated and many interesting results were obtained. Especially Fujii and Nakatsu[6] noted that a hyponormal operator T satisfying $|T|\left|T^{*}\right|=\left|T^{*}\right||T|$ is ∞-hyponormal.)

In section 3, we first show that the Aluthge transformation $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ and more generally the generalized Aluthge transformation $\tilde{T}_{s, t}=|T|{ }^{s} U|T|^{t}$ of an ∞-hyponormal operator T are also ∞-hyponormal provided $|T|\left|T^{*}\right|=\left|T^{*}\right||T|$. Next we show that the equality $|T|\left|T^{*}\right|=\left|T^{*}\right||T|$ is not a necessary condition for the Aluthge transformation \tilde{T} of an ∞-hyponormal operator T to be ∞-hyponormal.

2 Example of an ∞-hyponormal operator whose Aluthge transformation is not ∞-hyponormal We show that the Aluthge transformations of ∞-hyponormal operators are not necessarily ∞-hyponormal by giving an example. To do so, we need the following lemma, where 2×2 matrices are considered as bounded linear operators on the Hilbert space \mathbf{C}^{2}.

Lemma 2.1 Let A and B are positive 2×2 matrices and let $p_{1}, p_{2}\left(p_{1} \leq p_{2}\right)$ and $q_{1}, q_{2}\left(q_{1} \leq\right.$ q_{2}) be eigenvalues of A and B, respectively.

Then $A^{n} \geq B^{n}$ holds for all $n \in \mathbf{N}$ if and only if the following assertion (i) or (ii) holds.
(i) $q_{1} \leq q_{2} \leq p_{1} \leq p_{2}$
(ii) $q_{1} \leq p_{1}<q_{2} \leq p_{2}$ and $\mathcal{N}\left(B-q_{1}\right)=\mathcal{N}\left(A-p_{1}\right)$ hold, where $\mathcal{N}(T)$ is the null space of T.

To prove this lemma, we use the following theorem[13]. For a proof, see [11], [13].
Theorem C [13]. Let A, B be positive operators on a Hilbert space with spectral resolutions $A=\int \lambda d P(\lambda), B=\int \lambda d Q(\lambda)$, respectively. Then $A^{n} \geq B^{n}$ holds for every $n \in \mathbf{N}$ if and only if $P(\lambda) \leq Q(\lambda)$ holds for every $\lambda \geq 0$.

Now we give a proof of Lemma 2.1.
Proof of Lemma 2.1. Suppose that $A^{n} \geq B^{n}$ holds for every $n \in \mathbf{N}$. First we show that $q_{1} \leq p_{1}$ and $q_{2} \leq p_{2}$. Suppose that $q_{1}>p_{1}$ or $q_{2}>p_{2}$ holds. Then $Q\left(p_{1}\right)=0<P\left(p_{1}\right)$ or $Q\left(p_{2}\right)<I=P\left(p_{2}\right)$, where $A=\int \lambda d P(\lambda), B=\int \lambda d Q(\lambda)$ are spectral resolutions, respectively. $(Q(\lambda)<P(\lambda)$ means $Q(\lambda) \leq P(\lambda)$ and $Q(\lambda) \neq P(\lambda)$.) This contradicts Theorem C. Hence $q_{1} \leq p_{1}$ and $q_{2} \leq p_{2}$ hold.

If $q_{2} \leq p_{1}$, then (i) $q_{1} \leq q_{2} \leq p_{1} \leq p_{2}$ holds. If $q_{2}>p_{1}$, then $q_{1} \leq p_{1}<q_{2} \leq p_{2}$ and so $\mathcal{N}\left(B-q_{1}\right)=\mathcal{R}\left(Q\left(q_{1}\right)\right)=\mathcal{R}\left(Q\left(p_{1}\right)\right) \supseteq \mathcal{R}\left(P\left(p_{1}\right)\right)=\mathcal{N}\left(A-p_{1}\right)$ by Theorem C. $(\mathcal{R}(T)$ denotes the range of T.) Since $\mathcal{N}\left(B-q_{1}\right)$ and $\mathcal{N}\left(A-p_{1}\right)$ are not equal to (0) nor \mathbf{C}^{2}, we obtain $\mathcal{N}\left(B-q_{1}\right)=\mathcal{N}\left(A-p_{1}\right)$. Hence (ii) holds.

Conversely, suppose that (i) holds. Then $P(\lambda)=0 \leq Q(\lambda) \quad\left(0 \leq \lambda<p_{1}\right), P(\lambda) \leq I=$ $Q(\lambda) \quad\left(q_{2} \leq \lambda\right)$. Hence $P(\lambda) \leq Q(\lambda)$ for every $\lambda \geq 0$. By Theorem C, $A^{n} \geq B^{n}$ holds for every $n \in \mathbf{N}$.

Next suppose that (ii) holds. Since $\mathcal{R}\left(Q\left(q_{1}\right)\right)=\mathcal{N}\left(B-q_{1}\right)=\mathcal{N}\left(A-p_{1}\right)=\mathcal{R}\left(P\left(p_{1}\right)\right)$ holds, we obtain $P(\lambda)=0 \leq Q(\lambda) \quad\left(\lambda<p_{1}\right), P(\lambda)=Q(\lambda) \quad\left(p_{1} \leq \lambda<q_{2}\right)$ and $P(\lambda) \leq I=$ $Q(\lambda) \quad\left(q_{2} \leq \lambda\right)$. Hence $P(\lambda) \leq Q(\lambda)$ for every $\lambda \geq 0$. By Theorem C, $A^{n} \geq B^{n}$ holds for every $n \in \mathbf{N}$.

Remark. If the assertion (i) holds in the above Lemma 2.1, then $A \geq p_{1} I \geq q_{2} I \geq B$ holds. From this inequality, we can easily obtain the inequality $A^{n} \geq p_{1}^{n} I \geq q_{2}^{n} I \geq B^{n}$ for every $n \in \mathbf{N}$ without using Theorem C.

Now we give an example of an ∞-hyponormal operator for which the Aluthge transformation is not ∞-hyponormal.

Example 2.2 Let

$$
A_{1}=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

and set

$$
T=\left(\begin{array}{cccccc}
0 & & & & & \\
A_{1} & 0 & & & & \\
& A_{2} & 0 & & & \\
& & A_{2} & 0 & & \\
& & & A_{2} & 0 & \\
& & & & \ddots & \ddots
\end{array}\right)
$$

on $\bigoplus_{n=1}^{\infty} H_{n}$, where $H_{n}=\mathbf{C}^{2}$ for $n \in \mathbf{N}$.
First we show that T is ∞-hyponormal. A calculation yields

$$
\begin{aligned}
& |T|=\left(T^{*} T\right)^{\frac{1}{2}}=\left(\begin{array}{lllll}
A_{1} & & & & \\
& A_{2} & & & \\
& & A_{2} & & \\
& & & A_{2} & \\
& & & & \ddots
\end{array}\right), \\
& \left|T^{*}\right|=\left(T T^{*}\right)^{\frac{1}{2}}=\left(\begin{array}{lllll}
0 & & & & \\
& A_{1} & & & \\
& & A_{2} & & \\
& & & A_{2} & \\
& & & & \ddots
\end{array}\right) .
\end{aligned}
$$

The eigenvalues of A_{1} and A_{2} are 0,2 and 2,4, respectively. This implies $A_{1}^{n} \leq A_{2}^{n}$ for every $n \in \mathbf{N}$ because of Lemma 2.1 (i). Hence $|T|^{n} \geq\left|T^{*}\right|^{n}$ for any $n \in \mathbf{N}$, and so T is ∞-hyponormal.

Next we show that the Aluthge transformation \tilde{T} is not ∞-hyponormal. The polar decomposition of T is $T=V|T|$, where

$$
V=\left(\begin{array}{ccccc}
0 & & & & \\
I & 0 & & & \\
& I & 0 & & \\
& & I & 0 & \\
& & & \ddots & \ddots
\end{array}\right)
$$

By a calculation, we obtain

$$
\begin{gathered}
\tilde{T}^{*} \tilde{T}=\left(|T|^{\frac{1}{2}} V|T|^{\frac{1}{2}}\right)^{*}\left(|T|^{\frac{1}{2}} V|T|^{\frac{1}{2}}\right)=\left(\begin{array}{ccccc}
A_{1}^{\frac{1}{2}} A_{2} A_{1}^{\frac{1}{2}} & & & & \\
& & A_{2}^{2} & & \\
\\
& & A_{2}^{2} & & \\
& & & A_{2}^{2} & \\
& & & & \ddots
\end{array}\right), \\
\tilde{T} \tilde{T}^{*}=\left(|T|^{\frac{1}{2}} V|T|^{\frac{1}{2}}\right)\left(|T|^{\frac{1}{2}} V|T|^{\frac{1}{2}}\right)^{*}=\left(\begin{array}{cccccc}
0 & & & & \\
& A_{2}^{\frac{1}{2}} A_{1} A_{2}^{\frac{1}{2}} & & & \\
& & A_{2}^{2} & & \\
& & & A_{2}^{2} & \\
& & & & \ddots
\end{array}\right),
\end{gathered}
$$

Hence \tilde{T} is ∞-hyponormal if and only if $A_{2}^{2 n} \geq\left(A_{2}^{\frac{1}{2}} A_{1} A_{2}^{\frac{1}{2}}\right)^{n}$ holds for any $n \in \mathbf{N}$. A calculation yields

$$
\begin{gathered}
A_{2}^{2}=\left(\begin{array}{cc}
10 & 6 \\
6 & 10
\end{array}\right) \\
A_{2}^{\frac{1}{2}} A_{1} A_{2}^{\frac{1}{2}}=\left(\begin{array}{cc}
3+2 \sqrt{2} & 1 \\
1 & 3-2 \sqrt{2}
\end{array}\right)
\end{gathered}
$$

since

$$
A_{2}^{\frac{1}{2}}=\frac{1}{2}\left(\begin{array}{ll}
2+\sqrt{2} & 2-\sqrt{2} \\
2-\sqrt{2} & 2+\sqrt{2}
\end{array}\right)
$$

The eigenvalues of A_{2}^{2} and $A_{1}^{\frac{1}{2}} A_{2} A_{1}^{\frac{1}{2}}$ are 4,16 and 0,6 , respectively. Since

$$
\mathcal{N}\left(A_{2}^{2}-4\right)=\left\{t\binom{1}{-1} ; t \in \mathbf{C}\right\} \neq \mathcal{N}\left(A_{1}^{\frac{1}{2}} A_{2} A_{1}^{\frac{1}{2}}\right)=\left\{t\binom{-1}{3+2 \sqrt{2}} ; t \in \mathbf{C}\right\}
$$

there exists an $n \in \mathbf{N}$ such that $A_{2}^{n} \nsupseteq A_{1}^{\frac{1}{2}} A_{2} A_{1}^{\frac{1}{2}}$ by Lemma 2.1 (ii). Hence \tilde{T} is not ∞-hyponormal.

3 A sufficient condition for the generalized Aluthge transformations of ∞ hyponormal operators to be also ∞-hyponormal. We give a sufficient condition for the generalized Aluthge transformations of ∞-hyponormal operators to be also ∞ hyponormal.

Theorem 3.1 Let T be an ∞-hyponormal operator with the polar decomposition $T=U|T|$. If $|T|\left|T^{*}\right|=|T|\left|T^{*}\right|$ holds, then $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is ∞-hyponormal for every $s, t \geq 0$.

Proof. Let $T=U|T|$ be the polar decomposition of T, and let $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ be the generalized Aluthge transformation of T. If $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is ∞-hyponormal for any $s, t>0$, then $\left|\tilde{T}_{\frac{1}{k}, t}\right|^{p} \geq\left|\tilde{T}_{\frac{1}{k}, t}^{*}\right|^{p},\left|\tilde{T}_{s, \frac{1}{k}}\right|^{p} \geq\left|\tilde{T}_{s, \frac{1}{k}}^{*}\right|^{p}$ and $\left|\tilde{T}_{\frac{1}{k}, \frac{1}{k}}\right|^{p} \geq\left|\tilde{T}_{\frac{1}{k}, \frac{1}{k}}^{*}\right|^{p}$ for $k \in \mathbf{N}, p \geq 0$. By taking the limit as $k \rightarrow \infty$, we see that $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is also ∞-hyponormal for $s=0$ or $t=0$. Hence we may assume that $s, t>0$.

It is known that $U^{*} U$ and $U U^{*}$ are the orthogonal projection onto $\overline{\mathcal{R}(|T|)}=\overline{\mathcal{R}\left(|T|^{p}\right)}=$ $\mathcal{N}\left(|T|^{p}\right)^{\perp}$ and $\overline{\mathcal{R}(T)}=\mathcal{N}\left(T^{*}\right)^{\perp}=\mathcal{N}\left(\left|T^{*}\right|\right)^{\perp}=\mathcal{N}\left(\left|T^{*}\right|^{p}\right)^{\perp}$, respectively, and so $|T|^{p} U^{*} U=$ $|T|^{p},\left|T^{*}\right|^{p} U U^{*}=\left|T^{*}\right|^{p}$ and $U^{*} U|T|^{p}=|T|, U U^{*}\left|T^{*}\right|^{p}=\left|T^{*}\right|^{p}$ hold for any $p>0$. ($\overline{\mathcal{R}(T)}$ denotes the closure of the range of T.) Moreover it is also known that $\left|T^{*}\right|^{p}=U|T|^{p} U^{*}$ and $U^{*}\left|T^{*}\right|^{p} U=|T|^{p}$ hold for any $p>0$. Hence

$$
\begin{aligned}
\left|\tilde{T}_{s, t}\right|^{2} & =\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}=\left(|T|^{t} U^{*}|T|^{s}\right)\left(|T|^{s} U|T|^{t}\right)=\left(U^{*} U\right)|T|^{t} U^{*}|T|^{2 s} U|T|^{t}\left(U^{*} U\right) \\
& =U^{*}\left(U|T|^{t} U^{*}\right)|T|^{2 s}\left(U|T|^{t} U^{*}\right) U=U^{*}\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t} U
\end{aligned}
$$

and

$$
\left|\tilde{T}_{s, t}^{*}\right|^{2}=\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}=\left(|T|^{s} U|T|^{t}\right)\left(|T|^{t} U^{*}|T|^{s}\right)=|T|^{s}\left(U|T|^{2 t} U^{*}\right)|T|^{s}=|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}
$$

hold. From the commutativity of $|T|$ and $\left|T^{*}\right|$, we obtain

$$
\begin{aligned}
\left|\tilde{T}_{s, t}\right|^{2 n} & =U^{*}\left|T^{*}\right|{ }^{n t}|T|^{2 n s}\left|T^{*}\right|^{n t} U=U^{*}\left(\left|T^{*}\right|^{n t} U U^{*}\right)|T|^{2 n s}\left(U U^{*}\left|T^{*}\right|^{n t}\right) U \\
& =\left(U^{*}\left|T^{*}\right|^{n t} U\right) U^{*}|T|^{2 n s} U\left(U^{*}\left|T^{*}\right|^{n t} U\right)=|T|^{n t} U^{*}|T|^{2 n s} U|T|^{n t}
\end{aligned}
$$

and

$$
\left|\tilde{T}_{s, t}^{*}\right|^{2 n}=|T|^{n s}\left|T^{*}\right|^{2 n t}|T|^{n s}
$$

for any $n \in \mathbf{N}$. Hence $\tilde{T}_{s, t}$ is ∞-hyponormal if and only if

$$
|T|^{n t} U^{*}|T|^{2 n s} U|T|^{n t} \geq|T|^{n s}\left|T^{*}\right|^{2 n t}|T|^{n s}
$$

holds for any $n \in \mathbf{N}$. From the ∞-hyponormality of $T,|T|^{p} \geq\left|T^{*}\right|^{p}$ holds, and so $|T|^{p} \geq$ $U|T|^{p} U^{*}$ holds for any $p>0$. So we obtain $U^{*}|T|^{p} U \geq|T|^{p}$ for any $p>0$. Hence

$$
|T|^{n t} U^{*}|T|^{2 n s} U|T|^{n t} \geq|T|^{n t}|T|^{2 n s}|T|^{n t}=|T|^{n s}|T|^{2 n t}|T|^{n s} \geq|T|^{n s}\left|T^{*}\right|^{2 n t}|T|^{n s}
$$

holds for any $n \in \mathbf{N}$. Hence $\tilde{T}_{s, t}$ is ∞-hyponormal.
Next we give an example of an ∞-hyponormal operator T whose Aluthge transformation \tilde{T} is also ∞-hyponormal but $|T|\left|T^{*}\right| \neq\left|T^{*}\right||T|$.

In [11, p. 365] the authors constructed an ∞-hyponormal operator T satisfying $|T|\left|T^{*}\right| \neq$ $\left|T^{*}\right||T|$. To examine the ∞-hyponormality of the Aluthge transformation of T, we need to reconstruct T into some operator matrix which is unitarily equivalent to T. The operator T in the following Example 3.2 is such an operator matrix.

Example 3.2 Let $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ be a bounded increasing sequence of positive numbers with $\lambda_{0}=\lambda_{1}$ and $\lambda_{k}<\lambda_{k+1}$ for every $k \geq 1$, and let

$$
U_{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad A_{n}=\left(\begin{array}{cc}
\lambda_{n} & 0 \\
0 & \lambda_{n+1}
\end{array}\right)
$$

for $n \geq 0$ and set

$$
U=\left(\begin{array}{cccc|ccc}
\ddots & & & & & & \\
& & & & \\
& 0 & & & & & \\
& U_{0} & 0 & & & & \\
& & U_{0} & 0 & & & \\
\\
& & & U_{0} & 0 & & \\
& & & & U_{0} & 0 & \\
& & & & & U_{0} & 0 \\
& & & & & \ddots & \ddots
\end{array}\right)
$$

Matrices U, A are considered as bounded operators on $\bigoplus_{n=-\infty}^{\infty} H_{n}$, where $H_{n}=\mathbf{C}^{2}$ for every $n \in \mathbf{N}$.

Consider the operator $T=U A$. Then $T=U A$ is the polar decomposition of T since U is unitary and hence $T^{*} T=A U^{*} U A=A^{2}$. Note that $|T|=A,\left|T^{*}\right|=\left(T T^{*}\right)^{\frac{1}{2}}=$ $\left(U A^{2} U^{*}\right)^{\frac{1}{2}}=U A U^{*}$ hold. By a calculation, we obtain

$$
\left|T^{*}\right|=U A U^{*}=\left(\begin{array}{ccccc|cccc}
\ddots & & & & & & & \\
& B_{0} & & & & & & \\
& & B_{0} & & & & & & \\
& & & B_{0} & & & & \\
\hline & & & & B_{0} & & & & \\
& & & & B_{1} & & \\
& & & & & & B_{2} & \\
& & & & & & & \ddots
\end{array}\right),
$$

where

$$
B_{n}=U_{0} A_{n} U_{0}^{*}=\frac{1}{2}\left(\begin{array}{ll}
\lambda_{n}+\lambda_{n+1} & \lambda_{n}-\lambda_{n+1} \\
\lambda_{n}-\lambda_{n+1} & \lambda_{n}+\lambda_{n+1}
\end{array}\right)
$$

(Note that $\left.B_{0}=A_{0}.\right)$
First we show that T is ∞-hyponormal. A simple calculation yields

$$
\begin{gathered}
A_{n}^{k}=\left(\begin{array}{cc}
\lambda_{n}^{k} & 0 \\
0 & \lambda_{n+1}^{k}
\end{array}\right) \\
B_{n}^{k}=U_{0} A_{n}^{k} U_{0}^{*}=\frac{1}{2}\left(\begin{array}{cc}
\lambda_{n}^{k}+\lambda_{n+1}^{k} & \lambda_{n}^{k}-\lambda_{n+1}^{k} \\
\lambda_{n}^{k}-\lambda_{n+1}^{k} & \lambda_{n}^{k}+\lambda_{n+1}^{k}
\end{array}\right),
\end{gathered}
$$

and so

$$
A_{n+1}^{k}-B_{n}^{k}=\frac{1}{2}\left(\begin{array}{cc}
\lambda_{n+1}^{k}-\lambda_{n}^{k} & \lambda_{n+1}^{k}-\lambda_{n}^{k} \\
\lambda_{n+1}^{k}-\lambda_{n}^{k} & 2 \lambda_{n+2}^{k}-\lambda_{n+1}^{k}-\lambda_{n}^{k}
\end{array}\right) \geq 0
$$

for $n, k \geq 0$. The last assertion follows from $\operatorname{tr}\left(A_{n+1}^{k}-B_{n}^{k}\right)=\left(\lambda_{n+2}^{k}-\lambda_{n}^{k}\right) \geq 0$ and $\operatorname{det}\left(A_{n+1}^{k}-B_{n}^{k}\right)=\frac{1}{2}\left(\lambda_{n+2}^{k}-\lambda_{n+1}^{k}\right)\left(\lambda_{n+1}^{k}-\lambda_{n}^{k}\right) \geq 0$, where $\operatorname{tr}\left(A_{n+1}^{k}-B_{n}^{k}\right)$ and $\operatorname{det}\left(A_{n+1}^{k}-B_{n}^{k}\right)$ are the trace of $\left(A_{n+1}^{k}-B_{n}^{k}\right)$ and the determinant of $\left(A_{n+1}^{k}-B_{n}^{k}\right)$, respectively. Therefore $|T|^{k} \geq\left|T^{*}\right|^{k}$ holds for any $k \geq 0$, and hence T is ∞-hyponormal.

Next we show that $|T|\left|T^{*}\right| \neq\left|T^{*}\right||T|$. By a calculation, we obtain

$$
\begin{aligned}
A_{n+1} B_{n} & =\frac{1}{2}\left(\begin{array}{ll}
\lambda_{n+1}\left(\lambda_{n}+\lambda_{n+1}\right) & \lambda_{n+1}\left(\lambda_{n}-\lambda_{n+1}\right) \\
\lambda_{n+2}\left(\lambda_{n}-\lambda_{n+1}\right) & \lambda_{n+2}\left(\lambda_{n}+\lambda_{n+1}\right)
\end{array}\right), \\
B_{n} A_{n+1} & =\frac{1}{2}\left(\begin{array}{ll}
\lambda_{n+1}\left(\lambda_{n}+\lambda_{n+1}\right) & \lambda_{n+2}\left(\lambda_{n}-\lambda_{n+1}\right) \\
\lambda_{n+1}\left(\lambda_{n}-\lambda_{n+1}\right) & \lambda_{n+2}\left(\lambda_{n}+\lambda_{n+1}\right)
\end{array}\right) .
\end{aligned}
$$

From the assumption, $\lambda_{n+1} \neq \lambda_{n+2}, \lambda_{n+1}-\lambda_{n}>0$ and so $B_{n} A_{n+1} \neq A_{n+1} B_{n}$ hold for every $n \geq 1$. Hence $|T|\left|T^{*}\right| \neq\left|T^{*}\right||T|$ holds.

Finally we show that the Aluthge transformation \tilde{T} of T is also ∞-hyponormal. By a calculation, we obtain the following equalities for $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=A^{\frac{1}{2}} U A^{\frac{1}{2}}$.

where $C_{n}=A_{n}^{\frac{1}{2}} U_{0}^{*} A_{n+1} U_{0} A_{n}^{\frac{1}{2}}, D_{n}=A_{n}^{\frac{1}{2}} B_{n-1} A_{n}^{\frac{1}{2}}$ for $n \geq 0$ under the convention that $B_{-1}:=B_{0}=A_{0}$. Hence \tilde{T} is ∞-hyponormal if and only if $C_{n}^{k} \geq D_{n}^{k}$ for every $n, k \geq 0$. Let $p_{1}^{(n)}, p_{2}^{(n)}\left(p_{1}^{(n)} \leq p_{2}^{(n)}\right)$ be eigenvalues of $2 C_{n}$, and let $q_{1}^{(n)}, q_{2}^{(n)}\left(q_{1}^{(n)} \leq q_{2}^{(n)}\right)$ be eigenvalues of $2 D_{n}$. If $q_{2}^{(n)} \leq p_{1}^{(n)}$ holds for any $n \in \mathbf{N}$, then $\left(2 D_{n}\right)^{k} \leq\left(2 C_{n}\right)^{k}$ and so $D_{n}^{k} \leq C_{n}^{k}$ for every $k \geq 0$ by Lemma 2.1, and hence \tilde{T} is ∞-hyponormal. Therefore it suffices to show that $q_{2}^{(n)} \leq p_{1}^{(n)}$ holds for every $n \geq 0$.

By a calculation,

$$
C_{n}=\frac{1}{2}\left(\begin{array}{cc}
\lambda_{n}\left(\lambda_{n+1}+\lambda_{n+2}\right) & \sqrt{\lambda_{n} \lambda_{n+1}}\left(\lambda_{n+1}-\lambda_{n+2}\right) \\
\sqrt{\lambda_{n} \lambda_{n+1}}\left(\lambda_{n+1}-\lambda_{n+2}\right) & \lambda_{n+1}\left(\lambda_{n+1}+\lambda_{n+2}\right)
\end{array}\right)
$$

$$
\begin{gathered}
D_{0}=A_{0}^{\frac{1}{2}} A_{0} A_{0}^{\frac{1}{2}}=A_{0}^{2}, \\
D_{m}=\frac{1}{2}\left(\begin{array}{cc}
\lambda_{m}\left(\lambda_{m-1}+\lambda_{m}\right) & \sqrt{\lambda_{m} \lambda_{m+1}}\left(\lambda_{m-1}-\lambda_{m}\right) \\
\sqrt{\lambda_{m} \lambda_{m+1}}\left(\lambda_{m-1}-\lambda_{m}\right) & \lambda_{m+1}\left(\lambda_{m-1}+\lambda_{m}\right)
\end{array}\right)
\end{gathered}
$$

for $n \geq 0, m \geq 1$. Solving the characteristic equation of matrices $2 C_{0}, 2 D_{0}$, we obtain $q_{1}^{(0)}=q_{2}^{(0)}=p_{1}^{(0)}=2 \lambda_{1}^{2} \leq p_{2}^{(0)}=2 \lambda_{1} \lambda_{2}$. Next let us fix an arbitrary n with $n \geq 1$. Then

$$
\begin{gathered}
\operatorname{tr}\left(2 C_{n}\right)=\left(\lambda_{n}+\lambda_{n+1}\right)\left(\lambda_{n+1}+\lambda_{n+2}\right), \quad \operatorname{det}\left(2 C_{n}\right)=4 \lambda_{n} \lambda_{n+1}^{2} \lambda_{n+2} \\
\operatorname{tr}\left(2 D_{n}\right)=\left(\lambda_{n}+\lambda_{n+1}\right)\left(\lambda_{n-1}+\lambda_{n}\right), \quad \operatorname{det}\left(2 D_{n}\right)=4 \lambda_{n-1} \lambda_{n}^{2} \lambda_{n+1}
\end{gathered}
$$

and

$$
\begin{aligned}
& p_{1}^{(n)}=\frac{\operatorname{tr}\left(2 C_{n}\right)-\sqrt{\operatorname{tr}\left(2 C_{n}\right)^{2}-4 \operatorname{det}\left(2 C_{n}\right)}}{2} \\
& q_{2}^{(n)}=\frac{\operatorname{tr}\left(2 D_{n}\right)+\sqrt{\operatorname{tr}\left(2 D_{n}\right)^{2}-4 \operatorname{det}\left(2 D_{n}\right)}}{2}
\end{aligned}
$$

From these expressions and the fact that $\operatorname{tr}\left(2 C_{n}\right) \geq \operatorname{tr}\left(2 D_{n}\right)$, we can see that $q_{2}^{(n)} \leq p_{1}^{(n)}$ is equivalent to

$$
\left(\sqrt{\operatorname{tr}\left(2 D_{n}\right)^{2}-4 \operatorname{det}\left(2 D_{n}\right)}+\sqrt{\operatorname{tr}\left(2 C_{n}\right)^{2}-4 \operatorname{det}\left(2 C_{n}\right)}\right)^{2} \leq\left(\operatorname{tr}\left(2 C_{n}\right)-\operatorname{tr}\left(2 D_{n}\right)\right)^{2}
$$

So $q_{2}^{(n)} \leq p_{1}^{(n)}$ holds if and only if

$$
\begin{align*}
& 2 \sqrt{\operatorname{tr}\left(2 C_{n}\right)^{2}-4 \operatorname{det}\left(2 C_{n}\right)} \sqrt{\operatorname{tr}\left(2 D_{n}\right)^{2}-4 \operatorname{det}\left(2 D_{n}\right)} \tag{1}\\
\leq & \left(\operatorname{tr}\left(2 C_{n}\right)-\operatorname{tr}\left(2 D_{n}\right)\right)^{2}-\left(\operatorname{tr}\left(2 C_{n}\right)^{2}-4 \operatorname{det}\left(2 C_{n}\right)\right)-\left(\operatorname{tr}\left(2 D_{n}\right)^{2}-4 \operatorname{det}\left(2 D_{n}\right)\right) .
\end{align*}
$$

Hereafter, we denote the left-hand side and the right-hand side of (1) by (lhs) and (rhs), respectively. Moreover we introduce new variables a, x, y and z by setting

$$
\lambda_{n-1}=a, \quad \lambda_{n}=a+x, \quad \lambda_{n+1}=a+x+y, \quad \lambda_{n+2}=a+x+y+z .
$$

Since $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ is an increasing sequence of positive numbers, $a, x, y, z \geq 0$. By using new variables, we can rewrite (rhs) as
$($ rhs $)=16 a^{2} x y+32 a x^{2} y+16 x^{3} y+8 a^{2} y^{2}+36 a x y^{2}+28 x^{2} y^{2}+8 a y^{3}+12 x y^{3}+8 a^{2} x z+$ $16 a x^{2} z+8 x^{3} z+16 a^{2} y z+40 a x y z+24 x^{2} y z+12 a y^{2} z+14 x y^{2} z$,
which shows that (rhs) ≥ 0. Therefore $q_{2}^{(n)} \leq p_{1}^{(n)}$ holds if and only if $(\mathrm{lhs})^{2} \leq(\mathrm{rhs})^{2}$. By using new variables, we can write
$(\text { rhs })^{2}-(\mathrm{lhs})^{2}=192 a^{4} x^{2} y^{2}+768 a^{3} x^{3} y^{2}+1152 a^{2} x^{4} y^{2}+768 a x^{5} y^{2}+192 x^{6} y^{2}+256 a^{4} x y^{3}+$ $1472 a^{3} x^{2} y^{3}+2880 a^{2} x^{3} y^{3}+2368 a x^{4} y^{3}+704 x^{5} y^{3}+640 a^{3} x y^{4}+2240 a^{2} x^{2} y^{4}+2560 a x^{3} y^{4}+$ $960 x^{4} y^{4}+512 a^{2} x y^{5}+1088 a x^{2} y^{5}+576 x^{3} y^{5}+128 a x y^{6}+128 x^{2} y^{6}+256 a^{4} x^{2} y z+1024 a^{3} x^{3} y z+$ $1536 a^{2} x^{4} y z+1024 a x^{5} y z+256 x^{6} y z+640 a^{4} x y^{2} z+3072 a^{3} x^{2} y^{2} z+5376 a^{2} x^{3} y^{2} z+4096 a x^{4} y^{2} z+$ $1152 x^{5} y^{2} z+256 a^{4} y^{3} z+2304 a^{3} x y^{3} z+5696 a^{2} x^{2} y^{3} z+5504 a x^{3} y^{3} z+1856 x^{4} y^{3} z+384 a^{3} y^{4} z+$ $1984 a^{2} x y^{4} z+2880 a x^{2} y^{4} z+1280 x^{3} y^{4} z+128 a^{2} y^{5} z+448 a x y^{5} z+320 x^{2} y^{5} z+256 a^{4} x y z^{2}+$ $1024 a^{3} x^{2} y z^{2}+1536 a^{2} x^{3} y z^{2}+1024 a x^{4} y z^{2}+256 x^{5} y z^{2}+192 a^{4} y^{2} z^{2}+1280 a^{3} x y^{2} z^{2}+$ $2688 a^{2} x^{2} y^{2} z^{2}+2304 a x^{3} y^{2} z^{2}+704 x^{4} y^{2} z^{2}+320 a^{3} y^{3} z^{2}+1280 a^{2} x y^{3} z^{2}+1600 a x^{2} y^{3} z^{2}+$ $640 x^{3} y^{3} z^{2}+128 a^{2} y^{4} z^{2}+320 a x y^{4} z^{2}+192 x^{2} y^{4} z^{2}$.

Hence the inequality (lhs $)^{2} \leq(\text { rhs })^{2}$ holds and hence $q_{2}^{(n)} \leq p_{1}^{(n)}$ holds for every $n \geq 0$ and so \tilde{T} is ∞-hyponormal.

From the above Example 3.2, we see that the equality $|T|\left|T^{*}\right|=\left|T^{*}\right||T|$ is not necessary for the Aluthge transformation \tilde{T} of an ∞-hyponormal operator T to be ∞-hyponormal. Hence there remains the problem of finding a necessary and sufficient condition for the Aluthge transformation of an ∞-hyponormal operator to be also ∞-hyponormal.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory, 13 (1990), 307-315.
[2] S. L. Campbell, Linear operators for which $T^{*} T$ and $T T^{*}$ commute, Proc. Amer. Math. Soc., 34 (1972), 177-180.
[3] S. L. Campbell, Linear operators for which $T^{*} T$ and $T T^{*}$ commute (II), Pacific J. Math., 53 (1974), 355-361.
[4] M. Cho and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc., 123 (1995), 2435-2440.
[5] B. P. Duggal, On p-hyponormal contractions, Proc. Amer. Math. Soc., 123 (1995), 81-86.
[6] M. Fujii and Y. Nakatsu, On subclasses of hyponormal operators, Proc. Japan Acad., 51 (1975), 243-246.
[7] T. Furuta, Generalized Aluthge transformation on p-hyponormal operators, Proc. Amer. Math. Soc., 124 (1996), 3071-3075.
[8] T. Furuta and M. Yanagida, Further extensions of Aluthge transformation on p-hyponormal operators, Integral Equations Operator Theory, 29 (1997), 122-125.
[9] T. Huruya, A note on p-hyponormal operators, Proc. Amer. Math. Soc., 125 (1997), 36173624.
[10] C.-S. Lin, Unifying approach to the study of p-hyponormal operators, Math. Inequal. Appl., 2 (1999), 579-584.
[11] S. Miyajima and I. Saito, ∞-hyponormal operators and their spectral properties, Acta Sci. Math. (Szeged), 67 (2001), 357-371.
[12] S. Miyajima and I. Saito, A remark on the spectra of ∞-hyponormal operators, Acta Sci. Math. (Szeged), 69 (2003), 863-869.
[13] M. H. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc., 188 (1974), 419-428.
[14] T. Yoshino, The p-hyponormality of Aluthge transform, Interdiscip. Inform. Sci., 3 (1997), 91-93.

Shizuo MIYAJIMA
Department of Mathematics
Faculty of Science
Science University of Tokyo
Wakamiya-cho 26, Shinjuku-ku
Tokyo, 162 Japan
e-mail: miyajima@rs.kagu.sut.ac.jp
Isao SAITO
Department of Mathematics
Faculty of Science
Science University of Tokyo
Wakamiya-cho 26, Shinjuku-ku
Tokyo, 162 Japan
e-mail: saitoi@rs.kagu.sut.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47B20, 47A10.
 Key words and phrases. p-hyponormal operator, ∞-hyponormal operator, Aluthge transformation.

