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ON THE ALUTHGE TRANSFORMATIONS OF co-HYPONORMAL
OPERATORS
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ABSTRACT. A bounded linear operator T is called co-hyponormal if T is p-hyponormal
for every p > 0. In this paper oco-hyponormality of the Aluthge transformations
of oo-hyponormal operators is investigated. It is shown that the Aluthge transfor-
mation of an co-hyponormal operator is not necessarily oo-hyponormal. It is also
shown that the (generalized) Aluthge transformation of an oco-hyponormal operator
T is oo-hyponormal provided |T||T*| = |T*||T|. Moreover we give an example of
an oo-hyponormal operator T" whose Aluthge transformation T is oo-hyponormal but
(T[T # |77,

1 Introduction A bounded linear operator T' on a Hilbert space is called p-hyponormal
if (T*T)? > (TT*)P (p > 0). (The notion of p-hyponormal operators for p € N was intro-
duced first by Fujii and Nakatsu[6]. A 1-hyponormal operator is nothing but a hyponormal
operator.) Concerning p-hyponormal operators, many interesting results have been obtained
(e.g., [1], [4], [5], [7]-[10], [14]). The unilateral shift is a simple example being p-hyponormal
for every p > 0. In the hope of getting fruitful results, the authors [11], [12] investigated
operators that are p-hyponormal for every p > 0 and they called them co-hyponormal. Let
us recall the definition of co-hyponormal operators.

Definition. A bounded linear operator T on a Hilbert space is called co-hyponormal if
it is p-hyponormal for every p > 0. By the Lowner-Heinz theorem, T is co-hyponormal if
and only if (T*T)™ > (TT*)" for every n € N, or [T'|" > |T*|" for every n € N.

Concerning oo-hyponormal operators, the authors [11], [12] proved that the outer bound-
ary of the spectrum of a pure co-hyponormal operator is the circle with the radius ||T],
and showed the existence of non-trivial invariant subspaces for any co-hyponormal operator.
(Recall that an operator T is said to be pure if 7" has no reducing subspace on which it is
normal.) For other facts(e.g., algebraic properties of the set of co-hyponormal operators),
see [11].

On the other hand, Aluthge[1] introduced the operator T = |T|2U|T|2 for a p-hypo-
normal operator T, where T = U|T| is the polar decomposition of 7. Further Furutal[7]
introduced the operator Tsﬂg = |T|*U|T|* for a p-hyponormal operator T and s,t > 0.
The operators T' = |T|2U|T|z and Ty = |T|°U|T|* are called the Aluthge transformation
and the generalized Aluthge transformation of T', respectively. These operators have nice
properties as follows.

Theorem A[l]. For a p-hyponormal (0 < p < 1) operator with the polar decomposition
T = U|T|, Aluthge transformation T = |T|2U|T|2 of T is min{p + 3. 1}-hyponormal.
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Theorem B8], [9], [14]. Let T be a p-hyponormal (0 < p < 1) operator with the polar
decomposition T = U|T|. Then the following assertions hold.

(1) If 5,t > 0, max{s, t} > p hold, then T,, = |T|°U|T|* is %ﬁ‘t{s’t}—hyponormal.

(2) If s,t > 0, max{s,t} < p hold, then T, = |T|*U|T|" is hyponormal.

Roughly speaking, these theorems say that the Aluthge transformations or generalized
Aluthge transformations “improve” the degree of hyponormality, although restricted in the
range of 0 < p < 1. So, it is natural to ask whether the Aluthge transformations of
oo-hyponormal operators preserve the co-hyponormality or not.

In section 2, we answer the question in the negative by giving an example of an oo-
hyponormal operator for which the Aluthge transformation is not co-hyponormal.

However, for many oo-hyponormal operators (e.g., the unilateral shift, a unilateral
weighted shift operator with increasing weight sequence, a bilateral weighted shift operator
with increasing weight sequence and a quasinormal operator), their Aluthge transforma-
tions are also co-hyponormal. The common properties of these co-hyponormal operators
T are that T is hyponormal and |T'||T*| = |T*||T|. (In [2], [3] and [6], operators satisfying
|T'||T*| = |T*||T| were investigated and many interesting results were obtained. Especially
Fujii and Nakatsu[6] noted that a hyponormal operator T satisfying |T||T*| = |T*||T] is
oo-hyponormal.)

In section 3, we first show that the Aluthge transformation 7 = |T|2U|T|2 and more
generally the generalized Aluthge transformation TS,t = |T|*U|T|* of an co-hyponormal
operator T are also oo-hyponormal provided |T||T*| = |T*||T|. Next we show that the
equality |T'| |T*| = |T*| |T| is not a necessary condition for the Aluthge transformation T of
an oo-hyponormal operator T' to be co-hyponormal.

2 Example of an co-hyponormal operator whose Aluthge transformation is not
oco-hyponormal We show that the Aluthge transformations of co-hyponormal operators
are not necessarily oo-hyponormal by giving an example. To do so, we need the following
lemma, where 2 X 2 matrices are considered as bounded linear operators on the Hilbert
space C2.

Lemma 2.1 Let A and B are positive 2 x 2 matrices and let p1,p2 (p1 < p2) and q1,q2 (1 <
q2) be eigenvalues of A and B, respectively.

Then A™ > B™ holds for alln € N if and only if the following assertion (i) or (ii) holds.

(i) 1 <q2<p1<p2

(1) g1 <p1<qe<ps and N(B—q) =N(A—p1) hold, where N(T) is the null space
of T.

To prove this lemma, we use the following theorem[13]. For a proof, see [11], [13].

Theorem C [13]. Let A, B be positive operators on a Hilbert space with spectral resolu-
tions A = [ AdP(\), B = [ AdQ(\), respectively. Then A™ > B™ holds for every n € N if
and only if P(X\) < Q()\) holds for every A > 0.

Now we give a proof of Lemma 2.1.

Proof of Lemma 2.1.  Suppose that A™ > B™ holds for every n € N. First we show
that g1 < p1 and g2 < pa. Suppose that ¢; > p1 or gz > ps holds. Then Q(p1) =0 < P(p1)
or Q(p2) < I = P(p2), where A = [AdP()\), B = [ AdQ(X) are spectral resolutions,
respectively. (Q(A) < P(A) means Q(A) < P(A) and Q(A) # P(X).) This contradicts
Theorem C. Hence ¢; < p; and g2 < po hold.
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If q2 < Pi1, then (

i) 1 < g2 < p1 < p2holds. If g2 > p1, then ¢1 < p1 < g2 < p2 and
so N(B —q1) = R(Q( R(Q(p
T.

@) = R(Q(p1)) 2 R(P(p1)) = N(A — py) by Theorem C. (R(T)
denotes the range of T.) Since N (B — q;) and N'(A — p1) are not equal to (0) nor C?, we
obtain N (B — ¢1) = N (A — p1). Hence (ii) holds.

Conversely, suppose that (i) holds. Then P(A\) =0 < Q(A) (0 <A< py1), P\N\) <I=
Q(A) (g2 < A). Hence P(\) < Q(A) for every A > 0. By Theorem C, A™ > B™ holds for
every n € N.

Next suppose that (ii) holds. Since R(Q(q1)) = N(B — ¢1) = N(A — p1) = R(P(p1))
holds, we obtain P(A\) =0< Q(A) (A <p1), PA)=Q(\) (p1 <A< q)and P\N\) <I=
Q(A) (g2 < A). Hence P(A\) < Q(A) for every A > 0. By Theorem C, A™ > B™ holds for
every n € N. O

Remark. If the assertion (i) holds in the above Lemma 2.1, then A > p;I > ¢ > B
holds. From this inequality, we can easily obtain the inequality A™ > p{'I > ¢41 > B" for
every n € N without using Theorem C.

Now we give an example of an co-hyponormal operator for which the Aluthge transfor-
mation is not co-hyponormal.

2 0 3 1
A1_<0 0)7A2_(1 3)7

Example 2.2 Let

and set

on @, H,, where H,, = C? for n € N.
First we show that T is co-hyponormal. A calculation yields

Ay
As

*m) = A
T =(T*T)2 = 2
T = (T"T) 4,

Aq

T* — (TT*)3 — Ay
T = (TT") A

The eigenvalues of A; and Az are 0,2 and 2,4, respectively. This implies A} < AL for
every n € N because of Lemma 2.1 (i). Hence |T'|* > |T™|" for any n € N, and so T is
oo-hyponormal.
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Next we show that the Aluthge transformation T is not co-hyponormal. The polar
decomposition of T is T'= V|T|, where

0
I 0
V= I 0
I 0
By a calculation, we obtain
1 1
AZ Ay A?
A3
sk A 1 L« 1 1 2
T°T = (IT|2VIT|2)*(IT|2VIT|?) = A3 :
A3
0
1 1
AZA A2
TT* = (|TIZVIT|2)(|TI2V|T|?)" = 4
AQ

Hence T is oo-hyponormal if and only if A > (AQ%AlAQ% )™ holds for any n € N. A

calculation yields
o (10 6
A2 = ( 6 10 )’

3+2v2 1 )

A;A1A3=< s as

since

A

DN ol

2\ 2-V2 242

1 1
The eigenvalues of A3 and A7 A3 A} are 4,16 and 0, 6, respectively. Since

N(A§—4)={t< _11 );teC};ﬁN(A%AgA%)z{t( 3+_21\/§ >;t€C},

1 1 ~
there exists an n € N such that A} ? A2 A;A} by Lemma 2.1 (ii). Hence T is not
oo-hyponormal.

1<2+\/§ 2—\/5).

3 A sufficient condition for the generalized Aluthge transformations of oc-
hyponormal operators to be also co-hyponormal. We give a sufficient condition
for the generalized Aluthge transformations of co-hyponormal operators to be also oco-
hyponormal.

Theorem 3.1 Let T' be an co-hyponormal operator with the polar decomposition T = U|T]|.
If IT||T*| = |T||T*| holds, then Ts; = |T|*U|T|* is co-hyponormal for every s,t > 0.
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Proof. Let T = U|T| be the polar decomposition of T, and let Ty ; = |T|*U|T|* be
the generalized Aluthge transformation of 7. If T ; = |T|*U|T|" is co-hyponormal for any
s,t > 0, then |T%_t|p > T3 1P, |7 %|p > |T*,|P and |T% %|p > |T5 . |P for ke N, p > 0.

By taking the limit as k — oo, we see that Ty ; = |T|*U|T|* is also co-hyponormal for s = 0
or t = 0. Hence we may assume that s,t > 0.

It is known that U*U and UU* are the orthogonal projection onto R(|T|) = R(|T|P) =
N(IT|P)* and R(T) = N(T*)*: = N(|T*|)* = N(|T*P)*, respectively, and so |T|PU*U =
|TP, [T*|PUU* = |T*|P and U*U|T|P = |T|, UU*|T*|P = |T*|P hold for any p > 0. (R(T)
denotes the closure of the range of T'.) Moreover it is also known that |7*? = U|T|PU* and
U*|T*|PU = |T'? hold for any p > 0. Hence

|Ts,t|2

T2 Toe = (ITI'UMTP)(TIPUIT|") = (U*U)ITI'U*|T U T (U V)
US(UIT|'UN)|TP*(UIT|'U*)U = U*|T*["|T**|T*|'U

and
T* 2 _ m T*_ TSUTt TtU*TS_TSUTQtU* TS_TST*QtTS
1517 = Toa T, = (ITPUIT)(ITIUSTP) = [TIP(UIT]TU)|T) = TP 1T 7|7

hold. From the commutativity of |T'| and |T*|, we obtain

|Ts7t|2n U*|T*|nt|T|2ne|T*|ntU — U*(|T* |ntUU*)‘T|2n9(UU*|T*|nt)U

— (U*|T*|ntU)U* |T|2nsU(U*|T*|ntU) _ |T|ntU*|T|2nsU|T|nt

and
(T3P = [T T 2T

for any n € N. Hence Tsﬂg is oo-hyponormal if and only if
|T|ntU*|T|2nsU|T|nt 2 |T|ns|T*|2nt|T|ns

holds for any n € N. From the oo-hyponormality of T, |T'|? > |T™*|P holds, and so |T'|? >
U|T|PU* holds for any p > 0. So we obtain U*|T'|PU > |T'|P for any p > 0. Hence

|T|ntU*|T|2nsU|T|nt 2 |T|nt|T|2ns|T|nt —_ |T|ns|T|2nt|T|ns Z |T|ns|T*|2nt|T|ns
holds for any n € N. Hence Ts,t is oo-hyponormal. O

Next we give an example of an co-hyponormal operator T° whose Aluthge transformation
T is also co-hyponormal but |T'||T*| # |T*||T).

In [11, p. 365] the authors constructed an co-hyponormal operator T satisfying |T'||T%*| #
|T*||T|. To examine the co-hyponormality of the Aluthge transformation of 7', we need to
reconstruct 7' into some operator matrix which is unitarily equivalent to T'. The operator
T in the following Example 3.2 is such an operator matrix.

Example 3.2 Let {\,}72, be a bounded increasing sequence of positive numbers with
Ao = A1 and Ag < Agy1 for every k > 1, and let

1 /1 1 A O
=g (1) (0
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for n > 0 and set

0
Uy O
_ Uy 0
U= Ug| O ’
Uy 0
Uy O
Ao
Ao
_ Ao
A= e
A
As
Matrices U, A are considered as bounded operators on @20:_00 H,,, where H, = C? for

every n € N.

Consider the operator T'= UA. Then T' = UA is the polar decomposition of T' since
U is unitary and hence T*T = AU*UA = A2. Note that |T| = A, |T*| = (TT*)? =
(UAgU*)% = UAU* hold. By a calculation, we obtain

By
Bo

T = UAU* = Bo

By ’
By
By

where

RTINS ¥ (P VP WRRP I
Bn = UOA’I’LUO - 2 ( An — )\n+1 An + )\n—l-l .

(Note that B() = AQ)
First we show that T is oco-hyponormal. A simple calculation yields

Ak 0
e 4,)
0 M

Bf—f:UoAﬁUo*:%( Xo+Arr A=A ),

YU R LIREED WD W



ON THE ALUTHGE TRANSFORMATIONS OF co-HYPONORMAL OPERATORS 61

and so

1/ Ne . —\F Ao \E
k _ k _ - n+1 n n+1 n
Anpr = Bn=5 < Aok ok e ) 20

n

for n,k > 0 The last assertion follows from tr(A%, , — B¥) = (A, — AF) > 0 and
det(A’;LJr1 k) = %( n+2 )\n+1)()\n+1 AEY >0, where tr(AfLJr1 —BF) and det(A*__, — BF)
are the trace of (A¥,; — BF) and the determinant of (4%, — BF), respectively. Therefore
|T|k > |T*|* holds for any k > 0, and hence T is co-hyponormal.

Next we show that |T'||T*| # |T*||T|. By a calculation, we obtain

A B — 10 M1+ Anv1) Anr1(An = Any)
ntlPn 2 /\n+2(An - )\n—l-l) An—i-Q(An + )\n+1) ’

B, A — 1 )‘TLJrl()‘n + )\nJrl) )\n+2()\n - )\nJrl)
néintl 2 An—i—l(An - )\n—l-l) An—i-Q(An + )\n+1) ’

From the assumption, Ap+1 7# Ant2, Ant1 — Ap > 0 and so By A, 11 # Apy1 B, hold for
every n > 1. Hence |T||T*| # |T*||T| holds.

Finally we show that the Aluthge transformation 7" of T is also oo-hyponormal. By a
calculation, we obtain the following equalities for T = |T|2U|T|z = ATU Az.

A2 )
Aj
Co

Ch
Cs
Cs

TT* = ASUAU* A% = A3|T*|A? = :
D,

D,
D3

where C,, = AonAnHUoAn, D, = Aan 1Al for n > 0 under the convention that
B_1:= By = Ay. Hence T is co-hyponormal if and only if CX > D¥ for every n,k > 0. Let
p§”>,p§”> (p(") < p ")) be eigenvalues of 2C,, and let qQ ),qén) (qy () < q2 )) be cigenvalues
of 2D,,. If qé") < pgn) holds for any n € N, then (2D,)* < (2C,)* and so Df < CF for
every k > 0 by Lemma 2.1, and hence T is co-hyponormal. Therefore it suffices to show
that ¢{" < p{™ holds for every n > 0.

By a calculation,

C. - 1 ( /\n(/\n+1 + )\n+2) vV )\n)‘n+1()‘n+1 - /\n+2) )
" \Y4 )\nAn+1(An+1 - )\n+2) )\n+1(An+1 + An+2) ’
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Do = AZ AgAZ = A2,

D _ 1 < Am(Am—l + Am) \Y4 )\m)\m+1(Am—1 - Am) )
" 2 \V Am)\rn+1()\rn—1 - )\m) )\m+1()\m—1 + )\m)

for n > 0,m > 1. Solving the characteristic equation of matrices 2Cy, 2Dy, we obtain
q%o) = qéo) = p§°) =2\ < pgo) = 2X1 2. Next let us fix an arbitrary n with n > 1. Then

tr(ZC’n) = (/\n + )\n+1)()\n+1 + )\n+2), det(QCn) = 4)\n)\121+1)\n+27
tr(2D,) = An + Mg 1) A1 + An), det(2D,,) = 4X, 1 A2\

and
(n) tr(2C,) — \/tr(QCn)Q — 4det(2C,,)
b = 2 )
o = tr(2D,,) + /tr(2D,,)? — 4det(2D,,)
2 - 2 °

From these expressions and the fact that tr(2C,,) > tr(2D,), we can see that ¢\ < p{™ is
equivalent to

(\/tr(2Dn)2 — 4det(2D,,) + /tr(2C,)2 — 4det(2Cn))2 < (tr(2C) — tr(2D,))? .

So qzn) < p§") holds if and only if

(1) 2¢/tr(2C,)2 — 4det(2C,,)\/tr(2D,,)% — 4det(2D,,)
< (tr(2Cy) — t1(2Dy))? — (t1(2C,)? — 4det(2C,)) — (tr(2D,)? — 4 det(2Dy,)) -

Hereafter, we denote the left-hand side and the right-hand side of (1) by (lhs) and (rhs),
respectively. Moreover we introduce new variables a,z,y and z by setting

An—1=a, \p=a+2x, Mp1=a+x+y, Ajo=a+z+y+z

Since {\,}22, is an increasing sequence of positive numbers, a,z,y,z > 0. By using new
variables, we can rewrite (rhs) as

(ths) = 16a2zy + 32ax?y + 1623y + 8a?y? + 36axy? + 28x%y? + 8ay® + 12zy3 + 8a’xz +
16ax?z + 8232 4 16a’yz + 40azyz + 24x2yz + 12ay?z + 14xy?z,

which shows that (rhs) > 0. Therefore qé") < pgn) holds if and only if (Ihs)® < (rhs)®. By
using new variables, we can write

(rhs)? — (Ihs)? = 192a*22y2 +768a323y% + 11520224y + 768ax5y2 + 1922592 4+ 256awy3 +
14720322y + 2880a%x3y3 4 2368azxty® + 70425y> + 640a3xy* + 2240a2x2y* + 2560ax3y* +
960z4y* +512a%xy® 4 1088axy® +57623y° +128axy’ + 12822y5 4 256a* 22y 2 +1024a3x3y 2 +
1536a2x*yz+1024ax°y 2425625y 246400y 2 +3072a32%y? 2+ 5376223 y% 2 +4096axy? 2+
115225y 2 + 256a*y> 2 + 2304a3xy> 2 + 5696a22%y3 2 + 5504ax3y3 2 + 1856243 2 + 384a3y* 2 +
1984a%xy*z + 2880axy*z + 128023y* 2 + 12842y’ 2 + 448axy®z + 320x%y° 2 + 256a*zy2? +
1024a322y2? + 1536a%x3y2? + 1024axyz? + 256x°yz? + 192a*y?22 + 1280a3ry?22 +
2688a%x%y? 2% + 2304ax3y?2? + T04x%y%2? 4 320a3y32? + 1280a’ry>2? 4+ 1600ax?y322 +
64023y3 2% + 128ay*2? + 320axy?2? + 1922%y* 22

Hence the inequality (lhs)2 < (rhs)2 holds and hence qé") < p&") holds for every n > 0 and
so T' is co-hyponormal.
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From the above Example 3.2, we see that the equality |T||T| = [T*||T| is not necessary
the Aluthge transformation T' of an oco-hyponormal operator T' to be co-hyponormal.

Hence there remains the problem of finding a necessary and sufficient condition for the
Aluthge transformation of an co-hyponormal operator to be also co-hyponormal.
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