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DISTRIBUTIONS OF THE PRODUCT AND THE QUOTIENT OF
INDEPENDENT KUMMER-BETA VARIABLES

Daya K. Nagar and Edwin Zarrazola

Received April 6, 2004

Abstract. The univariate Kummer-beta family of distributions has been proposed
and studied recently by K. W. Ng and Samuel Kotz. This distribution is an univariate
extension of the beta distribution. In this article, we derive the distributions of the
product and the quotient of independent Kummer-beta variables.

1 Introduction. The beta type I random variable is often used for representing pro-
cesses with natural lower and upper bounds. For examples, refer to Hahn and Shapiro [4].
Indeed, due to a rich variety of its density shapes, the beta distribution plays a vital role
in statistical modeling. The beta distribution is useful for modeling random probabilities
and proportions, particularly in the context of Bayesian analysis. Varying within (0, 1) the
standard beta is usually taken as the prior distribution for the proportion p and forms a
conjugate family within the beta prior-Bernoulli sampling scheme. Applications of the den-
sities of the ratio and the product of independent beta variates in the field of stress-strength
analysis and availability can be found in Pham-Gia [11]. A natural univariate extension
of the beta distribution is the Kummer-beta distribution defined by the density function
(Gupta, Cardeño and Nagar [2], Gordy [1], Nagar and Gupta [9] and Ng and Kotz [10]),

f(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1 exp (−λx)
1F1(α;α + β;−λ)

, 0 < x < 1,(1.1)

where α, β > 0, −∞ < λ < ∞ and 1F1 is the confluent hypergeometric function. The
Kummer-beta distribution can be seen as bimodal extension of the beta distribution (on
a finite interval) and thus can help to describe real world phenomena possessing bimodal
characteristics and varying within two finite limits. The Kummer-beta distribution is used in
common value auctions where posterior distribution of “value of a single good” is Kummer-
beta (Gordy [1]). Several generalizations and properties of the beta distribution are given
in Javier and Gupta [5], McDonald and Xu [8] and Johnson, Kotz and Balakrishnana [6].

In this article, we will derive distributions of the product and the ratio of two independent
random variables when at least one of them is Kummer-beta.

2 Some Definitions. In this section we will give definitions and results that will be used
in the subsequent sections. The generalized hypergeometric functions of one and several
variables will be used to derive the density functions of the product and the ratio of the
random variables. Throughout this work we will use the Pochammer symbol (a)n defined
by (a)n = a(a + 1) · · · (a + n − 1) = (a)n−1(a + n − 1) for n = 1, 2, . . . , and (a)0 = 1.
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The generalized hypergeometric function of scalar argument is defined by

pFq (a1, . . . , ap; b1, . . . , bq; z) =
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
,(2.1)

where ai, i = 1, . . . , p; bj, j = 1, . . . , q are complex numbers with suitable restrictions and
z is a complex variable. Conditions for the convergence of the series in (2.1) are available in
the literature, see Luke [7]. From (2.1) it is easy to see that 0F0(x) =

∑∞
k=0

xk

k! = exp(x),

1F0(a;x) =
∑∞

k=0(a)k
xk

k! = (1−x)−a, |x| < 1, and 1F1(a; b; x) =
∑∞

k=0
(a)k

(b)k

xk

k! . The integral
representations of the confluent hypergeometric function and the Gauss hypergeometric
function are given as

1F1(a; c; z) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

ta−1(1 − t)c−a−1 exp(zt) dt(2.2)

and

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

ta−1(1 − t)c−a−1(1 − zt)−b dt(2.3)

respectively, where Re(a) > 0 and Re(c − a) > 0. By changing t to 1 − t in (2.2) it is easy
to see that

1F1(a; c; z) = exp(z) 1F1(c − a; c;−z).(2.4)

The Humbert’s confluent hypergeometric function Φ1 is defined by

Φ1[a, b; c; z1, z2] =
∞∑

j1=0

∞∑
j2=0

(a)j1+j2(b)j1

(c)j1+j2

zj1
1 zj2

2

j1! j2!
, |z1| < 1, |z2| < ∞.(2.5)

It is straightforward to show that

Φ1[a, b; c; z1, z2] =
∞∑

j1=0

(a)j1(b)j1

(c)j1

zj1
1

j1!
1F1(a + j1; c + j1; z2)(2.6)

=
∞∑

j2=0

(a)j2

(c)j2

zj2
2

j2!
2F1(a + j2, b; c + j2; z1).

Using the results

(a)j1+j2

(c)j1+j2

=
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

va+j1+j2−1(1 − v)c−a−1 dv, Re(a, c − a) > 0,

for j1, j2 = 0, 1, 2, . . . , and

∞∑
j1=0

(b)j1(vz1)j1

j1!
= 1F0(b; vz1) = (1 − vz1)−b, |vz1| < 1,

∞∑
j2=0

(vz2)j2

j2!
= 0F0(−; vz2) = exp(vz2)
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in (2.5), one obtains

Φ1[a, b; c; z1, z2] =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

va−1(1 − v)c−a−1(1 − vz1)−b exp(vz2) dv(2.7)

where |z1| < 1 and |z2| < ∞. For further results and properties of this function the reader
is referred to Srivastava and Karlsson [12].

Finally, we define the gamma, the beta type I and the beta type II distributions. These
definitions can be found in any text in mathematical statistics. First we re-define Kummer-
beta distribution in a form convenient to use in the derivations of the densities of products
and ratios.

Definition 2.1 A random variable X is said to have a Kummer-beta distribution, denoted
by X ∼ KB(α, β, λ), if its p.d.f. is given by

f(x) =
xα−1(1 − x)β−1 exp [λ(1 − x)]

B(α, β)1F1(β; α + β; λ)
, 0 < x < 1,(2.8)

where α > 0, β > 0, −∞ < λ < ∞ and

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

.(2.9)

Definition 2.2 A random variable X is said to have a gamma distribution with parameters
θ (> 0), κ (> 0), denoted by X ∼ Ga(θ, κ), if its p.d.f. is given by

{θκΓ(κ)}−1
xκ−1 exp

(
−x

θ

)
, x > 0.(2.10)

Definition 2.3 A random variable X is said to have a beta type I distribution with param-
eters (a, b), a > 0, b > 0, denoted as X ∼ BI(a, b), if its p.d.f. is given by

{B(a, b)}−1xa−1(1 − x)b−1, 0 < x < 1.

Definition 2.4 A random variable X is said to have a beta type II distribution with pa-
rameters (a, b), denoted as X ∼ BII(a, b), a > 0, b > 0, if its p.d.f. is given by

{B(a, b)}−1xa−1(1 + x)−(a+b), x > 0.

The matrix variate generalizations of the gamma, the beta type I and the beta type II
distributions have been defined and studied extensively. For example, see Gupta and Na-
gar [3].

3 Distribution of The Product. In this section we obtain distributional results for
the product of two independent random variables involving Kummer-beta distribution.

Theorem 3.1 Let X1 and X2 be independent, Xi ∼ KB(αi, βi, λi), i = 1, 2. Then, the
p.d.f of Z = X1X2 is given by

zα1−1(1 − z)β1+β2−1∏2
i=1{B(αi, βi) 1F1(βi; αi + βi; λi)}

∞∑
r=0

λr
1(1 − z)r

r!
B(β1 + r, β2)

×Φ1[β2, α1 + β1 − α2 + r; β1 + β2 + r; 1 − z, λ2(1 − z)], 0 < z < 1.
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Proof: Using the independence, the joint p.d.f. of X1 and X2 is given by

K1x
α1−1
1 (1 − x1)β1−1xα2−1

2 (1 − x2)β2−1 exp[λ1(1 − x1) + λ2(1 − x2)](3.1)

where

K1 =
2∏

i=1

{B(αi, βi) 1F1(βi; αi + βi; λi)}−1
.

Transforming Z = X1X2, X2 = X2 with the Jacobian J(x1, x2 → z, x2) = 1/x2 we obtain
the joint p.d.f. of Z and X2 as

K1z
α1−1xα2−α1−β1

2 (1 − x2)β2−1(x2 − z)β1−1 exp
[
λ1

(
1 − z

x2

)
+ λ2(1 − x2)

]
,(3.2)

where 0 < z < x2 < 1. To find the marginal p.d.f. of Z, we integrate (3.2) with respect to
x2 to get

K1z
α1−1

∫ 1

z

xα2−α1−β1
2 (1 − x2)β2−1(x2 − z)β1−1(3.3)

× exp
[
λ1

(
1 − z

x2

)
+ λ2(1 − x2)

]
dx2.

In (3.3) change of variable w = (1 − x2)/(1 − z) yields

K1z
α1−1(1 − z)β1+β2−1

∫ 1

0

wβ2−1(1 − w)β1−1[1 − (1 − z)w]α2−α1−β1(3.4)

× exp
{

λ1
(1 − w)(1 − z)
1 − w(1 − z)

+ λ2w(1 − z)
}

dw.

Now, expanding exp [λ1(1 − w)(1 − z)/{1− w(1 − z)}] in the integral (3.4) in terms of
power series we arrive at

K1z
α1−1(1 − z)β1+β2−1

∞∑
r=0

λr
1(1 − z)r

r!

×
∫ 1

0

wβ2−1(1 − w)β1+r−1[1 − (1 − z)w]−(α1+β1+r−α2) exp[λ2w(1 − z)] dw.

Finally, applying (2.7) and substituting for K1 we obtain the desired result.

Corollary 3.1.1 Let X1 and X2 be independent random variables, X1 ∼ BI(α1, β1) and
X2 ∼ KB(α2, β2, λ). Then, the p.d.f. of Z = X1X2 is

B(β2, β1)zα1−1(1 − z)β1+β2−1

B(α1, β1)B(α2, β2) 1F1(β2; α2 + β2; λ)
Φ1[β2, α1 + β1 − α2; β1 + β2; 1 − z, λ(1 − z)],

where 0 < z < 1. Further, if α2 = α1 + β1, then the p.d.f. of Z = X1X2 is given by

Γ(α1 + β1 + β2)zα1−1(1 − z)β1+β2−1

Γ(α1)Γ(β1 + β2) 1F1(β2; α1 + β1 + β2; λ) 1F1(β2; β1 + β2; λ(1 − z)), 0 < z < 1.
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Corollary 3.1.2 Let X1 and X2 be independent random variables, Xi ∼ BI(αi, βi), i =
1, 2, then the p.d.f. of Z = X1X2 is

Γ(α1 + β1)Γ(α2 + β2)
Γ(β1 + β2)Γ(α1)Γ(α2)

zα1−1(1 − z)β1+β2−1
2F1(β2, α1 + β1 − α2; β1 + β2; 1 − z),

where 0 < z < 1. Further, if α2 = α1 + β1, then Z = X1X2 ∼ BI(α1, β1 + β2).

Theorem 3.2 Let the random variables X1 and X2 be independent, X1 ∼ KB(α1, β1, λ)
and X2 ∼ BII(α2, β2). Then, the p.d.f. of Z = X1X2 is given by

B(β1, α1 + β2)zα2−1(1 + z)−(α2+β2)

B(α2, β2)B(α1, β1) 1F1(β1; α1 + β1; λ)
Φ1

[
β1, α2 + β2; α1 + β1 + β2;

1
1 + z

, λ
]
, z > 0.

Proof: Since X1 and X2 are independent, their joint p.d.f. is given by

K2x
α1−1
1 (1 − x1)β1−1 exp[λ(1 − x1)]xα2−1

2 (1 + x2)−(α2+β2).

where
K2 = {B(α1, β1)B(α2, β2) 1F1(β1; α1 + β1; λ)}−1.

Now consider the transformation Z = X1X2, W = 1 − X1 whose Jacobian is J(x1, x2 →
w, z) = 1/(1 − w). Thus, we obtain the joint p.d.f. of W and Z as

K2z
α2−1(1 + z)−(α2+β2)wβ1−1(1 − w)α1+β2−1

[
1 − w

( 1
1 + z

)]−(α2+β2)

exp (λw)(3.5)

where 0 < w < 1. Now, integrating w using the integral representation of the Humbert’s
confluent hypergeometric function (2.7) and substituting for K2 in (3.5), we obtain the
desired result.

Corollary 3.2.1 Let X1 and X2 be independent random variables, X1 ∼ BI(α1, β1) and
X2 ∼ BII(α2, β2). Then, the p.d.f. of Z = X1X2 is given by

B(β1, α1 + β2)zα2−1(1 + z)−(α2+β2)

B(α1, β1)B(α2, β2)
2F1

(
β1, α2 + β2; α1 + β1 + β2;

1
1 + z

)
, z > 0.

4 Distribution of The Quotient. In this section we obtain distributional results for
the quotient of two independent random variables involving Kummer-beta distribution.

Theorem 4.1 Let the random variables U and V be independent. Further, U ∼ KB(α, β, λ)
and V ∼ Ga(θ, κ). Then, the p.d.f. of Z1 = V/U is given by

Γ(α + κ)Γ(α + β)zκ−1
1 exp(−z1/θ)

θκΓ(κ)Γ(α)Γ(α + β + κ)1F1(β; α + β; λ) 1F1

(
β; α + β + κ; λ +

z1

θ

)
, z1 > 0.

Proof: The joint p.d.f. of U and V is given by

K3v
κ−1uα−1(1 − u)β−1 exp

[
λ(1 − u) − v

θ

]
(4.6)

where

K3 = {θκΓ(κ)B(α, β) 1F1(β; α + β; λ)}−1.(4.7)
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Now, transforming Z1 = V/U , V = V with the Jacobian J(u, v → z, v) = v/z2
1 we obtain

the joint p.d.f. of of Z and V as

K3z
−α−1
1 vα+κ−1

(
1 − v

z1

)β−1

exp
[(

λ +
z1

θ

) (
1 − v

z1

)
− z1

θ

]
,(4.8)

where 0 < v < z1 < ∞. Now, integrating v, we get the marginal density of Z as

K3z
−α−1
1 exp

(
−z1

θ

)∫ z1

0

vα+κ−1
(
1 − v

z1

)β−1

exp
[(

λ +
z1

θ

) (
1 − v

z1

)]
dv(4.9)

= K3z
κ−1
1 exp

(
−z1

θ

) ∫ 1

0

(1 − w)α+κ−1wβ−1 exp
[(

λ +
z1

θ

)
w

]
dw

where the last line has been obtained by substituting w = 1 − v/z1. Finally, using integral
representation (2.2) in (4.9), substituting for K3 and simplifying the resulting expression,
we obtain the desired result.

Corollary 4.1.1 Let U and V be independent random variables distributed as Kummer-beta
and gamma with parameters (α, β, λ) and (θ, κ), respectively. Then, the p.d.f. of Z2 = U/V
is given by

Γ(α + κ)Γ(α + β)z−κ−1
2 exp(−1/θz2)

θκΓ(κ)Γ(α)Γ(α + β + κ)1F1(β; α + β; λ) 1F1

(
β; α + β + κ; λ +

1
θz2

)
, z2 > 0.

Next, in the following theorem, we consider the case where both the random variables
are distributed as Kummer-beta.

Theorem 4.2 Let the random variables X1 and X2 be independent, Xi ∼ KB(αi, βi, λi),
i = 1, 2. Then, the p.d.f. of Z = X1/X2 is given by

B(α1 + α2, β2) exp(λ1 + λ2)zα1−1∏2
i=1{B(αi, βi) 1F1(βi; αi + βi; λi)}

Φ1[α1 + α2, 1 − β1; α1 + α2 + β2; z,−(λ1z + λ2)]

for 0 < z ≤ 1, and

B(α1 + α2, β1) exp(λ1 + λ2)z−α2−1∏2
i=1{B(αi, βi) 1F1(βi; αi + βi; λi)}

Φ1

[
α1 + α2, 1 − β2; α1 + α2 + β1;

1
z
,−

(
λ1 +

λ2

z

)]

for z > 1.

Proof: The joint p.d.f. of X1 and X2 is given by (3.1). Consider the transformation
Z = X1/X2, X2 = X2 whose Jacobian is |J | = x2. Thus, using (3.1), we obtain the joint
p.d.f. of Z and X2 as

K1z
α1−1xα1+α2−1

2 (1 − zx2)β1−1(1 − x2)β2−1 exp[λ1(1 − x2z) + λ2(1 − x2)](4.10)

where 0 < x2 < 1 for 0 < z ≤ 1, and 0 < x2 < 1/z for z > 1. For 0 < z ≤ 1, the marginal
p.d.f. of Z is obtained by integrating (4.10) over 0 < x2 < 1. Thus, the p.d.f. of Z, for
0 < z ≤ 1, is obtained as

K1z
α1−1

exp[−(λ1 + λ2)]

∫ 1

0

vα1+α2−1(1 − zv)β1−1(1 − v)β2−1 exp[−(λ1z + λ2)v] dv.(4.11)

=
K1B(α1 + α2, β2)zα1−1

exp[−(λ1 + λ2)]
Φ1[α1 + α2, 1 − β1; α1 + α2 + β2; z,−(λ1z + λ2)]
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where the last line has been obtained by applying (2.7). Finally, substituting K1 in the
density (4.11) we get the desired result. For z > 1, the density of z is given by

K1z
α1−1

∫ 1/z

0

vα1+α2−1(1 − zv)β1−1(1 − v)β2−1 exp[λ1(1 − vz) + λ2(1 − v)] dv.(4.12)

Substituting w = vz in the above expression we obtain

K1z
−α2−1

exp [−(λ1 + λ2)]

∫ 1

0

wα1+α2−1(1 − w)β1−1
(
1 − w

z

)β2−1

exp
[
−

(
λ1 +

λ2

z

)
w

]
dw.

Finally, using integral representation of Humbert’s confluent hypergeometric function (2.7)
and substituting for K1, we obtain the p.d.f. of Z for z > 1.

Corollary 4.2.1 Let the random variables X1 and X2 be independent, Xi ∼ BI(αi, βi),
i = 1, 2. Then, the p.d.f. of Z = X1/X2 is given by

B(α1 + α2, β2)zα1−1

B(α1, β1)B(α2, β2)
2F1(α1 + α2, 1 − β1; α1 + α2 + β2; z), 0 < z ≤ 1

and

B(α1 + α2, β1)z−α2−1

B(α1, β1)B(α2, β2)
2F1

(
α1 + α2, 1 − β2; α1 + α2 + β1;

1
z

)
, z > 1.

Theorem 4.3 Let the random variables X1 and X2 be independent, Xi ∼ KB(αi, βi, λi)
i = 1, 2. Then, the p.d.f. of T = X1/(X1 + X2) is given by

h(t) =
B(α1 + α2, β2) exp(λ1 + λ2)tα1−1(1 − t)−α1−1∏2

i=1{B(αi, βi) 1F1(βi; αi + βi; λi)}
×Φ1

[
α1 + α2, 1 − β1; α1 + α2 + β2;

t

1 − t
,−

(
λ1t

1 − t
+ λ2

)]

for 0 < t ≤ 1/2, and

h(t) =
B(α1 + α2, β1) exp(λ1 + λ2)t−α2−1(1 − t)α2−1∏2

i=1{B(αi, βi) 1F1(βi; αi + βi; λi)}
×Φ1

[
α1 + α2, 1 − β2; α1 + α2 + β1;

1 − t

t
,−

(
λ2(1 − t)

t
+ λ1

)]

for 1/2 < t < 1.

Proof: The joint p.d.f. of X1 and X2 is given by (3.1). Now consider the transformation
T = X1/(X1 + X2), Y = X1 + X2 whose Jacobian is |J | = y. Thus, using (3.1), we find the
joint p.d.f. of T and Y as

g(t, y) = K1 exp(λ1 + λ2)tα1−1(1 − t)α2−1yα1+α2−1(1 − yt)β1−1(4.13)
×[1 − y(1 − t)]β2−1 exp[−(λ1t + λ2(1 − t))y].

Now, to evaluate the p.d.f. of T , we integrate (4.13) with respect to y. For 0 < t ≤ 1/2,
the density h(t) of T is derived as

h(t) = K1 exp(λ1 + λ2)tα1−1(1 − t)α2−1

∫ 1/(1−t)

0

yα1+α2−1(1 − yt)β1−1(4.14)

×[1 − y(1 − t)]β2−1 exp[−(λ1t + λ2(1 − t))y] dy.
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Substituting w = y(1 − t) in (4.14), we obtain

h(t) = K1 exp(λ1 + λ2)tα1−1(1 − t)−α1−1

∫ 1

0

wα1+α2−1(1 − w)β2−1

×
[
1 − w

(
t

1 − t

)]β1−1

exp
[
−

(
λ1t

1 − t
+ λ2

)
w

]
dw

= K1 exp(λ1 + λ2)tα1−1(1 − t)−α1−1B(α1 + α2, β2)

×Φ1

[
α1 + α2, 1 − β1; α1 + α2 + β2;

t

1 − t
,−

(
λ1t

1 − t
+ λ2

)]

where the last line has been obtained by using (2.7). For 1/2 < t < 1, we have

h(t) = K1t
α1−1(1 − t)α2−1 exp(λ1 + λ2)

∫ 1/t

0

yα1+α2−1(1 − yt)β1−1

×[1 − y(1 − t)]β2−1 exp[−(λ1t + λ2(1 − t))y] dy

= K1 exp(λ1 + λ2)t−α2−1(1 − t)α2−1

∫ 1

0

wα1+α2−1(1 − w)β1−1

×
[
1 − (1 − t)w

t

]β2−1

exp
[
−

(
λ1 + λ2

1 − t

t

)
w

]
dw

where we have used the substitution w = yt. Finally, using (2.7) and resorting to K2, we
get the density of T for 1/2 < t < 1.

Corollary 4.3.1 Let the random variables X1 and X2 be independent, Xi ∼ BI(αi, βi)
i = 1, 2. Then, the p.d.f. of T = X1/(X1 + X2) is given by

B(α1 + α2, β2)tα1−1(1 − t)−α1−1

B(α1, β1)B(α2, β2)
2F1

(
α1 + α2, 1 − β1; α1 + α2 + β2;

t

1 − t

)

for 0 < t ≤ 1/2, and

B(α1 + α2, β1)t−α2−1(1 − t)α2−1

B(α1, β1)B(α2, β2)
2F1

(
α1 + α2, 1 − β2; α1 + α2 + β1;

1 − t

t

)

for 1/2 < t < 1.

Finally, it may be remarked here that, by using (2.6), alternative expressions for the den-
sities that are given in terms of Φ1 can be obtained in series involving Gauss hypergeometric
function or confluent hypergeometric function.
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