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Abstract. The main purpose of this paper is to give some of the necessary and suffi-
cient conditions for the existence of algebraic closures in a certain kind of elementary
classes.

This study is essentially built on the foundation of the paper: Zur Theorie der alge-
braischen Erweiterungen by the late Prof. K. Shoda (Cf. [3], [4]). However our notion of
algebraic extensions will be very generalized from his notion. But in the variety with the
fundamental conditions (I), (IV) and (a), (b) in his paper, our notion and his notion are
equivalent (Cf. [3; Satz 6]).

In this paper, we shall introduce new notions of algebraic extensions, algebraic closed-
ness, and algebraic closures in a certain kind of elementary classes, which are generalizations
of the usual ones in the theory of commutative fields. And we shall investigate their prop-
erties. Especially, we shall state some of the necessary and sufficient conditions for the
existence of algebraic closures (Theorem 4.3). Our theory (§1 ∼ §5) can be applied not
only to the class of commutative fields but also to every injectively complete universal class,
for example, the variety of Abelian groups, the variety of Boolean algebras, the variety of
semilattices, the class of partially ordered sets, the class of totally ordered sets, etc. The
main parts (§1 ∼ §4) of our theory can be also applied to every residually small variety with
the (somewhat weak) amalgamation property.

§0. Terminology and notation.

The usual terminology and notation in the model theory will be used without explana-
tion.

Throughout this paper, we assume that L is a first order language with equality. For
structures A,B for L, A ⊆ B denotes that A is a substructure of B. If a is an element of
the domain of a structure A, we simply say that a is an element of A or a is (an element)
in A and denote it by a ∈ A.

Let A,B be structures for L such that A ⊆ B, and let b0, · · · , bm ∈ B. We denote by
A(b0, · · · , bm) the substructure of B generated by A and b0, · · · , bm.

Let A,B,C be structures for L such that A ⊆ B and A ⊆ C. A homomorphism φ of
B onto or into C is called an A-homomorphism, if φ(a) = a for all elements a in A. An
A-isomorphism and an A-embedding are defined similarly.
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Let {k0, k1, · · ·} be a set of new constant symbols. Then we denote by L({k0, k1, · · ·})
or simply L(k0, k1, · · ·) the first order language formed from L by adding the new constant
symbols k0, k1, · · · .

Let A be a structure for L. We denote by {ā | a ∈ A} a set of new constant symbols
indexed by all elements in A. The language L({ā | a ∈ A}) is called the diagram language of
A, and simply denoted by L(A). We denote by Ā the expansion of A to L(A) by interpreting
each ā by a. We denote by D(A) the diagram of A i.e., the set of all atomic or negated
atomic sentences of L(A) which hold in Ā. And we denote by D+(A) the positive diagram
of A i.e., the set of all atomic sentences of L(A) which hold in Ā.

If B is an extension of A, and a is an element in A, then the constant symbol ā in L(A)
and ā in L(B) are always assumed to be the same.

Let k0, · · · , km be constant symbols not in L(A). The language L(A)(k0, · · · , km) is simply
denoted by L(A; k0, · · · , km).

Let L′ be an extended language of L, and let A be a structure for L′. We denote by A|L
the reduct of A to L.

Let Γ be a consistent set of sentences of L. Then Γ is called a theory of L, and the class
of all models of Γ which are structures for L is denoted by M(Γ). If A is a structure for L,
then an extension of A which is in M(Γ) is called an M(Γ)-extension of A.

We regard cardinals as being identical with initial ordinals.

§1. Algebraically closed structures and some kind of
existentially closed structures.

In this section, we shall introduce a new notion of algebraic extensions in some kind of
elementary classes. By using this notion, we introduce the notion of algebraically closed
structures. On the other hand, we define a certain kind of existentially closed structures.
And we shall show their simple properties. Especially we show a relation between alge-
braically closed structures and existentially closed structures.

A sentence of the form:

∀x0 · · · ∀xn∃y0 · · · ∃ym (Φ(x0, · · · , xn) → Ψ(x0, · · · , xn, y0, · · · , ym))

is called a special universal-existential sentence (special ∀-∃-sentence for short) of L, if
Φ(x0, · · · , xn) is a quantifier-free formula of L and Ψ(x0, · · · , xn, y0, · · · , ym) is a positive
quantifier-free formula of L, where either Φ(x0, · · · , xn) or Ψ(x0, · · · , xn, y0, · · · , ym) may be
deleted.

Notice that any universal sentence (∀-sentence for short) is logically equivalent to a spe-
cial ∀-∃-sentence, and any positive universal-existential sentence is identical with a special
∀-∃-sentence.

Let T be a consistent set of sentences of L. If each member of T is a special ∀-∃-sentence,
we say that T is a special universal-existential theory (special ∀-∃-theory for short) of L.

Let T be a special ∀-∃-theory of L, and let ST be the universal theory (∀-theory for
short) of L defined by
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ST = {Υ | Υ is a ∀-sentence of L such that T � Υ}.
Then clearly we have

M(ST ) = {A | A ⊆ B for some B ∈ M(T )}.
In this case, ST is called the supporting theory of T, and M(ST ) is called the supporting
class of M(T ).

Notice that, as a special case, we can easily choose L and T such that T is the theory
of commutative fields and ST is the theory of commutative integral domains.

Let T be a special ∀-∃-theory of L, and be defined by

T = {∀x0 · · · ∀xni∃y0 · · · ∃ymiΥi | i ∈ I},
where each Υi is a quantifier-free formula. The rank of T (denoted by rank T ) is defined
by

rank T = sup ({mi + 1 | i ∈ I} ∪ {1}) .
The rank of M(T ) (denoted by rank M(T )) is defined by

rank M(T ) = min {rank T ′ | T ′ is a special ∀-∃-theory of L such that M(T ′) = M(T )} .

We say that a special ∀-∃-theory of T is in standard form, if rank T = rank M(T ).

¿From now on, we assume that T is a special ∀-∃-theory of L in standard form, and
rank T = rank M(T ) = r. And ST always denotes the supporting theory of T.

Let A and B be structures in M(ST ) such that A ⊆ B. We say that B is (A, ST )-simple,
if any A-homomorphism of B onto an M(ST )-extension of A is always an A-isomorphism,
i.e., B has no non-isomorphic A-homomorphism onto an M(ST )-extension of A.

Remark 1.1. The following two conditions are equivalent:

(1) B is (A, ST )-simple;

(2) For any atomic sentence Θ of L(B),
if ST ∪D(A) ∪D+(B) ∪ {Θ} is consistent then Θ ∈ D+(B).

Let A,B be structures in M(ST ) such that A ⊆ B, and let b0, · · · , bm ∈ B. If m < r
and A(b0, · · · , bm) is (A, ST )-simple, then we say that the sequence 〈b0, · · · , bm〉 is algebraic
(precisely speaking, ST -algebraic) over A. We simply say that an element b is algebraic over
A if 〈b〉 is algebraic over A.

Let A,B be structures in M(ST ) such that A ⊆ B. We say that B is a primitive
algebraic extension (precisely speaking, primitive ST -algebraic extension) of A, if there exist
some elements b0, · · · , bm in B such that B = A(b0, · · · , bm) and 〈b0, · · · , bm〉 is algebraic
over A.

Let A,B be structures in M(ST ) such that A ⊆ B. We say that B is an algebraic
extension (precisely speaking, ST -algebraic extension) of A, if there exists an ascending
chain



564 TSUYOSHI FUJIWARA

A = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Aξ ⊆ · · ·
of substructures of B which satisfies the following three conditions:

(1) B = Aµ for some ordinal µ;

(2) For each successor ordinal ξ ≤ µ, Aξ is a primitive algebraic extension of Aξ−1;

(3) For each non-zero limit ordinal ξ ≤ µ, Aξ =
⋃

η<ξ

Aη.

Notice that it follows immediately from the above definition that any algebraic extension
of an algebraic extension of A is an algebraic extension of A.

Let Ω be a structure in M(ST ). We say that Ω is algebraically closed (precisely speaking,
ST -algebraically closed), if there is no proper algebraic extension of Ω, i.e., Ω = Ω′ for every
algebraic extension Ω′ of Ω.

Let α be a finite or infinite cardinal (i.e., initial ordinal), and let n ≤ ω, where ω denotes
the least infinite cardinal. A formula of L∞ω of the form:

∧

ν<µ

Θν(x0, · · · , xm)

is called an (α, n)-formula over L, if µ < α, m < n, and each Θν(x0, · · · , xm) is an atomic
formula of L.

A sentence of L∞ω of the form:

∃x0 · · · ∃xmΨ(x0, · · · , xm)

is called an (α, n)-existential sentence over L, if Ψ(x0, · · · , xm) is an (α, n)-formula over L.

Deleting the restriction of µ < α from the above definitions, we define the notions of an
(∞, n)-formula over L and an (∞, n)-existential sentence over L.

Let Γ be a theory of L, and let A be a structure in M(Γ). We say that A is Γ-(α, n)-
existentially closed, if for any (α, n)-existential sentence Φ over L(A) and for any M(Γ)-
extension B of A, whenever B̄ |= Φ then Ā |= Φ.

The notion of Γ-(∞, n)-existential closedness is defined similarly.

We say that a set of sentences of L∞ω is consistent, if it has a model.

Remark 1.2. Let A ∈ M(Γ). Then the following two conditions are equivalent:

(1) A is Γ-(α, n)-existentially (resp. Γ-(∞, n)-existentially) closed;

(2) For any (α, n)-existential (resp. (∞, n)-existential) sentence Φ over L(A),

if Γ ∪D(A) ∪ {Φ} is consistent then Ā |= Φ.

Note that a structure A in M(T ) is T -(α, n)-existentially (resp. T -(∞, n)-existentially)
closed if and only if A is ST -(α, n)-existentially (resp. ST -(∞, n)-existentially) closed.

First we shall prove the following:

Theorem 1.3. Let A ∈ M(ST ). If A is ST -(ω, r)-existentially closed, then A ∈ M(T ).
(Consequently, if A is ST -(∞, r)-existentially closed, then A ∈ M(T ).)
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Proof. Let A be an ST -(ω, r)-existentially closed structure in M(ST ). And let Υ be any
special ∀-∃-sentence in T. We shall prove A |= Υ by separating Υ into the following three
types:

(I) Υ = ∀x0 · · · ∀xn∃y0 · · · ∃ym(Φ(x0, · · · , xn) → Ψ(x0, · · · , xn, y0, · · · , ym));

(II) Υ = ∀x0 · · · ∀xn∃y0 · · · ∃ymΨ(x0, · · · , xn, y0, · · · , ym);

(III) Υ = ∀x0 · · · ∀xn¬Φ(x0, · · · , xn).

First we shall prove A |= Υ in the case of type (I). Let a0, · · · , an be elements in A such
that Ā |= Φ(ā0, · · · , ān).

It suffices to prove that

Ā |= ∃y0 · · · ∃ymΨ(ā0, · · · , ān, y0, · · · , ym).

Since A ∈ M(ST ), there exists a structure B such that A ⊆ B ∈ M(T ). Hence

B̄ |= ∀x0 · · · ∀xn∃y0 · · · ∃ym(Φ(x0, · · · , xn) → Ψ(x0, · · · , xn, y0, · · · , ym)),

and hence

B̄ |= ∃y0 · · · ∃ymΨ(ā0, · · · , ān, y0, · · · , ym).

Therefore there exist elements b0, · · · , bm in B such that

(∗) B̄ |= Ψ(ā0, · · · , ān, b̄0, · · · , b̄m).

Now Ψ can be logically equivalently rewritten in the following form:

Ψ ≡ Ψ1 ∨ · · · ∨ Ψp,

where each Ψi is a finitary conjunction of atomic formulas of L. And then by (∗), there is
some Ψj such that

B̄ |= Ψj(ā0, · · · , ān, b̄0, · · · , b̄m).

Hence we have

B̄ |= ∃y0 · · · ∃ymΨj(ā0, · · · , ān, y0, · · · , ym).

Since A is ST -(ω, r)-existentially closed, we have

Ā |= ∃y0 · · · ∃ymΨj(ā0, · · · , ān, y0, · · · , ym).

Hence we have

Ā |= ∃y0 · · · ∃ymΨ(ā0, · · · , ān, y0, · · · , ym).

as desired.

In the case of type (II), we put Φ(x0, · · · , xn) = (x0 = x0).

Then
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∀x0 · · · ∀xn∃y0 · · · ∃ymΨ(x0, · · · , xn, y0, · · · , ym)

≡ ∀x0 · · · ∀xn∃y0 · · · ∃ym (Φ(x0, · · · , xn) → Ψ(x0, · · · , xn, y0, · · · , ym)) .

Hence the proof in the case of type (I) implies the proof in the case of type (II).

Finally we have A |= Υ in the case of type (III), because Υ ∈ ST . This completes the
proof of the theorem.

Let A,B be structures in M(ST ) such that A ⊆ B. If there exists an A-homomorphism
of B onto A, then we say that B is a splitting extension of A or that A is a retract of B.

Theorem 1.4. Let A be a structure in M(ST ). Then the following three conditions are
equivalent:

(1) A is algebraically closed;

(2) A is ST -(∞, r)-existentially closed;

(3) For any M(ST )-extension B of A, and for any elements b0, · · · , bm in B, if m < r
then A(b0, · · · , bm) is a splitting extension of A.

Proof of (1) ⇒ (2). We assume that A is algebraically closed. Let Φ be any (∞, r)-existential
sentence over L(A), and let

Φ = ∃x0 · · · ∃xm

∧

ν<µ

Θν(x0, · · · , xm),

where each Θν(x0, · · · , xm) is an atomic formula of L(A). Suppose that

(∗∗) ST ∪D(A) ∪ {Φ} is consistent.

It suffices to prove that Ā |= Φ.

¿From (∗∗), we have that

ST ∪D(A) ∪ {Θν(k0, · · · , km) | ν < µ} is consistent,

where k0, · · · , km are new constant symbols. Therefore by using Zorn’s Lemma and Com-
pactness Theorem, it is easy to see that there exists a maximal set � of atomic sentences
of L(A; k0, · · · , km) such that

ST ∪D(A) ∪ {Θν(k0, · · · , km) | ν < µ} ∪� is consistent.

Let C be a model of ST ∪ D(A) ∪ {Θν(k0, · · · , km) | ν < µ} ∪ � which contains Ā, and
let c0, · · · , cm be the interpretations of k0, · · · , km in C. Now let A(c0, · · · , cm) be the sub-
structure of C|L generated by A and c0, · · · , cm. Then obviously A(c0, · · · , cm) is a primitive
algebraic extension of A. Since A is algebraically closed, we have ci ∈ A (i = 0, · · · ,m).
Since

C |=
∧

ν<µ

Θν(k0, · · · , km), i.e., C̄ |=
∧

ν<µ

Θν(c̄0, · · · , c̄m),

we have
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Ā |=
∧

ν<µ

Θν(c̄0, · · · , c̄m).

Hence we have

Ā |= ∃x0 · · · ∃xm

∧

ν<µ

Θν(x0, · · · , xm).

This completes the proof of (1) ⇒ (2).

Proof of (2) ⇒ (3). We assume that A is ST -(∞, r)-existentially closed. Let B be an
M(ST )-extension of A, and let b0, · · · , bm ∈ B (m < r). We shall prove that A(b0, · · · , bm)
is a splitting extension of A, i.e., there exists an A-homomorphism of A(b0, · · · , bm) onto A.

Let {Θν(x0, · · · , xm) | ν < µ} be the set of all atomic formulas of L(A) such that

A(b0, · · · , bm) |= Θν(b̄0, · · · , b̄m).

Now let Φ be the (∞, r)-existential sentence over L(A) defined by

Φ = ∃x0 · · · ∃xm

∧

ν<µ

Θν(x0, · · · , xm).

Then clearly B̄ |= Φ. Hence we have Ā |= Φ, because A is ST -(∞, r)-existentially closed.
Therefore there exist elements a0, · · · , am in A such that

Ā |=
∧

ν<µ

Θν(ā0, · · · , ām).

Hence there exists an A-homomorphism of A(b0, · · · , bm) onto A which maps bi to ai

(i = 0, · · · ,m). This completes the proof of (2) ⇒ (3).

Proof of (3) ⇒ (1). The condition (3) obviously implies that there is no proper primitive
algebraic extension of A. Therefore it is obvious that the condition (3) implies the condition
(1). This completes the proof of the theorem.

The following theorem is a direct consequence of Theorems 1.3 and 1.4.

Theorem 1.5. Let Ω be a structure in M(ST ). If Ω is algebraically closed, then Ω ∈ M(T ).

§2. Existence of algebraically closed algebraic extensions.

In this section, we shall give a certain condition on M(ST ) under which for any structure
A in M(ST ), there exists an algebraically closed algebraic extension of A.

Lemma 2.1. Let A ∈ M(ST ), and let α be any finite or infinite cardinal (i.e., initial
ordinal). Then there exists an algebraic extension B of A such that for any (α, r)-existential
sentence Φ over L(A), if ST ∪D(B) ∪ {Φ} is consistent then B̄ |= Φ.

Proof. The proof of the lemma is trivial for α < 2. Therefore, in the following, we shall
prove the lemma in the case where α ≥ 2.

Let
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Ψ0, Ψ1, · · · , Ψξ, · · · (ξ < λ)

be an enumeration of all (α, r)-existential sentences over L(A).We now inductively construct
an ascending chain

A = A0 ⊆ A1 ⊆ · · · ⊆ Aξ ⊆ · · · (ξ ≤ λ)

of M(ST )-extensions of A as follows:

(1) The case where ξ is a non-zero limit ordinal. We put Aξ =
⋃

η<ξ

Aη.

(2) The case where ξ = η + 1. We consider the following two cases (a) and (b).

(a) If ST ∪D(Aη) ∪ {Ψη} is inconsistent, we put Aξ = Aη.

(b) If ST ∪D(Aη) ∪ {Ψη} is consistent, then Aξ is constructed as follows:

Let

Ψη = ∃x0 · · · ∃xm

∧

ν<µ

Θν(x0, · · · , xm),

where Θν(x0, · · · , xm) is an atomic formula of L(A). And let k0, · · · , km be new constant
symbols. Then ST ∪D(Aη) ∪ {Θν(k0, · · · , km) | ν < µ} is consistent. Hence there exists a
maximal set � of atomic sentences of L(Aη; k0, · · · , km) such that

ST ∪D(Aη) ∪ {Θν(k0, · · · , km) | ν < µ} ∪ � is consistent.

Let C be a model of ST ∪D(Aη) ∪ {Θν(k0, · · · , km) | ν < µ} ∪ � which contains Āη, and
let c0, · · · , cm be the interpretations of k0, · · · , km in C. Now we put Aξ = Aη(c0, · · · , cm),
where Aη(c0, · · · , cm) denotes the substructure of C|L generated by Aη and c0, · · · , cm. Then
obviously Aξ is a primitive algebraic extension of Aη, and Āξ |= Ψη.

Now we put

B = Aλ.

Then it is clear that B is an algebraic extension of A.

Let Φ be any (α, r)-existential sentence over L(A) such that ST∪D(B)∪{Φ} is consistent.
Then Φ = Ψη for some η < λ. Since ST ∪D(B) ∪ {Φ} is consistent, we have that

ST ∪D(Aη) ∪ {Φ} is consistent.

Hence Āη+1 |= Φ. Since Φ is existential, we have B̄ |= Φ. This completes the proof.

Theorem 2.2. Let A ∈ M(ST ), and let α be any cardinal. Then there exists an algebraic
extension of A which is ST -(α, r)-existentially closed.

Proof. In order to prove the theorem, it suffices to prove it in the case where α ≥ 2. Hence,
in the following, we shall prove the theorem in the case where α ≥ 2.

The definition of “regular cardinal” is quoted from [1 ; G. Grätzer : Universal Algebra,
P.14].
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Now assume that α ≥ 2, and let β be the least regular cardinal greater than α. We
construct an ascending chain

A = B0 ⊆ B1 ⊆ · · · ⊆ Bξ ⊆ · · · (ξ < β)

of M(ST )-extensions of A inductively as follows:

(1) If ξ is a non-zero limit ordinal, we put Bξ =
⋃

η<ξ

Bη.

(2) If ξ = η + 1, Bξ is an algebraic extension of Bη such that for any (α, r)-existential
sentence Ψ over L(Bη), whenever ST ∪D(Bξ)∪ {Ψ} is consistent then B̄ξ |= Ψ. The
existence of such a Bξ is obvious by the above lemma.

Now we put

C =
⋃

ξ<β

Bξ.

Then it is easy to see that C is an algebraic extension of A.

In the following, we shall prove that C is ST -(α, r)-existentially closed.

Let Φ be any (α, r)-existential sentence over L(C) such that ST ∪D(C)∪{Φ} is consistent.
It suffices to prove that C̄ |= Φ. Now let

(#) : c̄0, c̄1, · · · , c̄η, · · ·

be an enumeration of all constant symbols in {c̄ | c ∈ C} which occur in Φ. Since Φ is an
(α, r)-existential sentence, the length of (#) is less than β. Since C =

⋃

ξ<β

Bξ, each cη is

in some Bξ. Hence there exists an ordinal λ less than β such that (#) can be embedded
into {c̄ | c ∈ Bλ} in some order, because β is regular. Hence Φ can be considered as an
(α, r)-existential sentence over L(Bλ), and obviously ST ∪ D(Bλ+1) ∪ {Φ} is consistent.
Therefore we have B̄λ+1 |= Φ, and therefore C̄ |= Φ. This completes the proof.

Let A,B ∈ M(ST ) such that A ⊆ B, and let b0, · · · , bm ∈ B. We say that
〈b0, · · · , bm〉 is α-definably algebraic (precisely speaking, α-definably ST -algebraic) over A,
if there exists an (α, r)-formula Ψ(x0, · · · , xm) over L(A) which satisfies the following two
conditions:

(1) A(b0, · · · , bm) |= Ψ(b̄0, · · · , b̄m);

(2) For any M(ST )-extension C of A, and for arbitrary elements c0, · · · , cm in C,

if A(c0, · · · , cm) |= Ψ(c̄0, · · · , c̄m) then A(b0, · · · , bm) and A(c0, · · · , cm) are
A-isomorphic by the correspondence bi ↔ ci (i = 0, · · · ,m).

The (α, r)-formula Ψ(x0, · · · , xm) over L(A) which satisfies the above two conditions (1)
and (2) is called a characteristic formula of 〈b0, · · · , bm〉 over (A, ST ).

Remark 2.3. The above condition (2) can be changed by the following condition:
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(2)′ For any atomic sentence Θ of L(A; k0, · · · , km),
if ST ∪D(A) ∪ {Ψ(k0, · · · , km)} ∪ {Θ} is consistent then
ST ∪D(A) ∪ {Ψ(k0, · · · , km)} |= Θ.

Remark 2.4. If 〈b0, · · · , bm〉 is α-definably algebraic over A, then 〈b0, · · · , bm〉 is algebraic
over A. Conversely, if 〈b0, · · · , bm〉 is algebraic over A, then for a sufficiently large cardinal
α, 〈b0, · · · , bm〉 is α-definably algebraic over A.

We say that M(ST ) has the algebraic-extension-definable property (AEDP for short),
if for any structure A in M(ST ), there exists a cardinal α such that for any algebraic
extension B of A, and for any elements c0, · · · , cm in any M(ST )-extension of B, whenever
〈c0, · · · , cm〉 is algebraic over B then 〈c0, · · · , cm〉 is α-definably algebraic over B.

The least cardinal α for A which satisfies the above condition is called the algebraic-
extension-definable degree (AED-degree for short) of A.

Theorem 2.5. Assume that M(ST ) has the AEDP. Then for any structure A in M(ST ),
there exists an algebraically closed algebraic extension of A.

Proof. Let A be any structure in M(ST ), and let α be the AED-degree of A. Then by
Theorem 2.2, there exists an algebraic extension Ω of A which is ST -(α, r)-existentially
closed.

In the following, we shall prove that Ω is algebraically closed.

Let Ω′ be any M(ST )-extension of Ω, and let b0, · · · , bm ∈ Ω′ such that 〈b0, · · · , bm〉 is
algebraic over Ω. It suffices to prove that Ω(b0, · · · , bm) = Ω.

Since α is the AED-degree of A, 〈b0, · · · , bm〉 is α-definably algebraic over Ω. Hence
there exists an (α, r)-formula Ψ(x0, · · · , xm) over L(Ω) which is a characteristic formula of
〈b0, · · · , bm〉 over (Ω, ST ). Hence we have

Ω(b0, · · · , bm) |= Ψ(b̄0, · · · , b̄m).

Since Ω is ST -(α, r)-existentially closed, we have

Ω̄ |= ∃x0 · · · ∃xmΨ(x0, · · · , xm).

Hence there exist elements c0, · · · , cm in Ω such that

Ω̄ |= Ψ(c̄0, · · · , c̄m).

Therefore we have

Ω(c0, · · · , cm) |= Ψ(c̄0, · · · , c̄m).

Since Ψ(x0, · · · , xm) is a characteristic formula of 〈b0, · · · , bm〉 over (Ω, ST ), Ω(b0, · · · , bm)
and Ω(c0, · · · , cm) are Ω-isomorphic by the correspondence bi ↔ ci (i = 0, · · · ,m). Since
c0, · · · , cm ∈ Ω, we can immediately obtain

Ω(b0, · · · , bm) = Ω.

This completes the proof.
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§3. Certain properties of algebraic extensions.

In this section, we shall discuss certain properties of algebraic extensions. Especially,
we shall give a certain condition on M(ST ) under which for any structure A in M(ST ), all
algebraically closed algebraic extensions of A are A-isomorphic one another.

The following lemma can be obtained obviously.

Lemma 3.1. Let A, B, C be structures in M(ST ) such that A ⊆ B ⊆ C. Assume that C
is (A, ST )-simple. Then C is (B, ST )-simple.

Next we shall prove the following two lemmas:

Lemma 3.2. Let A, B, C be structures in M(ST ) such that A ⊆ B ⊆ C. Assume that C
is (B, ST )-simple and that B is (A, ST )-simple. Then C is (A, ST )-simple.

Proof. Suppose that C is not (A, ST )-simple. Then there exists a non-isomorphic A-
homomorphism φ of C onto some M(ST )-extension D of A. Since B is (A, ST )-simple, φ|B
is an A-isomorphism, where φ|B denotes the A-homomorphism of B which is the restriction
of φ. Hence there exists an M(ST )-extension D′ of B such that there exists an isomorphism
ψ of D onto D′ which satisfies ψφ(b) = b (i.e., ψ(φ(b)) = b) for all elements b in B. Obviously
ψφ is a non-isomorphic B-homomorphism of C onto D′. Hence C is not (B, ST )-simple. This
contradicts the assumption.

Lemma 3.3. Let λ be any ordinal, and let

A = A0 ⊆ A1 ⊆ · · · ⊆ Aξ ⊆ · · · (ξ ≤ λ)

be an ascending chain of structures in M(ST ) such that the following two conditions hold
for each non-zero ordinal ξ ≤ λ :

(1) If ξ = η + 1, then Aξ is (Aη, ST )-simple;

(2) If ξ is a non-zero limit ordinal, then Aξ =
⋃

η<ξ

Aη.

Then Aλ is (A, ST )-simple.

Proof. In order to prove the lemma, it suffices to prove that Aξ is (A, ST )-simple, on the
assumption that

A0, A1, · · · , Aη, · · · (η < ξ)

are all (A, ST )-simple.

(1) If ξ is a successor ordinal, it follows by Lemma 3.2 that Aξ is (A, ST )-simple.

(2) If ξ is a limit ordinal, we shall prove it as follows:
If ξ = 0, then obviously Aξ is (A, ST )-simple. Hence, in the following, we assume that
ξ is a non-zero limit ordinal.

Let Θ be an atomic sentence of L(Aξ) such that

(+) ST ∪D(A) ∪D+(Aξ) ∪ {Θ} is consistent.
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Since the number of constant symbols occurring in Θ is finite, there exists an ordinal η less
than ξ such that Θ is an atomic sentence of L(Aη). From (+), we have that

ST ∪D(A) ∪D+(Aη) ∪ {Θ} is consistent.

Hence we have Θ ∈ D+(Aη), because Aη is (A, ST )-simple. Therefore Θ ∈ D+(Aξ). This
means that Aξ is (A, ST )-simple.

The following theorem is a direct consequence of Lemma 3.3.

Theorem 3.4. For any structure A in M(ST ), every algebraic extension of A is (A, ST )-
simple.

We say that M(ST ) has the conditional amalgamation property (CAP for short), if the
following condition holds: For any three structures A, B, C in M(ST ), if B and C are
primitive algebraic extensions of A then there exists an M(ST )-extension D of B such that
C can be A-embedded into D.

For any structure A, the domain of A is denoted by dom(A).

The following lemma can be easily obtained from the definition of the CAP:

Lemma 3.5. M(ST ) has the CAP if and only if for any structure A in M(ST ) and any
two primitive algebraic extensions B, C of A such that dom(B) ∩ dom(C) = dom(A),

ST ∪D(A) ∪D+(B) ∪D+(C) is consistent .

Let A, B, C be structures for L such that A ⊆ B and A ⊆ C. If dom(B) ∩ dom(C) =
dom(A), then we denote by L(A; B, C) the language L(B) ∪ L(C).

Theorem 3.6. Suppose that M(ST ) has the CAP. Let A ∈ M(ST ), and let M1 and M2 be
algebraic extensions of A. Then there exist an algebraic extension U of A and A-embeddings
φi of Mi into U (i = 1, 2) such that

(1) U is an algebraic extension of φi(Mi) (i = 1, 2);

(2) U is generated by φ1(M1) and φ2(M2).

Proof. To prove the theorem, it suffices to prove it in the case where dom(M1)∩dom(M2) =
dom(A). Hence we shall prove the theorem on the assumption that dom(M1)∩dom(M2) =
dom(A).

Since M1 and M2 are algebraic extensions of A, there exist two chains of suitable lengths

A = A0 ⊆ A1 ⊆ · · · ⊆ Aξ ⊆ · · · ⊆ Aλ = M1,

A = B0 ⊆ B1 ⊆ · · · ⊆ Bη ⊆ · · · ⊆ Bµ = M2

which satisfy the following four conditions:

(1) For each successor ordinal ξ ≤ λ, Aξ is a primitive algebraic extension of Aξ−1;

(2) For each non-zero limit ordinal ξ ≤ λ, Aξ =
⋃

ζ<ξ

Aζ ;
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(3) For each successor ordinal η ≤ µ, Bη is a primitive algebraic extension of Bη−1;

(4) For each non-zero limit ordinal η ≤ µ, Bη =
⋃

χ<η

Bχ;

First we shall prove the following

Assertion: There exists a set

{�(ξ,η) | ξ ≤ λ, η ≤ µ}

which satisfies the following five conditions:

(C1) Each �(ξ,η) is a maximal set of atomic sentences of L(A; Aξ, Bη) such that

ST ∪D(A) ∪D+(Aξ) ∪D+(Bη) ∪�(ξ,η) is consistent;

(C2) If ξ = ζ + 1, then �(ξ,η) ⊇ �(ζ,η);

(C3) If η = χ+ 1, then �(ξ,η) ⊇ �(ξ,χ);

(C4) If ξ is a non-zero limit ordinal, then �(ξ,η) =
⋃

ζ<ξ

�(ζ,η);

(C5) If η is a non-zero limit ordinal, then �(ξ,η) =
⋃

χ<η

�(ξ,χ).

In order to prove the existence of such a set {�(ξ,η) | ξ ≤ λ, η ≤ µ}, we construct �(ξ,η)

by separating into the following three cases:

(I) The case where η = 0.

In this case, we put �(ξ,0) = D+(Aξ). Then �(ξ,0) satisfies (C1) because Aξ is (A, ST )-
simple. Obviously �(ξ,0) satisfies (C2), and �(ξ,0) satisfies (C4) because D+(Aξ) =
D+(

⋃

ζ<ξ

Aζ) =
⋃

ζ<ξ

D+(Aζ) for any non-zero limit ordinal ξ not greater than λ. And

(C3), (C5) are vacuous.

(II) The case where ξ = 0.

We put �(0,η) = D+(Bη) similarly to the above case.

(III) The case where ξ > 0 and η > 0.

We construct �(ξ,η) inductively on the lexicographic order of the index set
{(ξ, η) | 0 < ξ ≤ λ, 0 < η ≤ µ} as follows:

(1) First we construct �(1,1).

Since A1 and B1 are both primitive algebraic extensions of A, it follows from the CAP
and Lemma 3.5 that

ST ∪D(A) ∪D+(A1) ∪D+(B1) is consistent.

Therefore there exists a maximal set �(1,1) of atomic sentences of L(A; A1, B1) such
that
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ST ∪D(A) ∪D+(A1) ∪D+(B1) ∪�(1,1) is consistent.

Obviously we have �(1,0) = D+(A1) ⊆ �(1,1) and �(0,1) = D+(B1) ⊆ �(1,1).

(2) We assume that {�(ξ,η) | (1, 1) ≤ (ξ, η) < (σ, τ)} has been already constructed so that
it satisfies the conditions (C1)∼(C5), where (1, 1) < (σ, τ) ≤ (λ, µ). In the following,
we shall show that �(σ,τ) can be constructed so that {�(ξ,η) | (1, 1) ≤ (ξ, η) ≤ (σ, τ)}
satisfies the conditions (C1)∼(C5).

(a) The case where σ = ζ + 1 and τ = χ+ 1.

By the assumption of induction or by virtue of (I),

Γ(σ,χ)
d= ST ∪D(A) ∪D+(Aσ) ∪D+(Bχ) ∪�(σ,χ)

is consistent, where “ d=” is read “defined as”. Let C∗ be a model of Γ(σ,χ) which
contains Ā. And let A∗

σ (resp. A∗
ζ) be the substructure of C∗|L(Aσ) (resp. C∗|L(Aζ))

generated by the interpretations of all constant symbols of L(Aσ) (resp. L(Aζ)). Then
it is easy to see that the domain of A∗

σ exactly consists of the interpretations of all
constant symbols of L(Aσ), because A∗

σ is a model of D+(Aσ). Similarly the domain
of A∗

ζ consists of the interpretations of all constant symbols of L(Aζ). Now we put
A′

σ = A∗
σ|L and A′

ζ = A∗
ζ |L. Let φ be the mapping of dom(Aσ) onto dom(A′

σ) which
maps each element a in Aσ to a∗ in A′

σ, where a∗ denotes the interpretation of ā in
A∗

σ. Then it can be easily seen that φ is an A-isomorphism of Aσ onto A′
σ, because

A∗
σ is a model of ST ∪D(A) ∪D+(Aσ) and Aσ is (A, ST )-simple.

Next we let B∗
χ be the substructure of C∗|L(Bχ) generated by the interpretations of

all constant symbols of L(Bχ). And we put B′
χ = B∗

χ|L.
Moreover let C∗

(σ,χ) (resp. C∗
(ζ,χ)) be the substructure of C∗|L(A; Aσ,Bχ) (resp.

C∗|L(A; Aζ ,Bχ)) generated by the interpretations of all constant symbols of
L(A; Aσ,Bχ) (resp. L(A; Aζ,Bχ)). And put C(σ,χ) = C∗

(σ,χ)|L and C(ζ,χ) = C∗
(ζ,χ)|L.

Then obviously we have

(∗) C(σ,χ) ( resp. C(ζ,χ)) is generated by A′
σ and B′

χ ( resp. A′
ζ and B′

χ).

Since Aσ is a primitive algebraic extension of Aζ, there exist some elements
a0, · · · , am in Aσ such that

Aσ = Aζ(a0, · · · , am) and m < r.

Hence by using the A-isomorphism φ, we get

A′
σ = A′

ζ(a
∗
0, · · · , a∗m),

where a∗0, · · · , a∗m are the interpretations of ā0, · · · , ām in A∗
σ. And hence by using (∗),

we get
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(∗∗) C(σ,χ) = C(ζ,χ)(a∗0, · · · , a∗m).

Since �(σ,χ) is a maximal set of atomic sentences of L(A; Aσ, Bχ) such that

ST ∪D(A) ∪D+(Aσ) ∪D+(Bχ) ∪�(σ,χ) is consistent,

it is easy to see that C(σ,χ) is (A, ST )-simple. Hence by Lemma 3.1, C(σ,χ) is (C(ζ,χ), ST )-
simple. Therefore by combining with (∗∗), we obtain the following:

(∗ ∗ ∗) C(σ,χ) is a primitive algebraic extension of C(ζ,χ).

Once more, by the assumption of induction or by virtue of (II),

Γ(ζ,τ)
d= ST ∪D(A) ∪D+(Aζ) ∪D+(Bτ ) ∪�(ζ,τ)

is consistent. Let D∗ be a model of Γ(ζ,τ) which contains Ā. And let D∗
(ζ,τ) (resp.

D∗
(ζ,χ)) be the substructure of D∗|L(A; Aζ,Bτ ) (resp. D∗|L(A; Aζ,Bχ)) generated by

the interpretations of all constant symbols of L(A; Aζ,Bτ ) (resp. L(A; Aζ,Bχ)). And
we put D(ζ,τ) = D∗

(ζ,τ)|L and D(ζ,χ) = D∗
(ζ,χ)|L. Then in a way similar to that of the

proof of (∗ ∗ ∗), we can prove that D(ζ,τ) is a primitive algebraic extension of D(ζ,χ).

Now we put

Γ(ζ,χ) = ST ∪D(A) ∪D+(Aζ) ∪D+(Bχ) ∪�(ζ,χ).

Then it is obvious that both C∗
(ζ,χ) and D∗

(ζ,χ) are models of Γ(ζ,χ), and each of them is
generated by the interpretations of all constant symbols of L(A; Aζ,Bχ). Since �(ζ,χ)

is a maximal set of atomic sentences of L(A; Aζ,Bχ) such that

ST ∪D(A) ∪D+(Aζ) ∪D+(Bχ) ∪�(ζ,χ) is consistent,

it is easy to see that there exists an isomorphism ψ of C∗
(ζ,χ) onto D∗

(ζ,χ). Hence there

exists an M(ST )-extension C#
(σ,χ) of D(ζ,χ) such that there exists an A-isomorphism

of C(σ,χ) onto C#
(σ,χ) which is an extension of ψ. Therefore by the CAP, there exists an

M(ST )-extension C## of C#
(σ,χ) such that D(ζ,τ) can be D(ζ,χ)-embedded into C##.

Hence it is easy to see that

Γ(σ,χ) ∪ Γ(ζ,τ)

(i.e., ST ∪D(A) ∪D+(Aσ) ∪D+(Bτ ) ∪�(σ,χ) ∪�(ζ,τ))

is consistent. Therefore there exists a maximal set �(σ,τ) of atomic sentences of
L(A; Aσ,Bτ ) such that
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ST ∪D(A) ∪D+(Aσ) ∪D+(Bτ ) ∪�(σ,χ) ∪�(ζ,τ) ∪�(σ,τ)

is consistent. Thus {�(ξ,η) | (1, 1) ≤ (ξ, η) ≤ (σ, τ)} can be constructed, and obviously
it satisfies the conditions (C1) ∼ (C5).

(b) The case where σ = ζ + 1 and τ is a limit ordinal.

Put �(σ,τ) =
⋃

χ<τ

�(σ,χ). Then we can easily prove that {�(ξ,η) | (1, 1) ≤ (ξ, η) ≤

(σ, τ)} satisfies the conditions (C1) ∼ (C5).

(c) The case where σ is a limit ordinal and τ = χ+ 1.

Similar to the case above.

(d) The case where both σ and τ are limit ordinals.

Since

⋃

ζ<σ

�(ζ,τ) =
⋃

ζ<σ

⋃

χ<τ

�(ζ,χ) =
⋃

χ<τ

⋃

ζ<σ

�(ζ,χ) =
⋃

χ<τ

�(σ,χ),

if we put �(σ,τ) =
⋃

ζ<σ

�(ζ,τ), then we can easily prove that {�(ξ,η) | (1, 1) ≤ (ξ, η) ≤

(σ, τ)} satisfies the conditions (C1) ∼ (C5). This completes the proof of the Assertion.

It follows from the Assertion that

Γ(λ,µ)
d= ST ∪D(A) ∪D+(M1) ∪D+(M2) ∪�(λ,µ)

is consistent. Hence there exists a model U# of Γ(λ,µ) which contains Ā. Let U∗ be the
substructure of U#|L(A; M1,M2) generated by the interpretations of all constant symbols
of L(A; M1,M2), and let U = U∗|L.

In the following, we shall prove that U is a structure desired in the theorem.

Let M∗
1 (resp. M∗

2) be the substructure of U∗|L(M1) (resp. U∗|L(M2)) generated by
the interpretations of all constant symbols of L(M1) (resp. L(M2)), and let M′

1 = M∗
1|L

and M′
2 = M∗

2|L. Then M′
i and Mi are A-isomorphic (i = 1, 2), because M∗

i is a model of
ST ∪D(A) ∪D+(Mi) and Mi is (A, ST )-simple.

For each ordinal ξ ≤ λ, let C∗
ξ be the substructure of U∗|L(A; Aξ,M2) generated by the

interpretations of all constant symbols of L(A; Aξ,M2), and let Cξ = C∗
ξ |L. Then obviously

we have

M′
2 = C0 ⊆ C1 ⊆ · · · ⊆ Cξ ⊆ · · · ⊆ Cλ = U.

Now we shall show that this chain has the following two properties:

(P1) If ξ is a non-zero limit ordinal, then Cξ =
⋃

ζ<ξ

Cζ ;

(P2) If ξ = ζ + 1, then Cξ is a primitive algebraic extension of Cζ .
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Since it is obvious that the chain has (P1), we shall show that the chain has (P2).

Now we assume that ξ = ζ+1. Then in almost the same way as we proved (∗ ∗ ∗) in the
proof of the Assertion, we can prove that Cξ is a primitive algebraic extension of Cζ .

Thus we can obtain that U is an algebraic extension of M′
2. Similarly, we can obtain

that U is an algebraic extension of M′
1. Now obviously U is an algebraic extension of A.

Moreover U is generated by M′
1 and M′

2, because U = U∗|L and U∗ is the substructure of
U#|L(A; M1,M2) generated by the interpretations of all constant symbols of L(A; M1,M2),
and because M′

i = M∗
i |L and M∗

i is the substructure of U∗|L(Mi) generated by the inter-
pretations of all constant symbols of L(Mi) (i = 1, 2). This completes the proof of the
theorem.

As important application of the above theorem, we shall show the following two theo-
rems:

Theorem 3.7. Suppose that M(ST ) has the CAP. Let A ∈ M(ST ). Let Ω be an alge-
braically closed algebraic extension of A, and let M be any algebraic extension of A. Then
there exists an A-embedding φ of M into Ω such that Ω is an algebraic extension of φ(M).

Proof. By using Theorem 3.6, it is easy to see that there exist an algebraic extension U of
Ω and an A-embedding φ of M into U such that U is an algebraic extension of φ(M). Since
Ω is algebraically closed, we have U = Ω. This completes the proof.

Theorem 3.8. Suppose that M(ST ) has the CAP. Let A ∈ M(ST ), and let Ω1 and Ω2 be
any two algebraically closed algebraic extensions of A. Then Ω1 and Ω2 are A-isomorphic.

Proof. By Theorem 3.7, there exists an A-embedding φ of Ω2 into Ω1 such that Ω1 is an
algebraic extension of φ(Ω2). Since φ(Ω2) is algebraically closed, we have Ω1 = φ(Ω2). Hence
Ω1 and Ω2 are A-isomorphic.

§4. Algebraic closures.

First we shall introduce a new notion of algebraic closures, which is a generalization of
the usual one in the commutative field theory. Our main purpose of this section is to give
some conditions on M(ST ) each of which is necessary and sufficient for the existence of
algebraic closures.

Let A and Ω be structures in M(ST ). We say that Ω is an algebraic closure of A, if the
following two conditions hold:

(1) Ω is an algebraically closed algebraic extension of A;

(2) For any algebraic extension B of A, there exists an A-embedding φ of B into Ω such
that Ω is an algebraic extension of φ(B).

The above definition of an algebraic closure is somewhat different from the usual one.
But it seems to the author that the above definition is a better one in general classes.

Theorem 4.1. Let A be a structure in M(ST ). If there exist algebraic closures of A, then
they are A-isomorphic one another.
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Proof. Similar to the proof of Theorem 3.8.

Let A be any structure for L. We denote by |A| the cardinality of the domain of A.

Lemma 4.2. Assume that for any structure A in M(ST ), there exists a cardinal α such
that |B| ≤ α for all algebraic extensions B of A. Then M(ST ) has the AEDP.

Proof. Let A be any structure in M(ST ). Then by the assumption in the lemma, there
exists a cardinal α such that |B| ≤ α for all algebraic extensions B of A. Let L∗ be a
first order language formed from L by adding new constant symbols indexed by all ordinals
less than α. And let β be the successor cardinal of the cardinality of the set of all atomic
formulas of L∗. In the following, we shall prove that the AED-degree of A is less than or
equal to β.

Now let B be any algebraic extension of A, and let c0, · · · , cm be any elements in an
M(ST )-extension of B such that 〈c0, · · · , cm〉 is algebraic over B. It suffices to show that
〈c0, · · · , cm〉 is β-definably algebraic over B.

Let Σ be the set of all atomic formulas Θ(x0, · · · , xm) of L(B) such that

B(c0, · · · , cm) |= Θ(c̄0, · · · , c̄m),

and let

Θ0(x0, · · · , xm), Θ1(x0, · · · , xm), · · · , Θξ(x0, · · · , xm), · · · (ξ < µ)

be an enumeration of all formulas of Σ. Then µ < β, because |B| ≤ α. Let

Ψ(x0, · · · , xm) =
∧

ξ<µ

Θξ(x0, · · · , xm).

Then Ψ(x0, · · · , xm) is a (β, r)-formula over L(B). And obviously

B(c0, · · · , cm) |= Ψ(c̄0, · · · , c̄m).

Let d0, · · · , dm be arbitrary elements in any M(ST )-extension of B such that

B(d0, · · · , dm) |= Ψ(d̄0, · · · , d̄m).

Then it is easy to see that there exists a B-homomorphism φ of B(c0, · · · , cm) onto
B(d0, · · · , dm) which maps ci to di (i = 0, · · · ,m). Since B(c0, · · · , cm) is (B, ST )-simple,
φ is a B-isomorphism. Therefore Ψ(x0, · · · , xm) is a characteristic formula of 〈c0, · · · , cm〉
over (B, ST ). Thus 〈c0, · · · , cm〉 is β-definably algebraic over B. This completes the proof.

We are now in the position to state the following main theorem:

Theorem 4.3. The following five conditions are equivalent:

(1) For any structure A in M(ST ), there exists an algebraic closure of A;

(2) For any structure A in M(ST ), there exists an M(ST )-extension B of A such that
every algebraic extension of A can be A-embedded into B;

(3) M(ST ) has the CAP, and for any structure A in M(ST ), there exists a structure M
for L such that every algebraic extension of A can be embedded into M;
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(4) M(ST ) has the CAP, and for any structure A in M(ST ), there exists a cardinal α
such that |B| ≤ α for all algebraic extensions B of A;

(5) M(ST ) has the AEDP and the CAP.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.

(4) ⇒ (5) follows immediately from Lemma 4.2.

(5) ⇒ (1) is obvious from Theorem 2.5 and 3.7.

In the rest of this section, we shall give some theorems, which may be convenient to
examine the existence of algebraic closures.

We say that M(ST ) has the half-conditional amalgamation property (HCAP for short),
if the following condition holds: For any three structures A,B,C in M(ST ), if A ⊆ B and
C is a primitive algebraic extension of A then there exists an M(ST )-extension D of B such
that C can be A-embedded into D.

Lemma 4.4. Assume that M(ST ) has the HCAP. Let Ω be a structure in M(ST ) which is
algebraically closed, and let A be a substructure of Ω. Then any primitive algebraic extension
of A can be A-embedded into Ω.

Proof. Let B be any primitive algebraic extension of A. Then we can put

B = A(b0, · · · , bm),

where 〈b0, · · · , bm〉 is algebraic over A. Since M(ST ) has the HCAP, there exists an M(ST )-
extension Ω∗ of Ω such that an A-embedding φ of A(b0, · · · , bm) into Ω∗ exists. We
put ci = φ(bi) (i = 0, · · · ,m). Then by Theorem 1.4, Ω(c0, · · · , cm) is a splitting ex-
tension of Ω. Hence there exists an Ω-homomorphism ψ of Ω(c0, · · · , cm) onto Ω. Put
ψ′ = ψ|A(c0, · · · , cm). Then ψ′ is an A-homomorphism of A(c0, · · · , cm) into Ω. Hence ψ′φ is
an A-homomorphism of A(b0, · · · , bm) into Ω. Since A(b0, · · · , bm) is a primitive algebraic ex-
tension of A, A(b0, · · · , bm) is (A, ST )-simple. Hence ψ′φ is an A-embedding of A(b0, · · · , bm)
into Ω. This completes the proof.

Theorem 4.5. Assume that M(ST ) has the HCAP. Let Ω be a structure in M(ST ) which
is algebraically closed, and let A be a substructure of Ω. Then every algebraic extension of
A can be A-embedded into Ω.

Proof. Let B be any algebraic extension of A. Then there exists an ascending chain

A = A0 ⊆ A1 ⊆ · · · ⊆ Aξ ⊆ · · ·
of substructures of B which satisfies the following three conditions:

(1) B = Aλ for some ordinal λ;

(2) For each successor ordinal ξ ≤ λ, Aξ is a primitive algebraic extension of Aξ−1;

(3) For each non-zero limit ordinal ξ ≤ λ, Aξ =
⋃

η<ξ

Aη.
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Now we inductively construct a chain

A = A∗
0 ⊆ A∗

1 ⊆ · · · ⊆ A∗
ξ ⊆ · · · (ξ ≤ λ)

of substructures of Ω, and a chain

θ0 ⊆ θ1 ⊆ · · · ⊆ θξ ⊆ · · · (ξ ≤ λ)

of isomorphisms so that they satisfy the following three conditions:

(1) θ0 is the identity isomorphism of A0 onto A∗
0;

(2) If ξ = η + 1, then θξ is an isomorphism of Aξ onto A∗
ξ which is an extension of θη;

(3) If ξ is a non-zero limit ordinal, then

A∗
ξ =

⋃

η<ξ

A∗
η and θξ =

⋃

η<ξ

θη.

It is obvious from Lemma 4.4 that such two chains can be constructed.

Now we put B∗ = A∗
λ and θ = θλ. Then clearly B∗ ⊆ Ω and θ is an A-isomorphism of

B onto B∗. Hence B can be A-embedded into Ω. This completes the proof.

Theorem 4.6. Assume that M(ST ) has the HCAP. If for any structure A in M(ST ),
there exists an M(ST )-extension of A which is algebraically closed, then for any structure
B in M(ST ), there exists an algebraic closure of B.

Proof. This theorem can be immediately obtained from Theorem 4.5 and (2) ⇒ (1) of
Theorem 4.3.

If for any structure A in M(ST ), there exists an M(ST )-extension B of A such that
every M(ST )-extension of B is a splitting extension of B, we say that M(ST ) is absolutely
retractively complete.

As a direct consequence of Theorem 4.6 and (3) ⇒ (1) of Theorem 1.4, we can obtain
the following:

Corollary 4.7. Assume that M(ST ) has the HCAP. If M(ST ) is absolutely retractively
complete, then for any structure A in M(ST ), there exists an algebraic closure of A.

Remark 4.8. Let V be a variety. Then V is absolutely retractively complete if and only
if it is residually small (Cf. [5]).

§5. Additional notes.

In our discussion above, we have not discussed whether each element of an algebraic ex-
tension of a structure A is algebraic over A or not. In this section, we shall give some
equivalent conditions each of which implies that every element of an algebraic extension of
a structure A is algebraic over A.

Let A and C be structure in M(ST ) such that A ⊆ C. We say that C is (A, ST )-strongly
simple, if every structure B satisfying A ⊆ B ⊆ C is (A, ST )-simple.
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The following theorem can be easily obtained from the definition of an algebraic exten-
sion and Lemma 3.1.

Theorem 5.1. Let A,B ∈ M(ST ) such that A ⊆ B. If B is (A, ST )-strongly simple, then
B is an algebraic extension of A.

We say that M(ST ) has the strong-simpleness property (SSP for short), if for any struc-
ture A in M(ST ), every algebraic extension of A is (A, ST )-strongly simple.

Now we can easily obtain the following theorem:

Theorem 5.2. The following four conditions are equivalent:

(1) M(ST ) has the SSP;

(2) For any three structures A,B,C in M(ST ) such that A ⊆ B ⊆ C, if C is an alge-
braic extension of A then every element of C is algebraic over B;

(3) For any four structures A,B,C,D in M(ST ) such that A ⊆ B ⊆ C ⊆ D, if D is an
algebraic extension of A then C is an algebraic extension of B;

(4) For any three structures A,B,C in M(ST ) such that A ⊆ B ⊆ C, if C is an alge-
braic extension of A then B is an algebraic extension of A.

Next we shall prove the following:

Theorem 5.3. Assume that M(ST ) has the SSP. Let A,B ∈ M(ST ). Then the following
two conditions are equivalent:

(1) B is an algebraically closed algebraic extension of A;

(2) B is a maximal (A, ST )-strongly simple extension of A, — i.e., B is an (A, ST )-strongly
simple extension of A and no proper M(ST )-extension of B is (A, ST )-strongly simple.

Proof of (1) ⇒ (2). Suppose the condition (1) holds. Then by the assumption, B is (A, ST )-
strongly simple. Now suppose that B is not a maximal (A, ST )-strongly simple extension
of A. Then there exists a proper M(ST )-extension C of B which is (A, ST )-strongly simple.
Take an element c such that c ∈ C and c /∈ B. Then B(c) is (A, ST )-simple. Hence B(c)
is (B, ST )-simple. Therefore B(c) is a proper primitive algebraic extension of B. This
contradicts the fact that B is algebraically closed. Therefore B is a maximal (A, ST )-
strongly simple extension of A.

Proof of (2) ⇒ (1). Suppose the condition (2) holds. Then by Theorem 5.1, B is an
algebraic extension of A. We must prove that B is algebraically closed. Now suppose that B
is not algebraically closed. Then there exists a proper algebraic extension D of B. Obviously
D is an algebraic extension of A. Therefore by the assumption, D is (A, ST )-strongly simple
extension of A. This contradicts the condition (2). Therefore B is algebraically clossed.

As a direct consequence of (1) ⇒ (3) in Theorem 5.2, we have the following:

Theorem 5.4. Assume that M(ST ) has the SSP, and let A,B ∈ M(ST ). If B is an alge-
braically closed algebraic extension of A, then B is a minimal algebraically closed extension
of A,— i.e., B is an algebraically closed extension of A and no proper substructure of B
containing A is algebraically closed.
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In order to consider the counterpart of this theorem, we shall first give the following:

Lemma 5.5. Assume that M(ST ) has the HCAP. Let A,B,C ∈ M(ST ) such that A ⊆ B
and B is a proper substructure of C. If C is a minimal algebraically closed extension of A,
then there exists a proper primitive algebraic extension of B which is contained in C.

Proof. Since B is not algebraically closed, there exists a proper primitive algebraic extension
D of B. By Lemma 4.4, there exists a B-embedding φ of D into C. Obviouly, φ(D) is a
proper primitive algebraic extension of B, and φ(D) ⊆ C.

Now we have the following:

Theorem 5.6. Assume that M(ST ) has the HCAP, and let A,B ∈ M(ST ). If B is a mini-
mal algebraically closed extension of A, then B is an algebraically closed algebraic extension
of A, moreover B is an algebraic closure of A.

Proof. It suffices to show, on the supposition in the theorem, that B is an algebraic extension
of A. If B = A, it is clear that B is an algebraic extension of A. If B �= A, it can be easily
shown from the above lemma and the definition of an algebraic extension that B is an
algebraic extension of A.

Let A be a structure in M(ST ). We say that A is injective in M(ST ), if the following
condition holds: For any two structures B and C in M(ST ), if there exists a homomorphism
θ of B into A and an embedding φ of B into C, then there exists a homomorphism ψ of C
into A such that ψ(φ(b)) = θ(b) for all elements b in B.

If for any structure A in M(ST ), there exists an M(ST )-extension of A which is injective
in M(ST ), then we say that M(ST ) is injectively complete (Cf. [1; P.107]).

Suppose that M(ST ) is injectively complete. Then it is easy to see that M(ST ) has
the HCAP and the SSP, and satisfies the condition (2) of Theorem 4.3. Hence in this case,
Theorems 4.3, 5.2, 5.3, 5.4, and 5.6 can be effectively applied to M(ST ).

As is well-known, the varieties of Abelian groups, Boolean algebras, and semilattices are
injectively complete universal classes. Moreover it is easy to see that the class of partially
ordered sets and the class of totally ordered sets (defined by the ordering relation ≤) are
universal and injectively complete. Hence Theorems 4.3, 5.2, 5.3, 5.4, and 5.6 can be
effectively applied to these varieties and classes.
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