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Abstract. In this paper, we study the discreteness of nonelementary isometry group
of negative curvature and obtain a sufficient and necessary condition for a nonelemen-
tary subgroup to be discrete.

1.Introduction. A Hadamard manifold H is a complete simply connected Riemannian
manifold with nonpositive curvature. A pinched Hadamard manifold X is a Hadamard
manifold of pinched negative curvature; that is, all of the sectional curvatures K(X) satisfy

−1 ≤ K(X) ≤ −a2,

where the constant a �= 0. The n-dimensional hyperbolic space Hn is a pinched Hadamard
manifold with constant curvature K = −1. We write Isom(X) for the group of all isometrics
on a pinched Hadamard manifold X .

Throughout this paper, we adopt the same notations and definitions as in ([2], [5], [9])
such as Xc, XI , discrete groups, elementary subgroups and so on. For example, we define
elementary groups as following:

Definition 1.1. A subgroup G of Isom(X) is elementary either if fix(G) �= Ø, or else
if G preserves setwise some bi-infinite geodesic in Xc. Otherwise G is nonelementary.

Let G be a subgroup of Isom(X). The limit set L(G) is defined as following:

L(G) = {x ∈ XI | gm ∈ G with lim
m→∞ gm(p) → x for some point p ∈ X}

It is clear that the limit set L(G) is closed in XI and invariant under G. The limit set L(G)
is defined independently of the choice of the point p ∈ X (see [5; p246]).

For x ∈ X, z1, z2 ∈ Xc, x �= z1, x �= z2 we have [8]

<) x(z1, z2) :=<) (ċ1(0), ċ2(0))

where ci(i = 1, 2) is the geodesics from x to zi and ci(0) = x. For x ∈ X, z ∈ XI , ε > 0, let

Cx(z, ε) = {y ∈ Xc|y �= x, <) x(z, y) < ε}.
The set Cx(z, ε) is called the cone of vertex x and angle ε.

For g ∈ Isom(X), we define the rotation of g in x ∈ X as following [2]:

rg(x) := max
w∈TxX

<) (w,Pg(x),x ◦ g∗xw)
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where, g∗x : TxX → Tg(x)X is the differential and Pg(x),x : Tg(x)X → TxX is the parallel
transport along the unique geodesic from g(x) to x. We then define the norm of g at x as
following:

Ng(x) := max{(rg(x), 8dg(x)}.
For the general theory of pinched Hadamard manifolds, see ([2], [4], [5], [7], [8]).
It is well known that the discreteness of subgroups of pinched Hadamard manifolds is

a fundamental problem and has been investigated by many authors (see [1], [9], [11], [12],
[13], [15]). In 1976, Jørgensen ([Jø]) gave the following famous criterion of discreteness for
subgroups of SL(2,C):

Theorem A. A nonelementary subgroup of SL(2,C) is discrete if and only if each
subgroup generated by two elements is discrete.

For the study of the discreteness criterion of any nonelementary subgroup we must add
some conditions by the Example of Abikoff and Hass [1]. In 1989 and 1993, Martin ([12],
[13]) introduced the condition of uniformly bounded torsion and established Theorem A for
nonelementary subgroups of M(R̄n) and negatively curved groups under the condition of
uniformly bounded torsion: A nonelementary subgroup G of M(R̄n)(or negatively curved
groups) with the condition of uniformly bounded torsion is discrete if and only if every two
generator subgroup is discrete.

Let G be any non-elementary subgroup of Isom(X) and Gh = {f ∈ G : f stabilizes
pointwise the set of fixed points of h} for any non-elliptic element h. Let G∗ = ∩Gh for all
non-elliptic ellement h of G. We generalities Theorem A to negatively curved groups.

Theorem 1.2. Let G be a nonelementary subgroup of Isom(X). Then G is discrete if
and only

(1) G∗ is a finite group;
(2) every two-generator subgroup of G is discrete.

Corollary 1.3. Let G be a non-elementary subgroup of Isom(X). Then G is discrete
if and only

(1) G∗ has uniformly bounded torsion;
(2) every two-generator subgroup of G is discrete.

Remark 1.4. Especially, let G denote a nonelementary subgroup of SL(2,C) in The-
orem 1.2. Then G∗ = {I}. Thus Theorem 1.2 coincides with Theorem A.

Since nonelementary subgroups of Isom(X) are more complicated than nonelementary
subgroups of M(R̄n), to investigation of the discreteness of any nonelementary subgroup of
Isom(X), we have to face some difficulty and our methods of proof are different from those
of Martin’s [13] and Jørgensen’s [11].

2. The proof of Theorem 1.2. In order to prove Theorem 1.2, we need the
following Lemmas.

Firstly we need the following lemma on limit sets of subgroups of Isom(X) which extends
a Chen and Greenberg’s result [6; Lemma 4.3.5] on limit sets of subgroups in complex
hyperbolic space to subgroups of Isom(X):
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Lemma 2.1. Suppose that one of the following conditions is satisfied: (1) L(G) = Ø,
or (2) G has more than two fixed points in XI . Then G has a fixed point in X . The set of
all fixed points in X is either a single point or a totally geodesic submanifold.

Proof. (1) By [7; Proposition1.9.6], G has a fixed point in X .
(2) Since G has more than two fixed points in XI , G is a pure elliptic group. For any

two fixed points x0, y0 in XI , G leaves the geodesic [x0, y0] pointwise fixed. So G has a fixed
point in X .

Since the set of fixed points of an elliptic element is either a single point or a to-
tally geodesic submanifold and the intersection of totally geodesic submanifolds is totally
geodesic, the last statement of the lemma follows.

Secondly, we need the following Martin and Skora’s Definition and Lemma on discrete
subgroups of Isom(X):

Definition 2.2. A discrete subgroup G ⊂ Isom(X) is called a discrete convergence
group if every sequence {gj} of distinct elements of G contains a subsequence {gjk

} for
which there are x0 and y0 in XI such that

gjk
→ x0 locally uniformly in Xc\{y0}

and

gjk

−1 → y0 locally uniformly in Xc\{x0}.

Lemma 2.3 [14; Theorem5.6]. Let X be a Hadamard manifold, such that K(X) ≤ A <
0. If G ⊂ Hom(Xc) is a discrete group that acts as isometrics on X , then G is a discrete
convergence group.

In Definition 2.2, Martin and Skora generalized the Gehring and Martin’s concept of
discrete quasiconformal convergence group on R̄n [10] to Hadamard manifold Xc.

Now we generalize several Gehring and Martin’s results [10] by Lemmas 2.1 and 2.3.

Lemma 2.4. If G is discrete and Card(L(G)) ≥ 2, then G contains a loxodromic
element.

Proof. Similar to the proof of [10], we can prove this lemma.

Corollary 2.5. An infinite pure elliptic group is not discrete.

Corollary 2.6. Every elliptic element of a discrete subgroup of Isom(G) is of finite
order.

By Lemmas 2.1, 2.4 and Corollary 2.5, we can obtain the following Lemma:

Lemma 2.7. Let G be a discrete subgroup of Isom(X). We have

(1) L(G) is empty if and only if G is a finite group of elliptic elements.
(2) L(G) contains exactly one point x0 if and only if G is an infinite group which

contains only elliptic and parabolic elements, fix(G) = x0 and G definitely contains a
parabolic isometry.
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(3) L(G) contains exactly two points x0 and y0 if and only if G is an infinite group which
contains only loxodromic elements which fix x0 and y0, and elliptic elements which either
fix or interchange x0 and y0 and G at least contains a loxodromic isometry.

We can further obtain:

Lemma 2.8. Suppose that G is a discrete subgroup of Isom(X). Then the following
statements are equivalent.

(1) G is elementary.
(2) G has a finite orbit in Xc.
(3) Every two non-elliptic elements of G have a common fixed point.
(4) Card(L(G)) ≤ 2.

Proof. (1)=⇒(2).
Since G is elementary, we can separate G into three mutually exclusive classes by [5;

p244]:
Case(i) fix(G) is a nonempty subspace of Xc.
Case(ii) fix(G) consists of a single point of XI .
Case(iii) G has no fixed point in X , and G preserves setwise a unique bi-infinite geodesic

in X .
Thus G has a finite orbit in Xc.
(2)=⇒(3).
Suppose that G contains two non-elliptic elements f and g such that fix(f)∩fix(g) = Ø.

We have the following three cases:
(i ) f and g are both loxodromic. Let fix(f) = {x0, y0} and fix(g) = {z0, w0}, where

x0, y0, z0, w0 are distinct points. By [5; p244], for all x ∈ Xc\{x0, y0}, we have fnx → x0

and f−nx → y0 and for all x ∈ Xc\{z0, w0}, we have gnx → z0 and g−nx → w0. Therefore
G has no finite orbit in Xc.

(ii) f and g are both parabolic. Let fix(f) = x0 �= y0 = fix(g). By [2; Lemma 6.3 (1)],
for all point x ∈ X the orbits Ax = {fn(x)} and Bx = {gm(x)} have both accumulation
points in XI . From [8; Lemma 6.2] x0 is the unique accumulation point in XI of the set Ax

and y0 is the unique accumulation point in XI of the set Bx.
By [7; Proposition 1.93] we have

fnk(x) → x0 and fnk−1(x) → x0

for some x ∈ X .
For all other y ∈ X we also have

fnk(y) → x0 and fnk−1(y) → x0

If not, let y �= x ∈ X , the sequence {fnk(y)} does not converge to x0, then there exists a
subsequence which converges to a point x∗ ∈ XC , x∗ �= x0. This is a contradiction.

For all x
′ ∈ XI , x

′ �= x0 there is a unique geodesic γ which joins x
′

and x0 such that
x

′
= γ(∞) and x0 = γ(−∞). By [7; Proposition 1.9.13(3)], fnk(x

′
) → x0 as nk → ∞. So

fnk(x) → x0

for any point x ∈ Xc\{x0}
Similarly, we can obtain

gml(x) → y0
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for any point x ∈ Xc\{y0}
Hence it is enough to see that G has no finite orbit in Xc.
(iii) One of f and g is loxodromic, the other is parabolic. Similar to cases (i) and (ii),

we can prove that G has no finite orbit in Xc.
Therefore every two non-elliptic elements of G have a common fixed point.
(3)=⇒(4).
If G contains no loxodromic element, then Card(L(G)) ≤ 1 by Lemma 2.4.
Suppose that G contains a loxodromic element g with fixed points x0 and y0. If G

contains a parabolic element f , then f and g have a common fixed point. By [8; Proposition
6.8], the two fixed points of g is also fixed by f , this contradicts the fact that f has only
one fixed point. Thus G contains only loxodromic and elliptic elements. In the following
we prove that Card(L(G)) = {x0, y0}.

Firstly, for any other loxodromic element h of G, we have fix(g)∩fix(h) �= Ø. Without
loss of generality, we assume that h(x0) = x0 and another fixed point of h is z0. By [8;
proposition 6.8], z0 = y0. So every loxodromic element of G has the same fixed points x0

and y0.
Secondly, for any elliptic element h of G, if h and g have a common fixed point, then the

other fixed point of g is also fixed by h [8; proposition 6.8]. If fix(h)∩ fix(g) = Ø, we will
show that g(x0) = y0 and g(y0) = x0; since otherwise we have the following three cases:

(i) h({x0, y0}) ∩ {x0, y0} = Ø;
(ii) h(x0) = y0 and h(y0) �= x0;
(iii) h(x0) �= y0 and h(y0) = y0.

In case (i), let f = h−1gh, then f is loxodromic.Thus G contains two loxodromic isome-
tries g and f which share no common fixed points. This contradicts the hypothesis that
every two non-elliptic elements of G have a common fixed point.

In case (ii), we can obtain that either hgh({x0, y0}) ∩ {x0, y0} = Ø or
hg2h({x0, y0} ∩ {x0, y0} = Ø. Replacing h in case (i) by hgh or hg2h, we can prove that
case (ii) still leads to a contradiction by using the same method in case (i).

In case (iii), it is easy to obtain a contradiction by using the similar method in case (ii).
By above-mentioned argument, we deduce that G contains only loxodromic elements

which fix x0 and y0 and elliptic elements which either fix or interchange x0 and y0. Hence
L(G) = {x0, y0} by Lemma 2.7.

(4)=⇒(5).
It is easy to prove.

In this paper, the key tool to prove Theorem 1.2 is the following famous Margulis Lemma
which can be found in ([2; 8.3] , [4; p565]) :

Margulis Lemma. Given n ∈ N there are constants µ = µ(n) > 0 and I(n) ∈ N with
the following property: Let X be an n-dimensional Hadamard manifold which satisfies the
curvature condition −1 ≤ K ≤ 0 and let Γ be a discrete group of isometrics acting on X .
For x ∈ X let Γµ(x) :=< {γ ∈ Γ|dγ(x) ≤ µ} > be the subgroup generated by the elements
γ with dγ(x) ≤ µ. Then Γµ(x) is almost nilpotent, thus it contains a nilpotent subgroup of
finite index. The index is bounded by I(n).

Now we prove the discreteness criterion

2.9. The proof of Theorem 1.2 The necessity is obviously. In the following we prove
the sufficiency.
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Suppose that G is not discrete. Then there is a sequence {gi} in G such that gi → I
uniformly in Xc as i → ∞. We will show that this leads to a contradiction.

For every non-elliptic element h ∈ G, from hypothesis, < gi, h > is discrete. As
limi→∞ gi = I, it follows that limi→∞ hjgih

−j = I for any integer j. Let µ = µ(n) be
a Margulis constant. For sufficiently large i and a fixed point x ∈ X we have

dgi + dhgih−1 + · · · + dhjgih−j + · · · + dhp+1gih−(p+1) < µ

and
Ngi(x) < π/2

where j = 0, 1, . . . , p + 1 and p = dim(fix(gi)) if gi is elliptic or p = 0 if gi is parabolic
or loxodromic. By Margulis Lemma, Gi =< hjgih

−j |i = 0, 1, . . . , p + 1 > and Gi,1 =<
gi, hgih

−1 > are virtually nilpotent. By [5; Proposition 3.1.1], Gi and Gi,1 are elementary.
As < gi, h > is discrete, Gi and Gi,1 are both discrete. If gi is parabolic or loxodromic, then
< gi, h > is elementary by [13; Lemma 2.2]. If gi is elliptic, then < gi, h > is elementary by
[13; Lemma 2.3] and [2; §12.3]. Thus < gi, h > is discrete and elementary for sufficiently
large i. By Lemma 2.8, Card(L(< gi, h >)) < 3. We have the following two cases:

(i) h is loxodromic with fixed points {x0, y0}. Since Card(L(< gi, h >)) < 3, we obtain
L(< gi, h >) = {x0, y0} by Lemma 2.7. If gi is loxodromic, then gi stabilizes pointwise the
set of fixed points of h; if gi is elliptic, then gi stabilizes pointwise the set of fixed points of
h or interchanges the two fixed points of h.

If gi is elliptic, we can prove that there are at most finitely many gi interchanging the
two fixed points of h. If not, {gi} has a subsequence {gik

} such that limk→∞ gik
= I and gik

interchanges the two fixed points of h, i.e., gik
(x0) = y0 and gik

(y0) = x0. In the following
we prove that this can lead to a contradiction.

Since limk→∞ gik
= I, for any ε > 0 and x ∈ Xc, we have <) p(gik

(x), x) < ε for some
p ∈ X and sufficiently large k. So <) p(gik

(x0), x0) < ε. Thus limk→∞ gik
(x0) = x0. This

contradicts the fact that
lim

k→∞
gik

(x0) = lim
k→∞

y0 = y0

Hence there are at most finitely many gi interchanging the two fixed points of h. Thus
gi(x0) = x0 and gi(y0) = y0.

(ii) h is parabolic with fixed point x0. Since Card(L(< gi, h >) < 3, we obtain
L(< gi, h >) = {x0} by Lemma 2.7. Thus gi are elliptic or parabolic and gi(x0) = x0.

From (i) and (ii), we know that gi ∈ G∗ for sufficiently large i. This is a contradiction.
The fact that G is discrete is a consequence of the above argument.
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