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ABSTRACT. Let B(H)"™ be the algebra of all n-tuples of bounded linear operators on a
separable Hilbert space H, and G a set of maps on B(H)" belong to an appropriate class.
Then any n-tuple T' can be decomposed into the direct sum T'o ® T’ of the maximum
G-definite (respectively, G-semidefinite) part To and the completely non G-definite
(resp., non G-semidefinite) part T'. Tt follows that any bounded operator T' has the
maximum k-hyponormal part for any positive integer k, and so, it can be decomposed
into the direct sum 7" =To @ T1 & 1> & --- & Ts of the completely non hyponormal
part Tp, the k-hyponormal but non (k + 1)-hyponormal part Tx (1 < k < o0) and the
maximum subnormal part 7.

1 Introduction Let H be a separable Hilbert space, and B(H) the algebra of all
bounded linear operators on H. It is known that any 7' € B(H) has the maximum sub-
space which reduces T to a positive operator, and that for any pair of self-adjoint operators
A, B € B(H) there exists the maximum subspace M of H which reduces A and B and
on which A < B holds. These facts inspire the existence of maximum subspaces on which
given operator inequalities hold. For a given family G, however, of polynomials in two non-
commuting variables, it is shown in [6] that any T € B(H) has the maximum 7-reducing
subspace M on which T is G-definite (resp., G-semidefinite), i.e., p(T|ar, (T|m)*) = O
(resp., p(T|m, (T|m)*) > O) holds for any p € G. We concerned in [8] with a larger family
G than that of polynomials and made some considerations on the maximum subspaces on
which given essentially G-definite (resp., G-semidefinite) tuples of operators are G-definite
(resp., G-semidefinite). In this paper, we will consider the maximum subspaces on which
given systems of operator inequalities are satisfied.

2 Maximum G-definite, and G-semidefinite parts Let B(H)" be the algebra of all
n-tuples of operators in B(H), S a subset of B(H), and S™ the set of all n-tuples whose
terms are in S. For tuples A = (A, Ao, ..., A,), B=(B1, B, ..., B,)€ B(H)", the
map )‘A, B is defined by

7i(Aa, B(T)) = AT;B; (1<j<n),

where 7;(Th, Ts, ..., To,) =15 (1 < j < n), and for p = (p1, P2, ..., Pn) € Phr, the set of
all n-tuples of polynomials in 2n noncommuting variables z1, z2, ..., zn, 21, 22, ---, Zn,
the map 9p is defined by

7 (Wp(T)) = pi(Ty, T, ..., Tp, Ty, Ty, ..., T)).
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Let s be the pointwise norm closed subalgebra generated by the maps A A B A, B¢
S" and Yp, p € P,. For a subset G of &s, a tuple T is said to be G-definite (resp.,
G-semidefinite) if 7;(¢(T')) = O (resp., 7;(¢(T)) > O) (1 < j < n) hold for any ¢ € G.

If a subspace M of H reduces T' (i.e., M reduces each term of T'), put

T|M = (T1|Ma T2|M7 KR Tn|M)

If a subspace M reduces S (i.e., M reduces any operator in S), then for any ¢ € G, the
map ¢ of B(M)" into itself can be defined by the canonical way, and when M reduces
T, the concepts of Gaq-definiteness and Gaq-semidefiniteness for T'| o4 make sense, where

Gm={dm: ¢ €G}.
We have the following:

Theorem 1. Let G be a subset of Es. Then any tuple T € B(H)" has the mazimum subspace
M of H which reduces T and S such that T'|p is G-definite (resp., G-semidefinite), and the
mazimum subspace N of H which reduces T and S such that T'| - is essentially G-definite

(resp., G-semidefinite) on any subspace N of N which reduces T and S, and on which the
C*-algebra generated by the terms of T and members of S is irreducible.

In the case, M C N holds and the projection onto M is contained in the center of the
von Neumann algebra generated by the terms of T and members of S.

Proof. First, we consider the G-semidefinite case. T is G-semidefinite on a subspace M
of ‘H which reduces T and S if and only if

(75(&(T)) = |75(&(T))[)§ =0 forany § € M, 6 €G, and 1 <j <mn,

S0, it suffices to show that the subspace

M= ({Ker(((6(T) = I (4T))A) : 6 € G. A€ A 1< j<n}

of ‘H, where A is the C*-algebra generated by the terms of T' and members of S, is the
maximum subspace which reduces T and S, and on which T is G-semidefinite. Since I € A,
it is clear that T'|y( is Gaq-semidefinite. Let M’ be arbitrary subspace of H which reduces
T and S, and on which T is G-semidefinite. Then M’ reduces A and 7; (¢ v (T)) for any
¢ € Gand 1< j<n. Hence we have

(15(6(T)) = |7;(&(T))|)AE =0 forany € M, € G, Ac Aand1<j<n.

Therefore we have M C M and hence M is the maximum subspace. For B € A', £ € M,
pegG, Aec Aand 1 <j <n, we see that

(75(&(T)) = 7(&(T))|) ABE = B(7;(6(T)) — |75 (6(T))|) A§ = 0

and hence B € M. Thus M reduces B. Consequently, the projection onto M is contained
in the center of the von Neumann algebra generated by A .
In the G-definite case, it turns out by the same way that

M=({Kery (6(T)A: G, A A1 <) <n)

is nothing but the subspace of H stated in the theorem.
To prove the essentially G-definite (resp., G-semidefinite) case, decompose A to the direct

sum @Ak, where H = @Hk, of irreducible algebras Ay, and let ' be the direct sum
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@Hk/ of Hys on which T is essentially G-definite (resp., G-semidefinite). Then A is the
subspace stated in the theorem. O

Theorem 1 has led us to the following:

Corollary 1. If ¢, v are in Es, then any T € B(H)" has the mazimum subspaces M of
H which reduces T and S such that 7;(¢(T)), 7;(¥(T)) (1 < j < n) are self-adjoint and
7;(o(T)) > 7;((T)) (1 < j < n) hold on M, and the mazimum subspace N of H which
reduces T and S such that 7;(¢(T)), 75 (¥(T)) (1 < j < n) are essentially self-adjoint and
7;(d(T)) > 7((T)) (1 < j < n) hold essentially on any T, S-reducing subspace of N' on
which the C*-algebra generated by the terms of T and members of S is irreducible.

In the case, one has M C N.

Proof. Apply Theorem 1 to the set G = {¢ — ¢}. O

The preceding corollary is well illustrated by the following examples:

Example 1. It follows that, any pair of positive self-adjoint operators A, B € B(H)
has the maximum A, B-reducing subspace on which an indicated operator inequality, e.g.,
e < eB logA < logB, or AP < BP(p > 0), holds, and the maximum A, B-reducing
subspace on which the operator inequality essentially holds on any A, B-reducing subspace
on which the C*-algebra generated by A, B is irreducible. To see this, consider the 2-tuple
T = (A, B) and apply Corollary 1 to the set G of the maps suitably chosen. For the operator
inequality stated above, we consider the sets G; = {¢1, ¥1}, Go = {¢2, 2}, G = {¢3, 3},
correspondingly, where

¢1(Ty, Tp) = e, Ui (Ty, To) = e™2;
2(T1, Tp) =logTy, (T, T2) = log Ty;
o3(Th, Tz) = TP, Po(Ty, To) = ToP.

Example 2. It is known that an operator S is subnormal if and only if

¢A1, Az, ..l An(S) = Z A;S*ksjAk >0

0<4,k<n

for any Ay, As, ..., A, (n > 1) in the C*-algebra generated by S and the identity operator
(see [1]). Then, applying the Theorem 1 to the set G = {¢4,.4,,..,4,}, we see that any
operator T has the maximum subnormal part T and the completely non subnormal part
T such that T =T, & T . Moreover, T has the maximum subspace N which reduces T
such that T is essentially subnormal on any subspace of A which reduces T' and on which

T is irreducible.

3 Applications to operator matrices In this section, we intend to apply Theorem
1 to operators which satisfy given inequalities of operator matrices.
The next theorem is the operator matrix version of Theorem 1:

Theorem 2. For T € B(H) and a subset {¢;; : 1 < 1,5 < N} of Es, there exists the
mazimum subspace M which reduces T and S such that (¢; ;(T))|py > O holds on the
direct sum MY of N copies of M.
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N
Proof. Put M(T) = (¢;;(T)) and ¢;(T) = > ¢xi(T)*¢x;(T). Then ¢;; € Es and
k=1

M(T)*M(T) = (¢;;(T)). Choose a sequence {py} of polynomials in single variable such
that ||pn(M(T)*M(T)) — [M(T)[|| — 0 as n— 00 . Put pu(M(T)*M(T)) = (pnis(T))
and |M(T)| = (¢i;(T)). Then pni; € Es and ||pnij(T) — ¢i;(T)|| — 0 as n — oo for any
1 <4,j < N. Therefore 1);; is the pointwise norm limit of {pn;;}. So we have 1;; € Es.
Now apply Theorem 1 to G = {¢i; —¢s; : 1 < i,j < N}, then we have the maximum
subspace M which reduces T and S, and on which T is G-definite. Therefore M is the
maximum subspace such that (¢; ;(T))| s~ > O holds. O

The similar argument used in preceding proof together with the results on the essential
G-semidefiniteness showed in [8] leads us to the following:

Theorem 3. Let {¢;; : 1 < i,j < N} be a subset of Es. If T € B(H) satisfies that
w((¢:;(T))) > O, 7 is the Calkin map, then there exists an orthogonal family {H,, : m > 0}
of subspaces of H which reduce T and S, and satisfies the following statements:

m=0

) H= @ Hpm, and there is no nontrivial subspace of H., which reduces T and S if
1

(i
m > 1.

(i) Ho is the mazimum subspace which reduces T' and S such that (¢i;(T))|y = O
holds.

Therefore, if m > 1, (¢i;(T))|nn > O holds on essentially, but there is no nontrivial
subspace of Hy, which reduces T and S, and on which (¢;;(T)) > O holds.

Proof. Put M(T) = (¢;(T)) and [M(T)| = (¢i;(T)), {¢i;} C Es. Since 7((¢4;(T))) =
(m(¢sj (T'))) and 7(|T'|) = |7 (T)|, it follows that 7((¢i;(7))) > O if and only if T is essentially
G-definite, where G = {¢i; — 1¥s;}. So, apply Theorem 1 in [8] to G, we obtain the family
{Hm} of subspaces of H stated in the theorem. O

Now we apply Theorem 2 and Theorem 3 to k-hyponormal operators:

Example 3. An operator T € B(H) is called k-hyponormal (1 < k < o0) if the operator
matrix

I T T2 ... Tk

T T*T T*2T ... T*T
T2 T*TQ T*2T2 . T*kTQ
Tk T*Tk T*QTk . T*ka

is positive. The k-hyponormal operators are investigated by [2], [3], [4], [5], [7], and others.
We apply the preceding theorems to this operator matrix, and conclude that any T € B(H)
has the maximum k-hyponormal part, and any essentially k-hyponormal operator T can be
decomposed into the direct sum T' =Ty ® T &1 E - - - of the maxmum k-hyponormal part
Ty and the irreducible essentially k-hyponormal, but non k-hyponormal parts 71, T, ....

Let Hi(1 < k < o0) be the set of all k-hyponormal operators, then it is clear that
Hp.1 C Hi(1 < k < o0), while it is known that ﬂHk coincides with the set of all

subnormal operators. It follows that any 7" € B(H) can be decomposed into

T=TooTh T - ®T;, on H=HoOH1DPH2D--- D Hs,
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where T} is completely non hyponormal, T}, (1 < k < 00) is k-hyponormal but non (k + 1)-
hyponormal and T is subnormal. To show this, first we decompose T' = T P T" where
T, is the maximum subnormal part (acting on the subspace H,) and T" is the completely
non subnormal part (acting on H'). Next, decompose T' = Ty & T, where Tj is the
completely non hyponormal part (acting on Hg) and T} is the maximum hyponormal part
(acting on Hll) of T'. Further, we decompose T1, =T TQ, where 77 is the completely
non 2-hyponormal but hyponormal part and TQ, is the maximum 2-hyponormal part (acting
on Hy) of T;. Recursively, if T} is the maximum k-hyponormal part (acting on H,) of
T,_,, then T}, is decomposed into the direct sum T}, = Tj @ T}, 41 of k-hyponormal but non

(k 4+ 1)-hyponormal operator T}, and the maximum (k + 1)-hyponormal part T,; 41 (acting

on 'H;CH) of T,;. Then, it is clear that ’H; ) H/2 ) H/2 DO -+ and ﬂ 'H;C is a subspace of
k=1
H (= HL) which reduces T', and on which T is subnormal. Thus, by the maximality of H,

we have that ﬂ H, = {0} and hence, putting H;, = H, ©Hist/(k=1, 2, ...), we have

k=1
Hy = @) H and thus
k=1
H="Ho® M, &H, = <@Hk> ®H, and T=TH® <@Tk> & Ty
k=0 k=0

This is the aimed decomposition.
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