
Scientiae Mathematicae Japonicae Online, Vol. 9, (2003), 405–409 405

CANONICAL DECOMPOSITION OF TUPLES OF OPERATORS CAUSED
BY SYSTEMS OF OPERATOR INEQUALITIES

Takateru Okayasu and Yasunori Ueta

Received August 13, 2003

Abstract. Let B(H)n be the algebra of all n-tuples of bounded linear operators on a
separable Hilbert space H, and G a set of maps on B(H)n belong to an appropriate class.

Then any n-tuple � can be decomposed into the direct sum � 0 ⊕�
′

of the maximum
G-definite (respectively, G-semidefinite) part � 0 and the completely non G-definite

(resp., non G-semidefinite) part �
′
. It follows that any bounded operator T has the

maximum k-hyponormal part for any positive integer k, and so, it can be decomposed
into the direct sum T = T0 ⊕ T1 ⊕ T2 ⊕ · · · ⊕ Ts of the completely non hyponormal
part T0, the k-hyponormal but non (k + 1)-hyponormal part Tk (1 ≤ k < ∞) and the
maximum subnormal part Ts.

1 Introduction Let H be a separable Hilbert space, and B(H) the algebra of all
bounded linear operators on H. It is known that any T ∈ B(H) has the maximum sub-
space which reduces T to a positive operator, and that for any pair of self-adjoint operators
A, B ∈ B(H) there exists the maximum subspace M of H which reduces A and B and
on which A ≤ B holds. These facts inspire the existence of maximum subspaces on which
given operator inequalities hold. For a given family G, however, of polynomials in two non-
commuting variables, it is shown in [6] that any T ∈ B(H) has the maximum T -reducing
subspace M on which T is G-definite (resp., G-semidefinite), i.e., p(T |M, (T |M)∗) = O
(resp., p(T |M, (T |M)∗) ≥ O) holds for any p ∈ G. We concerned in [8] with a larger family
G than that of polynomials and made some considerations on the maximum subspaces on
which given essentially G-definite (resp., G-semidefinite) tuples of operators are G-definite
(resp., G-semidefinite). In this paper, we will consider the maximum subspaces on which
given systems of operator inequalities are satisfied.

2 Maximum G-definite, and G-semidefinite parts Let B(H)n be the algebra of all
n-tuples of operators in B(H), S a subset of B(H), and Sn the set of all n-tuples whose
terms are in S. For tuples A = (A1, A2, . . . , An), B =(B1, B2, . . . , Bn)∈ B(H)n, the
map λA, B is defined by

τj(λA, B(T )) = AjTjBj (1 ≤ j ≤ n),

where τj(T1, T2, . . . , Tn) = Tj (1 ≤ j ≤ n), and for p = (p1, p2, . . . , pn) ∈ Pn, the set of
all n-tuples of polynomials in 2n noncommuting variables z1, z2, . . . , zn, z̄1, z̄2, . . . , z̄n,
the map ψp is defined by

τj(ψp(T )) = pj(T1, T2, . . . , Tn, T
∗
1 , T

∗
2 , . . . , T

∗
n).
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Let ES be the pointwise norm closed subalgebra generated by the maps λA, B , A, B ∈
Sn and ψp, p ∈ Pn. For a subset G of ES , a tuple T is said to be G-definite (resp.,
G-semidefinite) if τj(φ(T )) = O (resp., τj(φ(T )) ≥ O) (1 ≤ j ≤ n) hold for any φ ∈ G.

If a subspace M of H reduces T (i.e., M reduces each term of T ), put

T |M = (T1|M, T2|M, . . . , Tn|M).

If a subspace M reduces S (i.e., M reduces any operator in S), then for any φ ∈ G, the
map φM of B(M)n into itself can be defined by the canonical way, and when M reduces
T , the concepts of GM-definiteness and GM-semidefiniteness for T |M make sense, where
GM = {φM : φ ∈ G}.

We have the following:

Theorem 1. Let G be a subset of ES . Then any tuple T ∈ B(H)n has the maximum subspace
M of H which reduces T and S such that T |M is G-definite (resp., G-semidefinite), and the
maximum subspace N of H which reduces T and S such that T |N ′ is essentially G-definite
(resp., G-semidefinite) on any subspace N ′

of N which reduces T and S, and on which the
C∗-algebra generated by the terms of T and members of S is irreducible.

In the case, M ⊆ N holds and the projection onto M is contained in the center of the
von Neumann algebra generated by the terms of T and members of S.

Proof. First, we consider the G-semidefinite case. T is G-semidefinite on a subspace M
of H which reduces T and S if and only if(

τj(φ(T )) − |τj(φ(T ))|)ξ = o for any ξ ∈ M, φ ∈ G, and 1 ≤ j ≤ n,

so, it suffices to show that the subspace

M =
⋂{

Ker
((
τj(φ(T )) − |τj(φ(T ))|)A) : φ ∈ G, A ∈ A, 1 ≤ j ≤ n

}
of H, where A is the C∗-algebra generated by the terms of T and members of S, is the
maximum subspace which reduces T and S, and on which T is G-semidefinite. Since I ∈ A,
it is clear that T |M is GM-semidefinite. Let M′

be arbitrary subspace of H which reduces
T and S, and on which T is G-semidefinite. Then M′

reduces A and τj(φM′ (T )) for any
φ ∈ G and 1 ≤ j ≤ n. Hence we have(

τj(φ(T )) − |τj(φ(T ))|)Aξ = o for any ξ ∈ M′
, φ ∈ G, A ∈ A and 1 ≤ j ≤ n.

Therefore we have M′ ⊆ M and hence M is the maximum subspace. For B ∈ A′
, ξ ∈ M,

φ ∈ G, A ∈ A and 1 ≤ j ≤ n, we see that(
τj(φ(T )) − |τj(φ(T ))|)ABξ = B

(
τj(φ(T )) − |τj(φ(T ))|)Aξ = o

and hence Bξ ∈ M. Thus M reduces B. Consequently, the projection onto M is contained
in the center of the von Neumann algebra generated by A .

In the G-definite case, it turns out by the same way that

M =
⋂{

Kerτj(φ(T ))A : φ ∈ G, A ∈ A, 1 ≤ j ≤ n
}

is nothing but the subspace of H stated in the theorem.
To prove the essentially G-definite (resp., G-semidefinite) case, decompose A to the direct

sum
⊕

Ak, where H =
⊕

Hk, of irreducible algebras Ak, and let N be the direct sum
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⊕
Hk′ of Hk′ on which T is essentially G-definite (resp., G-semidefinite). Then N is the

subspace stated in the theorem. �

Theorem 1 has led us to the following:

Corollary 1. If φ, ψ are in ES , then any T ∈ B(H)n has the maximum subspaces M of
H which reduces T and S such that τj(φ(T )), τj(ψ(T )) (1 ≤ j ≤ n) are self-adjoint and
τj(φ(T )) ≥ τj(ψ(T )) (1 ≤ j ≤ n) hold on M, and the maximum subspace N of H which
reduces T and S such that τj(φ(T )), τj(ψ(T )) (1 ≤ j ≤ n) are essentially self-adjoint and
τj(φ(T )) ≥ τj(ψ(T )) (1 ≤ j ≤ n) hold essentially on any T , S-reducing subspace of N on
which the C∗-algebra generated by the terms of T and members of S is irreducible.

In the case, one has M ⊆ N .

Proof. Apply Theorem 1 to the set G = {φ− ψ}. �

The preceding corollary is well illustrated by the following examples:

Example 1. It follows that, any pair of positive self-adjoint operators A, B ∈ B(H)
has the maximum A, B-reducing subspace on which an indicated operator inequality, e.g.,
eA ≤ eB, logA ≤ logB, or Ap ≤ Bp(p > 0), holds, and the maximum A, B-reducing
subspace on which the operator inequality essentially holds on any A, B-reducing subspace
on which the C∗-algebra generated by A, B is irreducible. To see this, consider the 2-tuple
T = (A,B) and apply Corollary 1 to the set G of the maps suitably chosen. For the operator
inequality stated above, we consider the sets G1 = {φ1, ψ1}, G2 = {φ2, ψ2}, G3 = {φ3, ψ3},
correspondingly, where

φ1(T1, T2) = eT1 , ψ1(T1, T2) = eT2 ;
φ2(T1, T2) = log T1, ψ2(T1, T2) = log T2;
φ3(T1, T2) = T1

p, ψ2(T1, T2) = T2
p.

Example 2. It is known that an operator S is subnormal if and only if

φA1, A2, ... , An(S) =
∑

0≤j,k≤n

A∗
jS

∗kSjAk ≥ O

for any A1, A2, . . . , An (n ≥ 1) in the C∗-algebra generated by S and the identity operator
(see [1]). Then, applying the Theorem 1 to the set G = {φA1,A2,... ,An}, we see that any
operator T has the maximum subnormal part Ts and the completely non subnormal part
T

′
such that T = Ts ⊕ T

′
. Moreover, T has the maximum subspace N which reduces T

such that T is essentially subnormal on any subspace of N which reduces T and on which
T is irreducible.

3 Applications to operator matrices In this section, we intend to apply Theorem
1 to operators which satisfy given inequalities of operator matrices.

The next theorem is the operator matrix version of Theorem 1:

Theorem 2. For T ∈ B(H) and a subset {φi,j : 1 ≤ i, j ≤ N} of ES , there exists the
maximum subspace M which reduces T and S such that (φi,j(T ))|MN ≥ O holds on the
direct sum MN of N copies of M.
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Proof. Put M(T ) = (φij(T )) and qij(T ) =
N∑

k=1

φki(T )∗φkj(T ). Then qij ∈ ES and

M(T )∗M(T ) = (qij(T )). Choose a sequence {pn} of polynomials in single variable such
that ||pn(M(T )∗M(T )) − |M(T )||| → 0 as n→ ∞ . Put pn(M(T )∗M(T )) = (pnij(T ))
and |M(T )| = (ψij(T )). Then pnij ∈ ES and ||pnij(T ) − ψij(T )|| → 0 as n→ ∞ for any
1 ≤ i, j ≤ N . Therefore ψij is the pointwise norm limit of {pnij}. So we have ψij ∈ ES .
Now apply Theorem 1 to G = {φij − ψij : 1 ≤ i, j ≤ N}, then we have the maximum
subspace M which reduces T and S, and on which T is G-definite. Therefore M is the
maximum subspace such that (φi,j(T ))|MN ≥ O holds. �

The similar argument used in preceding proof together with the results on the essential
G-semidefiniteness showed in [8] leads us to the following:

Theorem 3. Let {φi,j : 1 ≤ i, j ≤ N} be a subset of ES . If T ∈ B(H) satisfies that
π((φij(T ))) ≥ O, π is the Calkin map, then there exists an orthogonal family {Hm : m ≥ 0}
of subspaces of H which reduce T and S, and satisfies the following statements:

(i) H =
∞⊕

m=0

Hm, and there is no nontrivial subspace of Hm which reduces T and S if

m ≥ 1.
(ii) H0 is the maximum subspace which reduces T and S such that (φij(T ))|HN

0
≥ O

holds.
Therefore, if m ≥ 1, (φij(T ))|HN

m
≥ O holds on essentially, but there is no nontrivial

subspace of Hm which reduces T and S, and on which (φij(T )) ≥ O holds.

Proof. Put M(T ) = (φij(T )) and |M(T )| = (ψij(T )), {ψij} ⊂ ES . Since π((φij(T ))) =
(π(φij(T ))) and π(|T |) = |π(T )|, it follows that π((φij(T ))) ≥ O if and only if T is essentially
G-definite, where G = {φij − ψij}. So, apply Theorem 1 in [8] to G, we obtain the family
{Hm} of subspaces of H stated in the theorem. �

Now we apply Theorem 2 and Theorem 3 to k-hyponormal operators:

Example 3. An operator T ∈ B(H) is called k-hyponormal (1 ≤ k ≤ ∞) if the operator
matrix 



I T ∗ T ∗2 · · · T ∗k

T T ∗T T ∗2T · · · T ∗kT
T 2 T ∗T 2 T ∗2T 2 · · · T ∗kT 2

...
...

...
. . .

...
T k T ∗T k T ∗2T k · · · T ∗kT k




is positive. The k-hyponormal operators are investigated by [2], [3], [4], [5], [7], and others.
We apply the preceding theorems to this operator matrix, and conclude that any T ∈ B(H)
has the maximum k-hyponormal part, and any essentially k-hyponormal operator T can be
decomposed into the direct sum T = T0 ⊕T1 ⊕T2 ⊕ · · · of the maxmum k-hyponormal part
T0 and the irreducible essentially k-hyponormal, but non k-hyponormal parts T1, T2, . . . .

Let Hk(1 ≤ k ≤ ∞) be the set of all k-hyponormal operators, then it is clear that
Hk+1 ⊆ Hk(1 ≤ k ≤ ∞), while it is known that

⋂
Hk coincides with the set of all

subnormal operators. It follows that any T ∈ B(H) can be decomposed into

T = T0 ⊕ T1 ⊕ T2 ⊕ · · · ⊕ Ts on H = H0 ⊕H1 ⊕H2 ⊕ · · · ⊕ Hs,
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where T0 is completely non hyponormal, Tk (1 ≤ k <∞) is k-hyponormal but non (k+ 1)-
hyponormal and Ts is subnormal. To show this, first we decompose T = Ts ⊕ T

′
where

Ts is the maximum subnormal part (acting on the subspace Hs) and T
′

is the completely
non subnormal part (acting on H′

). Next, decompose T
′

= T0 ⊕ T
′
1 where T0 is the

completely non hyponormal part (acting on H0) and T
′
1 is the maximum hyponormal part

(acting on H′
1) of T

′
. Further, we decompose T

′
1 = T1 ⊕ T

′
2 where T1 is the completely

non 2-hyponormal but hyponormal part and T
′
2 is the maximum 2-hyponormal part (acting

on H′
2) of T

′
1. Recursively, if T

′
k is the maximum k-hyponormal part (acting on H′

k) of
T

′
k−1, then T

′
k is decomposed into the direct sum T

′
k = Tk ⊕ T

′
k+1 of k-hyponormal but non

(k + 1)-hyponormal operator Tk and the maximum (k + 1)-hyponormal part T
′
k+1 (acting

on H′
k+1) of T

′
k. Then, it is clear that H′

1 ⊇ H′
2 ⊇ H′

2 ⊇ · · · and
∞⋂

k=1

H′
k is a subspace of

H′
(= H⊥

s ) which reduces T , and on which T is subnormal. Thus, by the maximality of Hs,

we have that
∞⋂

k=1

H′
k = {o} and hence, putting Hk = H′

k 
Hk+1
′(k = 1, 2, . . . ), we have

H′
1 =

∞⊕
k=1

Hk and thus

H = H0 ⊕H′
1 ⊕Hs =

( ∞⊕
k=0

Hk

)
⊕Hs and T = T0 ⊕

( ∞⊕
k=0

Tk

)
⊕ Ts.

This is the aimed decomposition.
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