Scientiae Mathematicae Japonicae Online, Vol. 9, (2003), 333-342 333

LORENTZ MULTIPLIERS FOR HANKEL TRANSFORMS
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ABSTRACT. Let ¢ be a function on (0,00) continuous except on a null set, and
$e(&) = ¢(e€) (e > 0). Also T. be the operator on Jacobi series such that (T.f)"(n) =
dc(n)f(n) (n € Z), where f(n) is the coefficient of Jacobi expanstion of f, and
Ho(TF)(E) = d(E)Haf () (€ € (0,00)), where Hqof is the modified Hankel trans-
form of f with order a. Then Igari [4] proved that if the operator norm of T, is
uniformly bounded for all € > 0, T" is an operator on Hankel transforms(the details in
§1,82). After that, Connett-Schwartz[2] and Kanjin[5] proved the weak version and
the maximal version by using [4], respectively. In this paper, we prove the analogy of
Igari[4] in the Lorentz space, in the same way. Also in §3, as an application of this
result, we show a result with respect to the partial sum operator of the Jacobi series.

1. Introduction
Let (X, v) be a measure space, and for any 1 < p < 00,1 < ¢ < oo, LP?(X) define the
Lorentz space such that

LPUX) = {f: f is measurable, || f |, ,< o0},

where -
= { {afo v({] f[>thP)eg}/e (1< q<o0)
P supgsotr({] f [> tHYP (g = o00).
In particular, LP4(X) = L?(X) for p = q.
Now let P,(La’ﬂ)(x) denote the Jacobi polynomial of degree n and order (o, 3), o, > —1
defined by

(=1 a"
27! dxn

(1—2)*(1+ )’ PP (a) = (1 =)™ (1 +2)"+7}.

The functions {PT(LO"B )(cos 0)}52, are orthogonal on (0, 7) with respect to the measure
du(0) = (sin §)2°*+(cos §)?9+1dg. For a functon f(f) integrable on (0,7) with respect to
dp, define

fn) = /0” F(8) PP (cos B)(sin g)%‘ﬂ (cos g)2ﬁ+1d9.

Put : i} 9 9
W@ /0 [P (cos )] (sin 5 )2+ (cos )5+,

Then { h%a’B)quaﬁ)(cos 0)}22, is a complete orthonormal system in L?((0, 7), u). For
(X,v) = ((0,7), ), we denote the Lorentz norm of g € LP%(0,7) by || g ||7,. For any
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@ el®(=0~({0,1,2,....... 1)), we define a transformation T} by

Tsg(0) = Z d(n)g(n)h{&?) PP (cos 9),
n=0

and the opetator norm from LP"(0,7) into LP9(0, ) by

1o 131 pripay= 5Pl Tog [ g2l 9 |

J 00

< 1,g€CZ(0,m)},

and M7 (p,7;p,q) = {Ty | Ty ||‘I{/I(p,7’;p,q)< oo}. For a > -1, (X,v) = ((0,00),dn(z) =
222t1dz), and a function f on (0,00), we denote the Lorentz norm of f € LP9(0,00) by
M7l 5{ q- Also the modified Hankel transform of order « is defined by

Ja(zy)
(@y)° dn(y),

Haf () = / ")

where J, is the Bessel function of the first kind. Also the multiplier transformation associ-
ated with ¢ € L*°(0,c0) is defined formally by

Jo(zy)
(zy)*

T.fw) = [ " o Hat )22 ),

the operator norm of Ty from LP"(0, c0) into LP9(0, c0) by
1 T 13 p.ripay= S To f gl f Nl < 1, f € C(0,00)},
and M (p,r;p,q) = {Ty || Ty ||§I/I(p7r;p7q)< oo}. For e > 0 and ¢ € L>(0,00), let

Ja (1'3/)
(zy)>

T*f(x) =sup | T f(x) |,
e>0

T.f(x) = /0 " oler)Haf ()2 ),

T.g(0) =Y d(en)g(n)h{™? PP (cosb),
n=0

and R R
T*g =sup | Teg(w) |,
e>0

where f € C°(0,00) and g € C°(0, 7). Igari[4] showed the following:
Theorem A Let 1 < p < oo and «, 8 > —1. Assume that ¢ is a function on (0, c0)
continuous except on a null set and liminf._, ¢

ITe ”‘I{/I(pw;p,p) is finite, then || T Hﬁl(p,p;pw)S liminfeo || Te ”LI{/I(p,p;p,p)'

After that, Connett-Schwartz[2] showed the analogy of weak type:

Theorem B Let 1 < p < oo and «, § > —1. Assume that ¢ is a function on (0, c0)
continuous except on a null set and liminf._, ;¢
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| T. ||M(ppp ooy 18 finite, then || T ||M(ppp ooy S liminfe 4o || Te ||‘1{/I(p7p;p,oo).

Also Kanjin[5] showed the analogy of maximal type:

Theorem C Let 1 < p < oo and o, # > —1. Assume that ¢ is a function on (0, 00)
continuous except on a null set and || T* H]{/[(p,p;p7p) is finite, then || T* ||ﬁ(p7p;p,p)< 00.

In §2, we show Theorem 1 that is the analogy of Theorem A and Theorem B on the Lorentz
space. Also we prove Theorem 2 that is a generalization of Theorem C by the application
of [6]. Also in §3, we show an application of Theorem 1 with respect to the partial sum
operator Sy on LP4(0,):

for a > —%, 1 < r < oo and the partial sum operators Sy (N = 1,2, ...),
SN : L%’T(O,W) — L%’W(Oﬂr)
are unbounded.

Throughout this paper, for s > 0, we denote s’ the conjugate exponent of si.e. 1/s+1/s" =
1, and the letter C' a positive constant that may vary from line to line.

2. Results
First we show the following;:

Theorem 1 Let 1 < p < o0, 1 <¢g<o00, 1 <r <ocanda, > —1. Assume that
¢ is a function on (0,00), continuous except on a null set and sup.q || Te |4, is
finite, then T € M (p,r;p, q).

Proof. Let M > 0, f € C>(0,00) and f.(6) = f(6/¢€). Also let € be a positive number
such that w/e > M and N a positive integer. We define

(p,75p,9)

(1,1/€) = Z¢ (en) fe(n)h(>P) PLB) (cos er) (= T.f.),

(r,1/€) = Z d(en) fe(n)hl@P) PleoB) (coser),

HN(1,1/€) = G(1,1/e) — GV (1,1/€),

and

= [ otHatt) f“i) dn(y) (= TH(r)).
0 7'2/)

Also let K > 0 and h € C2°(0, K) be fixed. Then we obtain

/GNfl/e /Grl/e /HNTI/6 7)dn(7),

| / GV (7, 1/ h(r)dn(r) |

<C | x0.x)G(r1/e) | H

and

o+ 1 xo)HY (1,1/€) 2l £ 1lL2m),
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where X (o,x) is the characteristic function on (0, K). Here, we estimate || x(0,x)G(7,1/€) |7,
Let 0 < § < 1 be fixed. Then for there exists ¢g > 0 with 7/¢y > K such that for any
0 < € < ¢g we have

I X0,50)G (T, 1/€) Ity < € BarD/paleat o )12 | G0/e,1/e) Iy,

by the change of variables and the definition of the Lorentz space, and we obtain that for
O0<e<e

I x0,)G(T,1/€) I3,

< (2042 /pg2at)/p(q 4 5)1/P(51>113 | T. ||1Jw(p,r;p,q)) I fe ||,{77,

by the assumption and G(6/e,1/€) = T, f.(#). By the change of variables, we can show that
in the case of r < 0
¢~ 2at2)/pgRatl)/p || ¢ ||;"T
— ¢ (2042)/p9(20+1)/p
dt

o [ eutto < 7 16/6) 15 ey

ﬁ)ﬂﬁ

/ /{°< <Mlg( >|>t}(sme(:/T2/2))2““ cos(er/2)* (7)) /7)" 2

and there exists €; > 0 with €; < €g such that
e~ Cat/poCet /b f |17 < C || £, @0 <e<e)

for some C' > 0 by the dominated convergence theorem with || f ||coc< c0. In the case of
r = 0o, we can show , similarly. Therefore, for any €; > € > 0, we have

K
N
| / G (r, 1/e)h(r)dn(r) |

< CA+)7 I £ 113 (S'ig I Te 1t pripa) |0 5+ 1 X0, 00 BN (7 1/€) iz || B Il 2 -

Here, we remark | GV (7,1/¢) |< CQ(e > 0) by the estimates of GV (7,1/e) (cf.[4;p.205]).
Then, GV (1,1/¢) — GV (1) (¢ — 0) weakly and pointwisely for some G (7) by [4]. After

all, we get
K
| / GN (r)h(r)d(r) |

~ B
< C(l + 5)2/P || f ||£{T (Sgg || T€ ||}]\/[(p,r;p,q)) || h ||5,q’ +m || h ||L2(7])7

where B is a constant independent on € and N. Since it is shown that
| GN — G || 2((0,5),yy— 0 as N — oo by [4], we obtain that

| / G(r)h(r)dn(7) |

<CA+O)YP| £ (sup | Te |t prip) | 21l
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Therefore, we have that
|| Tf ||ZI)~I,qS C(Sl>lIO) H Te H]{4(p,’r;p,q)) H f ||ZI;I,T

and R
I ||§\LI/I(1>J’;1D¢1)S ngg [E ”‘I{/I(pm;nq) :
€

q.e.d.
Next we show a generalization of Theorem C.

Theorem 2 Let 1 < p < o0, 1 <gqg <00, 1 <r <ocanda, > —1. Assume that
¢ is a bounded continuous function on (0, co)and || T* ||‘I{/I(p ripq) 18 finite, then

[ ||]F‘I/1(p,r;p,Q)< 0.

To prove this statement, we show the following Lemma:

Lemma(cf.[6])

(1) We have || T* HJJw(p ripg) < 00, if and only if, there exists a constant ' such that for
any positive integer N,

N N
1D T 150 C U o5 I
i=1 =1

for all ¢; > 0 and g; € C(0,7) (j =1,2,...,N).

(2) We have || T* Hﬁ,(p ripg) < 00 if and only if, there exists a constant C' such that for
any positive integer N,

N N
IS T f < CUD L Iy
i=1 =t

for all ; > 0 and f; € C(0,00)Q(j =1,2,...,N).

Proof. (1)By Hunt[3], for any g; € C°(0,7) (j =1, ..., N), we may assume that

N ~
H ZTEJQJ H;i’,r’
j=1

N
— sup{]| /ZTejgjhdu A 2,< 1, he C2(0,m)).
j=1

Then we have that for any h € C°(0, )

/Zﬂjgjhdu = /ZTejhgjdu,
j j
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and
[ S Taghaul< [ SSE DS 19

By the assumption, we obtain

N
|| ZTejgj ||Lpg’,7"’S C || T ||JJV](p,r;p,q)|| Z | 9;j |||g’,r’ :
Jj=1 J

Next we show the inverse. For any g € C2°(0, 7), we can show
T"g =sup | Teg |=sup | T¢,qg |
e>0 €; >0

for some {e;}32;. In fact, by the definition of T.f, the estimates of (™"

and || ple?) l|oo (cf.[7]), and the assumption of ¢, F(e,#) = T.g(6) is continuous on (0, 00) x
(0, 7). On the other hand, for any €y > 0, by the duality[3], we may assume

[eg |l|2, —eo < I,
I max [ Te,g (g —0 < [ jmax | Te,g | hdp

for some h > 0 with || h H;{',wf 1. Also let 0 < € < ¢ be fixed and 1 < j < N. We

define Ej(G) = {m%xlngN | Tekg | —€ <‘ Tejg |}, Fj(e) = Ej(e) - U?c;llEk(G), Ey = ¢, and
hj = XF;eh sgn(Te;g). Then we obtain

> Toghi = |Teg| Xry0h
j j
> I oal —
> Z(lg%v | Te;9 | —€)hXF;(e)
J

= (128?]\, | Te,g | —€)hZXFj(e),
J

and

i EjjTejghjdu = [ (max |7 h ] —co)bdp.

Then we may assume hj € C°(0,7) (j = 1, ..., N), since C2°(0, 7) is dense in L9 ((0, 7), dp).
Therefore, we get that

/ max | Tog | hdp < C g 7,0 15

<O Tohs Nyl gl
i

and
[ s | Tog i <€ 1 g 13,003 B 1 +eo | [ B

1<j<N

Hence, it is shown that

A J J
[ w1 Tg Lhdu <C g 10 b 1
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by 2 | hj [<[ b ], and

H 1r<nzixN | Te;g |Hp q—= c H 9 ”PT ’

So by the usual method, we get

IT*g 7 < C gl

(2): By the duality, we may assume

N
H ZTejfj H;{j’,q’
j=1

N
—sup{| [ (T, fi)hn : | |, < 1, b e C2(0,00))
j=1

Here, we have
N N
[ 3o soman = [ 37T m s
j=1 Jj=1

by Hafj, Hah € L*(n) and the definition of T.,. Then we get that by the assumption
[ ST syinl [ TS 16 | dy
J

SCUT RAGNY T f g

and
N
IN T i I < CIT RN,
=1

In the inverse case, as we remember ¢ € C(0,00) N L*>°(0,00) and f € C°(0,00), we can
show the result as same as the proof of (1). We omit the details.
q.e.d.

The proof of Theorem 2.

Let L be any positive integer, {fj}f:1 C C(0,00) with supp f; C (0, M) for some M > 0,
and f;(8) = f;(6/¢) for € > 0. Also let ¢y be a positive number such that w/eg > M. For
0 < € < ¢p and a positive integer N, we define

(r,1/¢) = Zqﬁ ejen) fi.(n)hP plB) (cos er),

N[1/¢]

Gj'v(ﬂl/e) Z ¢(6j6n)fj,e(n)hgf"mP,saﬁ)(coseT),

and

HJN(T,l/E) =Gj(r,1/e) — G;-V(T,]./G) (j=1,..,L),
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where {¢;}52; is dense in (0, 00). By the application of Lemma, we shall show || 7* ||§I/I(p ripa) <
oo in the same manner of the proof of Theorem 1. Let 0 < K < w/¢y be fixed, and
h € C(0,00) with supp h C (0, K). By the definition of G;-V(T, 1/¢), we have

/ S GY (r,1/e)h(r)dn(r)
—Z/GTI/E Z/HNTI/E (7)dn(7),

and K
D / G (r, 1/)h(r)d(7) |
<l xe. K>ZG (1) I B 2+ 1S Y (1) oy B ooy
J

Then in the snnﬂar way to Theorem 1, we get that for any 0 < § < 1 and sufficiently small
e>0

|| X(0,K) ZG T, 1/6 ||p r’< (1 _|_5)1/p H ZTejefj,e H;i’,r’v
and by Lemma (1) and the definition of T*

I x.:) Y Gi(r1/€) [lyf o
J

< C(l + 5)1/}) 2(2a+1)/p 67(2a+2)/p H T* HJJV](p,T;p,q)” Z f]ﬁf ||g’,q’

for sufficiently small € > 0. After all, we have in the same way of the proof of Theorem 1
that for sufficiently small € > 0,

K
[ S e aanein) |

<O+ (Y i gl T IRspripay | B 115

+ 1D HY (1.1/€) 20,0l B llL2s
J

and
L

I/ZG (M) IS CAU+ ) I T R rpripall D 15

j=1

by Igari[4], and we get

L L
H ZTﬁjﬁfj ||[1;{,7"’S C H T ||L1{/1(p,r;p,q)H Z | f] |H;{7{’,q’ :
j=1

j=1
Hence, by Lemma (2), we obtain the desired result:

p,Tipyq)

q.e.d.
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3. An application.
Colzani[1] showed the following:

Theorem D Let a > —1/2 and 1 < r < co. The partial sum operators {Sg} are not
bounded from L(*4@+4/Rat3).r () into [Ae+4)/(Ra+3)00(p) where

R
Suf(a) = [ S f)inty) (7 € €22 (0.5)

By the application of Theorem D, we can show the following result:

Theorem 3 Let o, > —1/2 and 1 < r < oco. The partial sum operators {Sy} are
not bounded from
Lt/ @at3)r((0, 1), 1) into LAe+T4)/Rat3).00((0 1), 1), where

N
Sng(0) =Y §(n)hiP PP (cos ) (g € CZ(0,m)).
n=0

Proof. We may assume r < co by the property of the Lorentz norm. Also we assume that
{Sn} are bounded from L(*e+4/Ra43)r((0 1), 1) into LAe+4)/Rat3).00((0 1), 1). Then we
define that for ¢, R > 0

or(€) = x(0,r) (§),
and
(Teg)"(n) = ¢r(en)g(n) (g € C(0,)).
)

Here, by the assumption of {Sx} and ¢r(en) = Xx(0,r/e)(n), we obtain

dot4d < 00.
Sat3 " %aT3)

2 J
sup I Te iy ansa

On the other hand, by Theorem 1, for a > —% there exists a positive constant C' > 0 such
that

| Tor ||§I/I(M pidotd S Ciglg | Te H}@(M podata

2a+3°'"2a+3’ 2013 T 3a73:°°)

Therefore, we get that {Sg} are bounded from L4a+4)/(a+3).m((0 00), ) into L4a+4)/Cet3).00((0, 1), 7).
This is a contradiction to Theorem D. Hence, we get the desired result.
q.e.d.
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