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NORMAL BCI-ALGEBRAS

YISHENG HUANG
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ABSTRACT. In this paper we generalize the following five notions from BCK-algebras
into BCl-algebras: stabilizer, left and right stabilizers, normal BCK-algebra and nor-
mal ideal, and investigate some basic properties of them.

80. Introduction and preliminaries

In [6], by using stabilizers and left and right stabilizers in BCK-algebras, we introduced
and investigated normal BCK-algebras. In [5] we considered normal ideals in BCK-algebras
(early in 1991, Hoo in [4] had actually got involved in the consideration of them in BCI-
algebras). In this paper we will generalize each of these notions from BCK-algebras into
BClI-algebras, and investigate a number of basic properties of it.

Throughout this paper, for the symbols and terminologies concerned, we refer the reader
to [2], [7], [8] and [9], and we will use some familiar properties without explanation.

Recall that given a BCI-algebra X, the BCl-ordering < on X is defined by which x <y
if and only if z xy = 0 for any z, y € X. A positive element x of X means z > 0 (i.e.,
0z = 0), and the set of all positive elements of X is just the BCK-part B of X; a minimal
element x of X means that y < x (i.e., y x x = 0) implies © = y for any y € X, and the
set of all minimal elements of X is just the p-semisimple part P of X. It is known that for
any z, y € X, if x <y, then y * x is a positive element of X, and that for any x € X there
is one and only one minimal element a of X, satisfying a < x (refer to [9, §1.3]). An ideal
A of X is a subset of X such that (i) 0 € A and (ii) z,y*xx € A imply y € A for any
x,y € X. A subalgebra Y of X is a nonempty subset of X such that Y is closed under the
BClI-operation * on X. If A is both an ideal and a subalgebra of X, we call it a closed ideal
of X. An ideal A of X is closed if and only if 0 x x € A for any x € A. The BCK-part B
of X is a closed ideal of X and the p-semisimple part P of X is a subalgebra of X. The
generated ideal (S) of X by a subset S of X can be expressed as

<S>:{0}U{x€X‘ (- ((x*ay) *xag)*---)%a, =0 }

for some ai, as, ..., a, € S

If S = {a}, we denote (a) for ({a}) in brevity. In the following let’s write down several
results: for any z, y, z € X,

0.1) (z*y)x(x*x2) < zx*xy;

) (zey)s(zry) <orz

) 0k (wry) = (0x2)*(05y);

) wry=xx(z*(T*y));

) 0z is a minimal element of X;

) 0#(0%2x) =z whenever z is a minimal element of X;

) xxy <z, ie., (z*xy)*x =0, whenever y is a positive element of X.
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Every ideal A of X determines a congruence = on X in the sense that = y (mod A) if
and only if zxy € A and y*z € A for any z, y € X. The symbol X/A will be used instead
of the quotient algebra X /=, which is still a BCI-algebra.

If A and I are ideals of X such that X = (AU I) and AN = {0}, then X is called
the subdirect sum of A and I, denoted by X = A@®I. It is known that if A, I are closed
ideals of X and if X = A® I, then for any x € X, there are uniquely a € A and b € I such
that = a(mod I) and z = b(mod A) (see [2, Theorem 2.1]). The element a is said the
component of x in A, and b of x in I.

Proposition 0.1. Let A, I be two closed ideals of a BCl-algebra X such that X = AT
and let a € A and b € 1. Then a is the component of x in A and b of x in I if and only if
rxa=>bandxxb=a.

Proof. The necessity is a special case of [2, Proposition 2.6], and we only need to show the
sufficiency. In fact, since [ is closed, our supposition of sufficiency means that xxa=0b¢€ I
and axx = (z*xb)xx=0xb€ I, then x = a(mod I), and so a is the component of x in
A. Similarly, b is the component of x in I.

Proposition 0.2. Let A, I be two ideals of a BCI-algebra X such that X = AS I and let
z, ' be any elements in X.

(1) If a and o’ are respectively the components of x and x’' in A, then a * a’ is the
component of x x x' in A.
(2) If x and &' have the same components in both A and I, then x = 2.

Proof. (1) Tt is got by the substitution property of congruences.

(2) Since X = A®I, we have AN I = {0}. If  and 2’ have the same components in
A, by (1), 0 is the component of x * 2’ in A, then z *x 2’ € A. Similarly, x * 2’ € I. Hence
xxx' € ANT ={0} and = * 2’ = 0. Likewise, 2’ * x = 0. Therefore = 2.

Assume that X = A® . If for any a € A and b € I, there exists x € X such that a is
the component of z in A and b of z in I, we say X is the direct sum of A and I, denoted
by X =A@ 1.

Proposition 0.3. If the p-semisimple part P of a BCI-algebra X is an ideal of X, then
X = B® P where B is the BCK-part of X.

Proof. For any x € X, letting a be a minimal element of X, satisfying a < x, we have a € P
and z *a € B, then z € (BUP), and so X = (BU P). It is obvious that BN P = {0}.
Thus X = B@® P. Also, for any b € B and p € P, putting 2 = bx* (0 x p), by (0.5), we have

kb= (bx(0xp))xb=0%(0xp) € P,
bxz=0bx(bx(0xp)) <0xpeP.

Then x = b (mod P). On the other hand, by (0.3) and (0.4), we obtain
Oxx=0%(b*x(0*p)) =(0xb)* (0% (0xp)) =0 (0% (0xp)) =0xp.
Then (0.2) and (0.6) together give

zxp=(bx(0xp))xp=(bxp)*(0xp) <beB,
pxx=0*0*p))*xx=0xx)*x(0*p)=(0*xp)*(0xp)=0¢€ B.

So, z = p (mod B). Hence X = B® P.
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A BCK-algebra X is called normal if for any a € X, the right stabilizer {a}F, i.e., the
set {z € X |z *xa =z}, is an ideal of X (see [6]).

Proposition 0.4. A BCK-algebra X is normal if and only if x xy = x implies y xx =y
for any x, y € X (see [6, Theorem 2]).

An ideal A of a BCK-algebra X is called normal if  * (z *y) € A implies yx (y+xx) € A
for any z, y € X (see [5]).

Proposition 0.5. A BCK-algebra is normal if and only if the zero ideal {0} of it is normal
(see [5, Theorem 2.3]).

81. Stabilizers
Definition 1.1. Given a nonempty subset S of a BCl-algebra X, the sets

S;={x€X|axx=aforanyac S}
Sp={re X |xxa=uforany a € S}
are called the left and right stabilizers of S, respectively. And the set
S*={reX |axx=aand xxa =z for any a € S},
ie., S* = 57 NSE, is called the stabilizer of S.

These are the natural generalization of the corresponding notions in BCK-algebras, thus
there are many similar properties, but their proofs need to be made suitable change. It is
obvious that if S, T are nonempty subsets of X, then

(1.1) 57 =Maes{a}i, Sk =aes{a}r and 5" =,cg{a}™;
(1.2) (SUT);, =SinTf, (SUT)R=8,NT} and (SUT)*=8S*NT*
(1.3) if SCT,thenT; CS;, THC Sy and T* C S™.

For convenience we call S a positive subset of a BCl-algebra X if S is a nonempty subset
of X and every element in X is positive. Similarly, we have the notions of positive ideals
and positive subalgebras of X.

Proposition 1.1. The left stabilizer S} of any nonempty subset S of a BCI-algebra X s
a positive ideal of X, thus it is a closed ideal of X .

Proof. Clearly, 0 € S%, then S3 # ). For any x € S7 and any a € S, since
Oxz=(axx)xa=axa=0,
S} is a positive subset of X. Also, if z, y x 2 € S}, then
a=ax(yxz)=(axx)*(y*z).
So, (0.2) implies
ax(axy)=((axx)*x(y*xx))*(a*xy) < (axy)*(axy)=0.
On the other hand, note that S} is a positive subset of X, by (0.3), the following holds:
(axy)*xa=0%xy=(0xy)*0=(0xy)*(0xx)=0x*(y*xz)=0.

Hence a xy = a and y € S7. Therefore S} is a positive ideal of X. Finally, it is obvious
from S} being positive that S} is a closed ideal of X.
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It is a pity that a right stabilizer or a stabilizer may be empty. But we have the following
results.

Proposition 1.2. Let S be a nonempty subset of a BCI-algebra X. Then
(1) S% (or S*) is not empty if and only if S is a positive subset of X ;
(2) if S is a positive subset of X, then S}, is a subalgebra of X, containing the whole
minimal elements of X ;
(3) if S is a positive subset of X, then S* is a positive subalgebra of X .

Proof. (1) If S} or S* is not empty, putting x € S}, (or z € §*), for any a € S, we have
Oxa=(r*xa)*xz=x*xx =0,

that is, a is a positive element of X. Hence S is a positive subset of X.

Conversely, if S is positive, then 0 xa = 0 for any a € S. So, 0 € S}, and S5, # 0. Also,
clearly 0 € S}, then 0 € S} N Sj, that is, 0 € S*, and so S* # 0.

(2) If S is positive, by (1), S, # 0. Putting z, y € S}, for any a € S, we have

(x*xy)*a=(r*xa)*xy=1xx*y,

then z*y € S},. Hence S}, is a subalgebra of X. Also, since S is positive, by (0.7), z*a < x
for all x € X. Now, if z is minimal, then x * @ = =, and so € S§. Hence S} contains the
whole minimal elements of X.

(3) Since S* = S} N S}, Proposition 1.1 together with (2) gives that S* is a positive
subalgebra of X.

However, even if S is a positive subset of X, S% and S* are generally not ideals of X.

Example 1.1. Let X = {0, 1, 2, 3, a} and define a binary operation * on X by

* 0 1 2 3 a
0|0 0 0 0 a
11 0 0 0 a
212 2 0 2 a
313 3 3 0 a
a a a a a 0

Then (X; *, 0) is a BCI-algebra (refer to [9, Theorem 5.1.1]). Obviously, {2}5 = {0, 3, a}
and {2}* = {0, 3}. Since 3 € {2}}, and 1 %3 =0 € {2}5, but 1 ¢ {2}5, {2} is not an
ideal of X. Similarly, {2}* is not either.

Proposition 1.3. Let S be a nonempty subset of a BCI-algebra X .
(1) If0 € S, then SN S} = {0}, otherwise, SN Sy = 0.
(2) SC(SD)k-
(3) S =((S))R)L:

Proof. (1) If0 € S, since S; is an ideal of X, we have SN S} # (). For any z € SN S,
by =z *x = 0, we obtain SN S} = {0}.

Next, if it is false, then S N S # 0. By the proof we just now give, S NS} = {0}, then
0 € S, a contradiction with 0 ¢ S. Hence S N St = 0.

(2) By virtue of Proposition 1.1, S7 # (. If a € S, then a xz = a for any z € S}, and
so a € (S} )5, and hence S C (S)%.
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(3) By (2), (S})5 is non-vacuous, then ((S})%)} is well-defined. Using (2) and (1.3),
we obtain ((S})%); € S;. On the other hand, if a € S}, then a2 = a for any x € (S})%.
Hence a € ((S7)%); and ST C ((S7)5); . Therefore S7 = ((S7)%)3.-

Proposition 1.4. Let S be a positive subset of a BCI-algebra X .

(1) If0€ S, then SN S = SN S* ={0}, otherwise, SN SH =5SNS*=0.

(2) S C(S%); and S C S** where S** = (S*)*.

(3) S3 = ((Si)i)p and S* = 57,

The proof is similar to Proposition 1.3 and omitted.

Proposition 1.5. Let S be a positive subset of a BCI-algebra X. Then S§ = (S)}; and
S% N (S) = {0} where (S) is the generated ideal of X by S.

Proof. By (1.3), (S)5, C Si. Letting € S}, we have

(1.4) z+xa=uz foranyacsS.
For all b € (S), if b =0, of course, x *b = x; if b # 0, there are a1, ag, ..., a, € S such that
(1.5) (- ((b*xay)*ag) *---)*xa, =0.

Repeatedly applying (1.4), the following holds:
(1.6) x=(-((xxar)*xaz)*-)*ap.
Putting (1.5) and (1.6) together, we obtain
x=(((zxar)*xag)*x-)xay)* (- ((bxay)xaz)*--)xay).
Now, using (0.2) step by step, it follows
< (- ((xxay)xag) - )kapn_1)* (- ((bxa)*az)*-)xap_1) <+ <axxb,

that is, z < x*b. On the other hand, it is easily seen from (1.5) and (0.3) that b is a positive
element of X, then z xb < x by (0.7). So,  *b = x. Thus z € (S)5. Hence S C (S)%.
Therefore Sj;, = (S)}. Also, by Proposition 1.4(1), Sj, N (S) = (S); N (S) = {0}.

It is interesting that if S is a positive ideal of X, we have some unusual properties,
including that S* must be an ideal of X.

Theorem 1.6. Let A be a positive ideal of a BCI-algebra X. Then A* = A} C A%, thus
A* is a positive ideal of X. Moreover, if A}, is an ideal of X, then A* = A} = AR N B
where B is the BCK-part of X.

Proof. For the first half part, if A7 C Ay, then A* = A} N Ay, = A}, and A" is a positive
ideal of X by A7 being a positive ideal of X. It remains to show A7 C A%. Put z € A7.
For any a € A, by z * (z *xa) < a, we obtain x * (x *a) € A, then

(z*(x*xa))xx=uzx*(x*a).
As A and A} are positive ideals of X, a and z are positive elements of X, then
(xx(xxa))*xz=0.

Comparison gives = * (x * a) = 0. Also, by (0.7), the equality (x * a) * x = 0 holds. Hence
zxa =z and x € Ay. Therefore A7 C Aj,.
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For the second half part, because A} is a positive ideal of X (i.e., A7 C B) and because
A* = A} C Ay, it suffices to show Ay N B C A}. Put x € A; N B. For any a € A, since x
and a are positive elements of X, we obtain a * (a * z) < a, then a* (a xz) € A. As A}, is
an ideal of X and a * (a*z) < x, we derive a* (a*xx) € A%. So, a* (axx) € AN A},. Note
that AN A}, = {0}. It follows a * (a*x) = 0. Obviously, (a*z)*a = 0. Thus a*x = a and
x € A}. Hence A,NB C Aj.

Theorem 1.7. Let X be a BCIl-algebra, A a positive ideal of X, and I a closed ideal of X .
If AN = {0}, then I C A%,. Further, if X = AG I, then I = A%},.

Proof. Assume that AN T = {0}. Putting x € I, for any a € A, since A is an ideal of X,
by x * (z *x a) < a, we obtain x * (x * a) € A. Because A is positive, we have

(xx(xxa))*xx=0x(xxa)=(0*xz)* (0xa) =0x*ux.
Then the fact that I is a closed ideal of X implies z * (x x a) € I. Hence
zx(z*xa) e ANI={0}.

Thus z * (z * a) = 0. Also, by (0.7), (z * a) * x = 0. Therefore z *x a = 2 and = € A}. We
have shown that I C A%,.

Further, if X = A@ I, then ANI = {0}. By the above proof, I C A},. Also, for any
x € Aj, letting a be the component of  in A, we have a € A and = *a € I. Note that
z+a =x. It follows x = x xa € I. Hence Ay, C I. Therefore I = A},.

§2. Normal BCI-algebras
Definition 2.1. A BCl-algebra X is called normal if for any positive element a of X, the
right stabilizer {a}7, is an ideal of X.

It is evident that any normal BCK-algebra is a normal BCI-algebra.

Example 2.1. Let X = {0, 1, a, b} and define two binary operations * and *' on X by

*\0 1 a b ] 0 1 a b
0/ 0 0 a a 0/l 0 0 a a
111 0 b a 111 0 a a
al a a 0 0 al a a 0 0
bl b a 1 0 bl b a 1 0

Then (X; *, 0) and (X; #/, 0) are BCl-algebras (see [9, page 276]). It is easy to verify that
the former is normal, but the latter is not.

Using (1.1) we directly have the next result.

Proposition 2.1. A BCl-algebra X is normal if and only if the right stabilizer S}, of any
positive subset S of X is an ideal of X.

Note that (S}) is the least ideal of X, containing S}, the following holds.

Corollary 2.2. A BCI-algebra X is normal if and only if S;, = (Sk) for all positive subset
S of X.

If X is a p-semisimple BCI-algebra, then 0 is the only positive element of X. It is evident
that {0}3 = X and X is an ideal of itself. We have then had the next assertion.
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Proposition 2.3. FEvery p-semisimple BCI-algebra is normal.

A nonzero BCl-algebra X is called J-semisimple if X contains at least a maximal ideal
and the intersection of the whole maximal ideals of X is equal to {0}. If X = {0}, we
provide that it is J-semisimple (see [10]). It has been known that if X is J-semisimple, the
right stabilizer of any positive element of X is a closed ideal of X (see [10, Theorem 13]).
Thus this assertion can be rewritten as follows.

Theorem 2.4. Every J-semisimple BCI-algebra is normal.

Proposition 2.5. A BCl-algebra X is normal if and only if every subalgebra Y of X s
normal.

Proof. Since X is a subalgebra of itself, the sufficiency is naturally true, and we only need
to show the necessity. For any positive element a in the subalgebra Y of X, we denote
({a}})y for the right stabilizer in Y and ({a}},) x for that in X, namely,

{alp)y ={z €Y |zxa=2} and ({a}p)x ={ze X |z*xa=u2a}.

Obviously, a is also a positive element of X. By the normality of X, ({a}};)x is an ideal of
X. Then ({a}%)x NY is an ideal of Y. It is obvious that ({a}})y = ({a})x NY. Hence
({a}%)y is an ideal of Y, proving Y is normal.

Theorem 2.6. If X is a normal BCI-algebra, then the p-semisimple part P of X is an
ideal of X and X = B @ P where B is the BCK-part of X.

Proof. Put z,y € X with , yxx € P and let a € P be the minimal element satisfying
a <y. Since P is a subalgebra of X, we have (y*x)*a € P, i.e., (y+a)*x € P. Also, since
y * a is a positive element of X, Proposition 1.2(2) gives P C {y xa}%. Then x € {y xa}}
and (y * a) * ¢ € {y * a}}. Moreover, by the normality of X, {y * a}%} is an ideal of X.
Hence y * a € {y *a}}. ;From this we have

yra=(yxa)x(yxa)=0.

Thus y = a € P by a being a minimal element of X. Therefore P is an ideal of X. Finally,
by Proposition 0.3, X = B® P.

Corollary 2.7. If X is a J-semisimple BCI-algebra, then the p-semisimple part P of X is
an ideal of X and X = B ® P in which B is the BCK-part of X.

Theorem 2.8. Suppose that Ay and As are two closed ideals of a BCI-algebra X such that
X = A1 ® Ay. Then X is normal if and only if Ay and Az are normal subalgebras of X .

Proof. As any closed ideal of X is a subalgebra of X, by Proposition 2.5, the necessity
holds.

Conversely, assume that A; and A, are two normal subalgebras of X. For any positive
element a € X, let a; be the component of a in A; and as of a in A;. By Proposition
0.2(1), 0 % ay is the component of 0 * @ in A;. Since 0% a = 0 and the component of 0 in
Aj is 0 itself, by the uniqueness of components, we have 0 x a; = 0. Thus a; is a positive
element of X and of A;. Similarly, as is a positive element of X and of A;. Denote

L={xcAl|z*xar =2} and Iy ={z € Ay | xxay = x}.

Obviously, I; is the right stabilizer of {a1} in Ay, and I5 of {az} in Ay. Since A; is normal,
I is an ideal of A;. By the transitivity of ideals, it is also an ideal of X. Likewise, I is an
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ideal of A5 and of X. Denote I for the generated ideal (I3 U I2) of X. It is easy to verify
from Proposition 1.2(2) that I is a closed ideal of X, thus it is a subalgebra of X. Note
that

Il ﬂIQ gAl ﬂAQ = {0}

We have the representation:
(2.1) I=0L7.

Now, in order to show the right stabilizer {a}}, of {a} in X is an ideal of X, we turn to
prove {a}} = I. For any x € {a}}, if 21 is the component of z in A; and x5 of z in As, by
Proposition 0.1, we have = % 1 = x9. Also, by Proposition 0.2(1), the component of = * a
in Ay is 1 * a1. Since x * a = x, the uniqueness of components implies 7 * a; = x1, then
x1 € I;. Similary, x5 € I. Note that @ x 1 = xo. It yields x € (I; U I1), that is, x € I, in
other words, {a}} C I. On the other hand, for any = € I, by (2.1), we are able to assume
that x1 is the component of x in I; and x5 of x in I3, then x *x 1 = x2 and x * zo = 21 by
Proposition 0.1. It is obvious that z; € A; and z2 € A3. Applying Proposition 0.1 to the
representation X = A; @ Ay, we see that x7 is just the component of z in A; and x5 of x
in As. Hence the component of x * a in Ay is x1 * a;. Since x1 € I, we have x1 x a1 = x1.
Therefore x * ¢ and = have the same components in A;. Likewise, their components in Ag
are the same. By Proposition 0.2(2), xxa = z, that is, z € {a}}, in other words, I C {a}F.
We have then shown that {a}}, = I. Now, it is evident that {a}} is an ideal of X. Therefore
X is normal.

Putting Proposition 2.3, Theorems 2.6 and 2.8 together, we obtain the next corollary.

Corollary 2.9. A BCl-algebra X is normal if and only if the BCK-part B of X is a normal
BCK-algebra and the p-semisimple part P of X is an ideal of X .

Using Proposition 0.4, the last corollary can be rewritten as follows.

Corollary 2.10. A BCl-algebra X is normal if and only if it satisfies the following:
(1) x*xy =z implies y xx =y for any positive elements x and y of X ;
(2) the p-semisimple part P of X is an ideal of X.

Before concluding this section let’s consider the normality of weakly implicative BCI-
algebras. A BCl-algebra X is called weakly implicative if

(@ (yxx))* (0% (y*x)) =2
for all z, y € X (see [1]).
Theorem 2.11. FEvery weakly implicative BCI-algebra X is normal.

Proof. Assume that B and P are the BCK-part and p-semisimple part of X. By the weakly
implicativity of X, we have z * (y*x) = z for any z, y € B, then B is an implicative BCK-
algebra, thus it is a commutative BCK-algebra. Applying the commutativity of B, we
obtain that x x y = x implies y x x = y for any =, y € B.

Next, it is clear that 0 € P. If x, y * x € P, letting a € P such that a < y, since P is a
subalgebra of X, we have (y*x)*a € P, i.e., (y*a)*xx € P. Obviously, 0 < y * a. Denote
u=1yx*xa,then 0 <uand uxxz € P. By 0 < u, we obtain 0 xx < uxx and x xu < x, then
Oxz=ux*xzand zxu=xbyuxz, x € P (ie, uxz and x are minimal elements of X).
Now, by the weakly implicativity of X, we derive

yrxa=u=(ux(@x*xu)*x0x(x+u)) =(uxx)*(0*xx)=(0x*x)*(0*xz)=0.
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Hence y = a by a being a minimal element of X. Therefore y € P, proving P is an ideal of
X. Now, by Corollary 2.10, X is normal.

Corollary 2.12. If X is a weakly implicative BCI-algebra, then the p-semisimple part P
of X is an ideal of X and X can be expressed as the direct sum X = B @& P in which B is
the BCK-part of X.

We remark that Corollary 2.12 was actually obtained by S.M. Wei and J. Meng who
considered it from the way of KL-products (for detail, see [9, §4.2]).

Corollary 2.13. A normal BCIl-algebra is weakly implicative if and only if the BCK-part
of it is an implicative BCK-algebra.

83. Normal ideals
Normal ideals were considered by C.S. Hoo in [4] who calls them commutative ideals.

Definition 3.1. An ideal A of a BClI-algebra X is called normal if = % (x * y) € A implies
yx (yxx) € A for any z, y € X.

Every BCl-algebra X contains at least a normal ideal, e.g., X itself is just one.

Example 3.1. Let X be the first algebra in Example 2.1, then there are altogether four
ideals of it, which are X, {0, a}, {0, 1} and {0}. Routine verification gives that the first
two ideals are normal, but the others are not.

It is worth attending that if X is a proper BCl-algebra, a positive ideal of X is never
normal.

Proposition 3.1. Let A be a normal ideal of a BCI-algebra X. Then A is positive if and
only if X is a BCK-algebra.

Proof. The sufficiency is evident and we only need to show the necessity. Assume that A
is a positive ideal of X, then 0 is the only minimal element of X, contained in A. For any
x € X, since z * (x x0) =0 € A, by the normality of A, we have 0% (0 x ) € A. Note that
0 (0 x ) is a minimal element of X, it follows 0 * (0 * ) = 0. Hence (0.4) implies

Oxx=0x%x(0%(0x2x))=0%0=0.
Therefore X is a BCK-algebra.

For convenience we denote z * y™ = (--- ((z * y) xy) * - - - ) * y in which y occurs n times.

Lemma 3.2. If A is an ideal of a BCI-algebra X, then xx(xxy) € A implies v+ (zxy™) € A
for any x, y € X and any natural number n (refer to [5, Lemma 2.1]).

Proposition 3.3. Suppose that M is a mazimal ideal of a BCI-algebra X. If M contains
the whole minimal elements of X, then M is a normal ideal of X.

Proof. Assume that x x (zrxy) € M. If y € M, since 0 x (y * =) is a minimal element of
X and (y * (y*x)) *y = 0% (y * x), our hypotheses imply y x (yxz) € M. If y ¢ M, by
the maximality of M, there is a natural number n such that x x y™ € M. Also, by Lemma
32, zx(xxy™) € M. Hence x € M. Note that y * (y x ) < z, it yields y * (y xz) € M.
Therefore M is normal.

Proposition 3.4. Let A be an ideal of a BCIl-algebra X. Then A is normal if and only if
xx (x*xy) € A implies y * (y xz™) € A for any z, y € X and any natural number n.
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Proof. Assume that A is normal and z, y € X. If zx (x xy) € A4, then y * (y xz) € A. By
Lemma 3.2, y % (y *x ™) € A for any natural number n.

Conversely, putting n = 1, our assumption of sufficiency gives that % (z*y) € A implies
yx (y*xx) € A for any x, y € X. Hence A is normal.

Proposition 3.5. Let A be a normal ideal of a BCI-algebra X. Then A is closed, contain-
ing the entire minimal elements of X (see [4, Proposition 2.16]).

Corollary 3.6. If X is a p-semisimple BCI-algebra, then the normal ideal of X can only
be X itself.

Theorem 3.7. An ideal A of a BCI-algebra X is normal if and only if the quotient algebra
X/A is a normal BCK-algebra (see [4, Theorem 2.17]).

Theorem 3.8. A BCI-algebra X is normal if and only if the p-semisimple part P of X s
a normal ideal of X .

Proof. Assume that X is normal. By Theorem 2.6, P is an ideal of X and X = B® P in
which B is the BCK-part of X. Then B is a normal BCK-algebra by Proposition 2.5. For
any z, ' € X, letting b, b’ be respectively the components of z and 2’ in B, by Proposition
0.2(1), b* (b* ') is the component of z x (z * 2') in B. Now, if z x (x x 2') € P, it is easily
seen from Proposition 0.1 that 0 is the component of x * (z * z’) in B. By the uniqueness
of components, we obtain b * (bxb") = 0. So, Proposition 0.5 gives b’ x (b’ * b) = 0. Thus
the component of 2’ % (2’ x x) in B is 0. Hence ' * (¢/ * ) € P. Therefore P is normal.

Conversely, since P is an ideal of X, by Proposition 0.3, X = B® P. Using the uniqueness
of components, we can define the mapping f from X to B sending = to the component of
z in B. Obviously, f is a surjection. By the substitution property of congruences, f is
a homomorphism. It is easy to verify that the kernel of f is P. So, the first isomorphic
theorem (see [3, Theorem 3.2]) gives that X/P is isomorphic to B. Also, since P is a
normal ideal of X, by Theorem 3.7, X/P is a normal BCK-algebra. Thus B is a normal
BCK-algebra too. Now, by Corollary 2.9, X is normal.

Because the p-semisimple part of a BCK-algebra is {0}, Proposition 0.5 becomes a direct
corollary of Theorem 3.8.

Corollary 3.9. A BCK-algebra X is normal if and only if the zero ideal {0} of X is
normal, or if and only if v * (x xy) =0 implies y * (y xx) =0 for any x, y € X.

Note that every normal ideal of X contains all minimal elements of X, we obtain

Corollary 3.10. A BCl-algebra X is normal if and only if the intersection of all normal
ideals of X is exactly the p-semisimple part P of X.

Combining Corollaries 2.9 with 3.9, we also obtain

Corollary 3.11. A BCI-algebra X is normal if and only if the zero ideal {0} of X is a
normal ideal of the BCK-part B of X and the p-semisimple part P of X is an ideal of X .

Finally, we remark that the following assertion is not true: if X is a BCI-algebra which is
not p-semisimple and if A is a nonzero normal ideal of X, then AN B # {0} where B is the
BCK-part of X (refer to [4, Proposition 2.28]). For instance, the algebra X in Example 3.1
is not p-semisimple and {0, a} is a nonzero normal ideal of it, but {0, a} N B = {0} where
B = {0,1}. Following the ideas of this assertion, we give the next assertion.

Proposition 3.12. A BCI-algebra X is not normal if and only if AN B # {0} where A is
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an arbitrary normal ideal of X and B is the BCK-part of X.

Proof. Assume that X is not a normal BCIl-algebra and A is a normal ideal of X. By
Theorem 3.8, A # P where P is the p-semisimple part of X, then P is properly contained
in A by Proposition 3.5. Putting x € A — P and letting a be a minimal element of X such
that a < z, we have x xa # 0 and =z xa € B. Also, since A is a closed ideal of X and
a€ P C A, weobtain zxa € A. Hence 0 #x*xa € ANB and AN B # {0}.

Conversely, if it is false, then X is normal. By Theorem 3.8, P is a normal ideal of X.
However, P N B = {0}, a contradiction with our assumption of sufficiency.
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