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Abstract. We estimate the stable rank of residually finite dimensional C∗-algebras by that
of the C∗-algebras of continuous fields associated with their (continuous) separating, finite
dimensional irreducible representations. Moreover, as the main application we estimate the
stable rank, connected stable rank and real rank of reduced group C∗-algebras of residually
finite, discrete groups with the property (T).

0. Introduction

The theory of the stable rank for C∗-algebras was first studied by Rieffel [Rf1], and
the stable rank for some concrete C∗-algebras were computed by some other works (cf.
References). In particular, the stable rank and connected stable rank of group C∗-algebras
of some connected Lie groups were computed ([Sh], [Sd1-4], [ST1,2]), and the stable rank
and real rank of reduced group C∗-algebras of some discrete groups without Kazhdan’s
property (T) such as free groups, free product groups and some amalgamated free product
groups were also computed ([DHR], [Dk], [DH]) (See [BP] for the real rank of C∗-algebras).

In this paper as the main result we estimate the stable rank of residually finite dimensional
C∗-algebras in terms of their spectrums, i.e. spaces of all unitary equivalence classes of their
irreducible representations. For the proof we use some techniques of [Sd5] for the stable
rank estimate of C∗-algebras of continuous fields. As a highly non-trivial consequence of
the result we estimate the stable rank, connected stable rank, general stable rank and
real rank of reduced group C∗-algebras of residually finite, countable discrete groups with
the property (T) such as SLn(Z) (n ≥ 3) (cf. [HV]), and also estimate those of group
C∗-algebras of some amenable discrete subgroups of GLn(C).

Notations and facts. We now set up some notations and review some facts used later.
Let A be a C∗-algebra. We denote by sr(A), csr(A), gsr(A) and RR(A) the stable

rank, connected stable rank, general stable rank and the real rank of A respectively ([Rf1],
[BP]). By definition, sr(A), csr(A), gsr(A) ∈ {1, 2, · · · ,∞} and RR(A) ∈ {0, 1, 2, · · · ,∞}. In
particular, sr(A) ≤ n if and only if the open space Ln(A) is dense in An, where (aj) ∈ Ln(A)
if and only if

∑n
j=1 a

∗
jaj is invertible in A. If A is nonunital, we define its ranks by those of

its unitization A+.
(F0): gsr(A) ≤ csr(A) ≤ sr(A) + 1 and RR(A) ≤ 2 sr(A) − 1 for any C∗-algebra A ([Rf1,

Corollary 4.10 and p.328], [BP, Proposition 1.2]).
(F1): max{sr(I), sr(A/I)} ≤ sr(A) for an exact sequence of C∗-algebras: 0 → I → A →

A/I → 0 ([Rf1, Theorems 4.3 and 4.4]).
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(F2): Let C0(X) be the C∗-algebra of all continuous functions on a locally compact
Hausdorff space X vanishing at infinity. If X is compact, set C0(X) = C(X). Then
sr(C(X)) = [dimX/2] + 1, where dimX is the covering dimension of X and [x] means the
maximal integer ≤ x ([Rf1, Proposition 1.7]).

(F3): sr(Mn(A)) = {(sr(A) − 1)/n} + 1 for Mn(A) the n × n matrix algebra over a
C∗-algebra A, where {x} means the least integer ≥ x ([Rf1, Theorem 6.1]).

Let Πj∈JBj denote the direct product of C∗-algebras {Bj}j∈J indexed by a set J con-
sisting of all elements a = (aj)j∈J with aj ∈ Bj and the norm ‖a‖ = supj∈J ‖aj‖ finite. For
a C∗-algebra A, denote by C0(X,A) the C∗-algebra of all A-valued continuous functions on
X vanishing at infinity. It is known that C0(X,A) is isomorphic to the C∗-tensor product
C0(X) ⊗ A (cf.[Mp, Theorem 6.4.17]). Let Â = A∧ be the spectrum of all irreducible rep-
resentations of a C∗-algebra A up to unitary equivalence. The space Â is locally compact
under the hull kernel topology (cf.[Dx, Chapter 3], [Pd, Chapter 4]). For 1 ≤ n < ∞, let
Ân be the space of all n-dimensional irreducible representations of A having the relative
topology of Â. Denote by Ĝ the unitary dual of all irreducible unitary representations of a
locally compact group G up to unitary equivalence.

1. Residually finite dimensional C∗
-algebras

First of all, we recall that

Definition. A C∗-algebra A is residually finite dimensional (RFD) if there exists a family
{πj}j∈J of finite dimensional representations of A such that the intersection of their kernels
is zero, i.e. {πj}j∈J is separating A in the sense that for any nonzero a ∈ A, there exists πj

with πj(a) 
= 0. If necessary we may assume that each πj is irreducible by considering its
decomposition into irreducible representations (cf. [GM], [BK], [Kb1,2], [Ln]). When the
set J is a locally compact Hausdorff space, we say that {πj}j∈J is continuous on J if all the
functions J � j �→ ‖πj(a)‖ (norm-valued) for any a ∈ A are continuous on J .

As a key result we have the following:

Lemma 1.1. Let A be a residually finite dimensional C∗-algebra with respect to {πj}j∈J

of Â. Suppose that J is a locally compact Hausdorff space and {πj}j∈J is continuous
on J . Then A is a quotient of the C∗-algebra of a continuous field on J contained in
Πj∈JC0(Ânj , πj(A)) where nj = dimπj .

Proof. Following the idea of [Sd5] we define B to be the C∗-algebra of a continuous field on
J , Γ0(J, {C0(Ânj , πj(A))}j∈J ), with C0(Ânj , πj(A)) fibers such that for f = {f (j, ·)}j∈J ∈
B with f(j, ·) = f(j) ∈ C0(Ânj , πj(A)), there exists x ∈ A such that for any j ∈ J ,
f(j, πj) = πj(x) ∈ πj(A), that is, f(j) is an arbitrary element of C0(Ânj , πj(A)) taking the
value πj(x) at πj . In fact, such an element may be defined by f(j) = hjπj(x) for certain
hj ∈ C0(Ânj ) such that the function: J � j �→ ‖f (j)‖ is continuous on J . It is clear that B

is a C∗-subalgebra of Πj∈JC0(Ânj , πj(A)). Then we have a quotient map Φ from B to A
defined by Φ(f) = x, where the following function on {πj}j∈J : x̂ : {πj}j∈J � πj �→ πj(x) ∈
πj(A) is identified with x ∈ A since {πj}j∈J is separating. �
Remark. In the above situation, note that

Γ(Ân, {π(A)}π∈Ân
) ≡ {Ân � π �→ π(x) ∈ π(A) |x ∈ A}

is the C∗-algebra of a continuous field on Ân with fibers {π(A)}π∈Ân
(cf.[Dx, Chapter

10]). The assumption of {πj}j∈J being continuous on J might be unnecessary because the
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function: J � j �→ ‖f (j)‖ could be continuous without the function: J � j �→ ‖πj(a)‖ being
continuous.

As the main result we have the following:

Theorem 1.2. Let A be a residually finite dimensional C∗-algebra with a separating family
{πj}j∈J of Â. Suppose that J is a locally compact Hausdorff space and {πj}j∈J is continuous
on J , and nj = dimπj. Then

sr(A) = sup
j∈J

sr(C0(Ânj , πj(A))).

Proof. First note that Ân (1 ≤ n < ∞) are Hausdorff spaces, and there exist subquotients
Dn of A such that D̂n = Ân by [Dx, 3.2 and 3.6] or [Pd, Proposition 4.4.10]. Then by (F1)
and from that Dn is homogeneous we have

sr(A) ≥ sr(Dnj ) = sr(C0(Ânj , πj(A))) for any j ∈ J .

By Lemma 1.1 and (F1), we have sr(A) ≤ sr(B). We define C to be the C∗-algebra of
all elements {(f(j, ·), λj)}j∈J with (f(j, ·), λj) ∈ C0(Ânj , πj(A))+, λj ∈ C and f ∈ B =
Γ0(J, {C0(Ânj , πj(A))}j∈J ) as in the proof of Lemma 1.1. By (F1), we have sr(B) ≤ sr(C).
Moreover, we may replace C with Γ(J+, {C0(Ânj , πj(A))}j∈J ) when J is noncompact.

Now suppose that
M = sup

j∈J
sr(C0(Ânj , πj(A))) <∞.

For any ε > 0 and (ck)M
k=1 ∈ CM with ck = (ck(j, ·))j∈J and ck(j, ·) ∈ C0(Ânj , πj(A))+, we

can find dk(j, ·) ∈ C0(Ânj , πj(A))+ for all k, j such that ‖ck(j, ·) − dk(j, ·)‖ < εk,j < ε, and
ej ≡ ∑M

k=1 dk(j, ·)∗dk(j, ·) is invertible in C0(Ânj , πj(A))+. For a large constant L > 0, we
may assume that ej ≥ ε/L > 0 if necessary, by taking εk,j small enough, and replacing dk,j

with its suitable purturbation, and εk,j with ε′ < ε, when ej ≥ δj1 > 0 and δj < ε/L for
some j.

In fact, for a unital C∗-algebra A we have a continuous map Φ from Ln(A) to the positive
part A+ of A by (aj) �→ ∑n

j=1 a
∗
jaj . Moreover, the quotient topology induced by Φ is

stronger than the relative topology of A−1 in A, which is proved by a usual argument of the
general topology about inclusions of open neighborhoods. Let S = {b ∈ A+ | ‖∑n

j=1 a
∗
jaj −

b‖ < η, and b−(
∑n

j=1 a
∗
jaj +η′1) > 0} for some η, η′ > 0, where the second inequality ” > ”

means being invertible. Then S is open in A+ since for b′ ∈ A+ with ‖b − b′‖ small, we
can make the distance of their spectrums small. Taking η, η′ suitably, we make the distance
between

∑n
j=1 a

∗
jaj and S small enough. Then we can find a small open neighborhood of

(aj) such that its image under Φ has the nonzero intersection with S.
Moreover, if necessary taking εk,j small enough for each k, j, we may assume that dk(j, ·)

is a suitable perturbation of ck(j, ·) such that the function l �→ dk(l) on an open neighbor-
hood of j belongs to the corresponding restriction of C by using [Dx, Propositions 10.1.10
and 10.2.2] (the local density and continuity of continuous fields of C∗-algebras). Also note
that if

∑M
k=1 dk(j, ·)∗dk(j, ·) is invertible, then

∑M
k=1 dk(l, ·)∗dk(l, ·) is also invertible for l in

an open neighborhood of j, which is deduced from a direct computation using continuity
of the norm on fibers. Use this argument inductively for a suitable open covering of J .
Therefore, we have dk ∈ C. Thus, sr(C) ≤M . �
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Remark. The space J could be taken as a countable set in some cases as in Section 2.
In fact, the space J can be a sequence for separable, residually finite dimensional C∗-
algebras (cf. [Ln, Definition 1]). However, it would be not easy to know the spaces Ânj and
their dimensions in general. Also, subhomogeneous C∗-algebras are clearly residually finite
dimensional but be not always of continuous trace (cf. [Dx, 10.10.4]).

Note that πj(A) ∼= Mnj (C) in the above theorem. Applying (F2) and (F3) to the stable
rank estimate of Theorem 1.2, we have

Corollary 1.3. Let A be an RFD C∗-algebra with a continuous separating family {πj}j∈J

of Â for J a locally compact Hausdorff space, and nj = dimπj. Then

sr(A) = sup
j∈J

({[dim Ânj/2]/nj} + 1).

Moreover, we have the following product formula of the stable rank, which partially
answers a question by Rieffel [Rf1, Question 7.3].

Corollary 1.4. Let A, B be residually finite dimensional C∗-algebras. Suppose that a
C∗-tensor product A ⊗ B with a suitable C∗-norm is residually finite dimensional by a
continuous separating family {π′

j}j∈J of (A⊗B)∧ for J a locally compact Hausdorff space.
Then

sr(A ⊗ B) ≤ sr(A) + sr(B).

Proof. Since each π′
j is finite dimensional, we may assume that π′

j = πj ⊗ ρj for some
πj ∈ Ânj and ρj ∈ B̂mj , where nj = dimπj and mj = dim ρj . Then Corollary 1.3 implies

sr(A ⊗ B) = sup
j∈J

{[dim(Ânj × B̂mj )/2]/njmj} + 1.

Then the product formula of the covering dimension (cf.[Ng]) implies

sup
j∈J

({[dim(Ânj × B̂mj )/2]/njmj} + 1)

≤ sup
j∈J

{[(dim Ânj + dim B̂mj )/2]/njmj} + 1

≤ sup
j∈J

({[dim Ânj/2]/nj} + 1) + sup
j∈J

({[dim B̂mj/2]/mj} + 1) ≤ sr(A) + sr(B).

See the first part of the proof of Theorem 1.2 for the last estimate. �
Remark. Let F2 be the free group with two generators, and C∗(F2) its full group C∗-
algebra. By [Ch], C∗(F2) is residually finite dimensional. By [Rf1, Theorem 6.7] or [Ngs]
we get sr(C∗(F2) ⊗ C∗(F2)) = ∞ = sr(C∗(F2)), where ⊗ means any C∗-tensor norm. By
[Ngs, p.378] we know that there is a quotient map from C∗(F2) to C([0, 1]n

2
) ⊗Mn+1(C)

for any n ∈ N, which implies that supn∈N dimC∗(F2)∧n = ∞.

2. Reduced group C∗
-algebras of residually finite discrete groups

First recall that a group G is residually finite if for each g ∈ G\{1G} with 1G the identity
of G, there exists a subgroup H of G with finite index and g 
∈ H . The group H can be
taken as a normal subgroup of G (cf. [Sr, p.122]). Also, a group G has Kazhdan’s property
(T) if the trivial representation of G is an isolated point of the unitary dual Ĝ of G with
the hull-kernel topology (cf. [Wg]).

As a remarkable application of Theorem 1.2, we have the following:
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Theorem 2.1. Let G be a residually finite, countable discrete group with Kazhdan’s prop-
erty (T) and C∗

r (G) its reduced group C∗-algebra. Then

sr(C∗
r (G)) = 1, csr(C∗

r (G)) ≤ 2, gsr(C∗
r (G)) = 1

and in addition RR(C∗
r (G)) ≤ 1.

Proof. Since G is residually finite, there exists a separating family X = {πj}j∈J of finite
dimensional unitary representations of G in Ĝ (cf.[Kb1, Remarks 7.4]). Hence we have the
factorization (cf.[KW, Examples 4.4])

C∗(G) → A = C∗((⊕π∈Xπ)(G)) → C∗
r (G) → 0

where C∗(G) is the full group C∗-algebra of G, and A is the C∗-algebra generated by
(⊕π∈Xπ)(G) under the direct sum representation ⊕π∈Xπ of G. We note that Note A ∼=
(⊕π∈Xπ)(C∗(G)) by the identification Ĝ = C∗(G)∧ (cf. [Dx, 13.9.3] and [Pd, 7.1.4]). In
particular, Ân is a subspace of Ĝn = C∗(G)∧n for n ∈ N. Then by (F0), (F1) and [Eh2,
Theorem 1.4] we have{

sr(C∗
r (G)) ≤ sr(A), csr(C∗

r (G)) ≤ sr(C∗
r (G)) + 1,

RR(C∗
r (G)) ≤ RR(A).

We note that since G has the property (T), any finite dimensional, irreducible unitary
representation of G is an isolated point of Ĝ ([HV], [Wg, Theorem 2.1]). Hence, X =
{πj}j∈J is continuous automatically. Moreover, by [Wg, Theorem 2.6] or [Ws, Corollary 3],
for H any countable discrete group with (T ), the space Ĥn is finite for any n ∈ N. By using
Theorem 1.2, (F0), (F2) and (F3), we have sr(A) = 1 and RR(A) ≤ 2 sr(A) − 1 = 1. Hence
csr(C∗

r (G)) ≤ 2. Since C∗
r (G) is finite, we obtain gsr(C∗

r (G)) = 1 (cf.[Rf2, p.247]). �
Remark. If G is a nonamenable locally compact group, then C∗

r (G) is not residually finite
dimensional because it has no finite dimensional irreducible representations (cf. [F, Theorem
3], [Dx, 18.3 and 18.9.5]). It is known by [Lf1,2] that there exists a residually finite, countable
discrete group with (T) such that the Baum-Connes conjecture holds for its reduced group
C∗-algebra so that the algebra has no nontrivial projections, which implies that the algebra
does not have real rank zero.

Remark. Let G be as in Theorem 2.1. If csr(C∗
r (G)) = 1, then C∗

r (G) is stably finite,
and the K1-group K1(C∗

r (G)) is trivial by using [Eh1, Proposition 1.15]. The equality
csr(C∗

r (G)) = 1 could be implied by the same method for a connected stable rank estimate
as in [Sd5].

We now give a list of groups with (T) or without (T).

Examples 2.2.

As groups with (T),




Compact groups
F4(−20), Sp(n, 1), Sp(n, 1)Z for n ≥ 2
SLn(R), SLn(Z), PSLn(Z) for n ≥ 3
Rn �α SLn(R), Zn �α SLn(Z) for n ≥ 3

As groups without (T),




Noncompact amenable groups
SO0(n, 1), SU(n, 1) for n ≥ 2
SL2(R), SL2(Z), PSL2(Z)
Free groups Fn with n generators with n ≥ 2
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where SO0(n, 1), SU(n, 1), Sp(n, 1) for n ≥ 2 and F4(−20) are the connected real simple Lie
groups of rank 1, and Sp(n, 1)Z is the discrete subgroup of Sp(n, 1) with its components
integers, and the actions α of SLn(R) and SLn(Z) are the matrix multiplications on Rn

and Zn respectively. See [HV] and [Wg] for more details. Note that any lattice of simple
Lie groups with rank greater than 2 has the property (T) (cf.[Mg]). Among the above
examples, compact groups, SLn(Z), PSLn(Z), Sp(n, 1)Z for n ≥ 2, and Zn �α SLn(Z),
Fn for n ≥ 2 are residually finite. Moreover, any finitely generated subgroup of GLn(C)
is residually finite (cf.[Ap], [Kb1,2]). Also note that any free product of residually finite
groups is residually finite (cf.[Sr]). In particular, F2

∼= Z ∗ Z. On the other hand, it is
deduced by Lie’s theorem that connected solvable Lie groups have no finite dimensional,
irreducible unitary representations except one dimensional ones. See [Sd1] for the stable
rank of reduced group C∗-algebras of those connected real semi-simple Lie groups above,
and [Ka] for the real rank of some group C∗-algebras.

It is deduced from Theorem 2.1 and Examples 2.2 that

Corollary 2.3. Let G be either SLn(Z), PSLn(Z), Zn �α SLn(Z) for n ≥ 3, or Sp(n, 1)Z

for n ≥ 2. Then

sr(C∗
r (G)) = 1, csr(C∗

r (G)) ≤ 2, gsr(C∗
r (G)) = 1,

and in addition RR(C∗
r (G)) ≤ 1.

Remark. The above rank estimates hold for any closed subgroup H of G in this theorem
such that G/H has a finite volume (cf. [Wg, Theorem 3.7], [HV]). See [DHR] and [DH] for
the ranks of reduced group C∗-algebras of Fn and PSL2(Z). Note that K1(C∗

r (Fn)) ∼= Zn

(cf.[Bl, 10.11.11]) and csr(C∗
r (Fn)) = 2 by using [Eh1, Corollary 1.6] and (F0). On the other

hand, K1(C∗
r (Z2 ∗ Z3)) and K1(C∗

r (SL2(Z))) are trivial by K-theory of amalgamated free
products since Z2 ∗Z3 and SL2(Z) ∼= Z4 ∗Z2 Z6 are K-amenable (cf.[Bl, 10.11.11 and 20.9]).

Using Theorem 2.1 we have the following product formula of the stable ranks:

Corollary 2.4. Let G,H be two residually finite, countable discrete groups with the property
(T). Then 


sr(C∗

r (G) ⊗min C
∗
r (H)) = 1 < 2 = sr(C∗

r (G)) + sr(C∗
r (H)),

csr(C∗
r (G) ⊗min C

∗
r (H)) ≤ 2 ≤ csr(C∗

r (G)) + csr(C∗
r (H)),

gsr(C∗
r (G) ⊗min C

∗
r (H)) = 1 < 2 = gsr(C∗

r (G)) + gsr(C∗
r (H)),

and RR(C∗
r (G) ⊗min C

∗
r (H)) ≤ 1, where ⊗min means the minimal C∗-tensor product.

Proof. Note that the direct product G ×H is a residually finite, countable discrete group
with (T) from the assumption of G, H . Also note that C∗

r (G × H) is isomorphic to
C∗

r (G) ⊗min C
∗
r (H). Let X , Y be (continuous) separating families of G,H respectively.

Then, we have

C∗(G×H) → C∗((⊕π∈X,ρ∈Y π ⊗ ρ)(G×H)) → C∗
r (G×H) → 0. �

On the other hand, we obtain

Theorem 2.5. Let G be an amenable, finitely generated, countable discrete subgroup of
GLn(C), and C∗(G) its group C∗-algebra. If C∗(G) has a continuous separating family
{πj}j∈J of finite dimensional representations for J a locally compact Hausdorff space, then{

sr(C∗(G)) = supn∈N({[dim Ĝn/2]/n} + 1),

csr(C∗(G)) ≤ 1 + supn∈N({[(dim Ĝn)/2]/n} + 1),
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and RR(C∗(G)) ≤ supn∈N(2{[dim Ĝn/2]/n} + 1), where Ĝn means the space of all n-
dimensional irreducible unitary representations of G up to unitary equivalence.

Proof. By the assumption, G is residually finite, and C∗(G) = C∗
r (G). �

Remark. Any lattice of simply connected, solvable Lie groups is finitely generated and
regarded as a subgroup of GLn(Z) (cf.[Rg, Corollary of Proposition 3.8 and Theorem 4.34]).

Example 2.6. The semi-direct products Zn�αZ would be included in the case of Theorem
2.5. In fact, we have the identification

Zn �α Z � (z, t) ↔
(
αt zt

0 1

)
∈ GLn+1(Z) ⊂ GLn+1(C)

where zt is the transpose of z ∈ Zn. Note that the discrete Heisenberg group HZ
2n+1 of

rank (2n + 1) is a finitely generated subgroup of GLn+2(Z), and isomorphic to the semi-
direct product Zn+1 �α Zn with the action α defined by αt(z0, z) = (z0 +

∑n
j=1 tjzj, z)

for t = (tj), z = (zj) ∈ Zn. Moreover, it is well known that C∗(HZ
3 ) is isomorphic to

Γ(T, {Aθ}θ∈T) the C∗-algebra of a continuous field on T with fibers Aθ = C(T) �θ Z the
rotation algebras associated with the action by the multiplication on T by θ (cf. [AP]).
In this case, the space J in Theorem 2.5 can be taken as the disjoint union �t∈Q∩[0,1]Vt

of Vt = T2 (or [0, 1]2 ∩ Q2, where [0, 1] = R mod 1) since the spectrum of the rational
rotation algebra Aθt for θt = e2πit and t ∈ Q∩ [0, 1] consists of finite dimensional irreducible
representations with a constant dimension, and it is identified with T2. Hence, we obtain
dimC∗(HZ

3 )∧n = 2 for any n ∈ Z. Therefore, sr(C∗(HZ
3 )) = 2. Note that when t is irrational,

Aθt is simple so that it has no finite dimensional representations, and its spectrum is not
computable at all since it is of non type I. Thus, our merit is that we can compute the
stable rank of the C∗-algebras of this type by using only computable data of their finite
dimensional irreducible representations. See also [Mo] for locally compact groups with only
finite dimensional irreducible representations.

By the same way as the proof of Corollary 1.4 we obtain

Corollary 2.7. Let G,H be two amenable, finitely generated, countable discrete subgroups
of GLn(C) with the same assumption as Theorem 2.5. Then

sr(C∗(G) ⊗ C∗(H)) ≤ sr(C∗(G)) + sr(C∗(H)).

Proof. Note that C∗(G), C∗(H) are nuclear since G,H are amenable (cf.[Bl, 15.8]). �
Remark. See [Sd3] for the product formula of the stable rank in the case of G,H two
connected Lie groups of type I (cf. [Sd4]).

Acknowledgement. The author would like to thank the referee for pointing out some critical
comments for the revision.
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possédant la propriété (T ), C. R. Acad. Sci. Paris 328 (1999), 203–208.

[Ln] H. Lin, Residually finite dimensional and AF-embeddable C∗-algebras, Proc. Amer. Math. Soc.
129 (2000), 1689–1696.

[Mg] G.A. Margulis, Discrete subgroups of semisimple Lie groups, Springer-Verlag, 1991.
[Mo] C.C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc.

166 (1972), 401–410.
[Mp] G.J. Murphy, C∗-algebras and operator theory, Academic Press, 1990.
[Ng] K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.
[Ngs] M. Nagisa, Stable rank of some full group C∗-algebras of groups obtained by the free product,

Internat. J. Math. 8 (1997), 375–382.
[Pd] G.K. Pedersen, C∗-Algebras and their Automorphism Groups, Academic Press, London-New York-

San Francisco, 1979.
[Rg] M.S. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972.
[Rf1] M.A. Rieffel, Dimension and stable rank in the K-theory of C∗-algebras, Proc. London Math. Soc.

46 (1983), 301–333.
[Rf2] , The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory

17 (1987), 237–254.
[Sr] J-P. Serre, Trees, Springer-Verlag, 1980.
[Sh] A.J-L. Sheu, A cancellation theorem for projective modules over the group C∗-algebras of certain

nilpotent Lie groups, Canad. J. Math. 39 (1987), 365–427.
[Sd1] T. Sudo, Stable rank of the reduced C∗-algebras of non-amenable Lie groups of type I, Proc. Amer.

Math. Soc. 125 (1997), 3647–3654.
[Sd2] , Stable rank of the C∗-algebras of amenable Lie groups of type I, Math. Scand. 84 (1999),

231–242.
[Sd3] , Dimension theory of group C∗-algebras of connected Lie groups of type I, J. Math. Soc.

Japan 52, 583–590.
[Sd4] , Structure of group C∗-algebras of Lie semi-direct products Cn o R, J. Operator Theory

46 (2001), 25–38.
[Sd5] , Ranks and embeddings of C∗-algebras of continuous fields, Preprint.



STABLE RANK OF RESIDUALLY FINITE DIMENSIONAL C∗-ALGEBRAS 231

[ST1] T. Sudo and H. Takai, Stable rank of the C∗-algebras of nilpotent Lie groups, Internat. J. Math.
6 (1995), 439–446.

[ST2] , Stable rank of the C∗-algebras of solvable Lie groups of type I, J. Operator Theory 38
(1997), 67–86.

[TT] J. Tomiyama and M. Takesaki, Applications of fibre bundles of the certain class of C∗-algebras,
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