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SPAN MATES AND SPAN

K.T. Hallenbeck
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Abstract. We show that the span mate width of a simple closed curve dose not
exceed the span of that simple closed curve.

1. INTRODUCTION

We shall start by recalling the definitions introduced by A. Lelek in [4] and [5]. Let X
be a nonempty connected metric space. The span σ(X) in the least upper bound of the set
of real numbers r, r ≥ 0, that satisfy the following condition:

There exists a connected space Y and a pair of continuous functions f, g : Y −→ X such
that

(1) f(Y ) = g(Y )

and dist [f(Y ), g(Y )] ≥ r, for every y ∈ Y.

Relaxing (1) to the inclusion g(Y ) ⊃ f(Y ) one obtains the definition of the semispan
σ0(X) of X. We omit here the surjective varieties of span and semispan since they do not
present different concepts for a simple closed curve.

Clearly, 0 ≤ σ(X) ≤ σ0(X) ≤ diam(X). It was proven by Lelek in [5, p.39] that when
X is a continuum σ0(X) ≤ ε(X), where ε(X) is the infimum of the set of meshes of the
chains that cover X. A different, direct proof of this inequality can be found in [1]. There
are two other estimates of span involving mesh. In [1], it was proven, by this author, that
the dual effectively monotone span of a simple closed curve X does not exceed ε(X). In [2],
the dual monotone span of a starlike curve X was shown to be not smaller than ε(X).

The problem of calculating the span of a simple closed curve is a difficult one. It has
been solved only in the cases when additional assumptions have been imposed on the curve.
In [6], this author solved it for the “convex case”, that is the case when X is a boundary
of a convex region. It has been determined that both span and semispan of X are equal to
the infimum of the set of directional diameters of X, which in convex case coincides with
ε(X). In [3], a class of starlike curves was identified for which σ(X) = σ0(X) = ε(X). The
latter introduced the concept of span mates. We now review the main definitions.

A simple closed polygonal path is a simple closed curve in the Cartesian plane C which
consists of finitely many line segments. Let X be a simple closed polygonal path. A vertex
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W ∈ X is outer if and only if the angle at W in the bounded component of C \X is less
than π. A connected subset of X between two consecutive outer vertices is called a segment.
Each segment inherits the positive orietation from X and hence has a uniquely determined
beginning and end. A segment with the beginning A and end B will be represented by
AB. The distance dist[A,Y ] from a point A to a set Y in the plane is defined, as usual, by
letting dist[A,Y ] = inf

P∈Y
dist[A,P ], where P is a point in Y.

Definition 1.1. Let AB and CD be two segments of a polygonal path X. The span distance
s(AB,CD) between AB and CD is defined as

s(AB,CD) = max{min(dist[A,CD], dist[D,AB]),min(dist[B,CD], dist[C,AB])}.

Definition 1.2. Let AB and CD be two different segments of a polygonal path X. We say
that AB is first with respect to CD if s(AB,CD) = min(dist[B,CD], dist[C,AB]). We say
that AB is second with respect to CD if s(AB,CD) = min(dist[A,CD], dist[D,AB]).

Definition 1.3. Let Vi−1, Vi, Vi+1 be three consecutive, in the positive direction, outer
vertices on X, and let AB be a segment on X,AB 
= Vi−1Vi, AB 
= ViVi+1. We say that Vi

is significant with respect to AB if Vi−1Vi is first with respect to AB, ViVi+1 is second with
respect to AB, and ViVi+1 is not first with respect to AB.

Definition 1.4. Let AB be a segment on X, let Vi be a significant vertex with respect to
AB, and let Vi+1 be the next, in the positive direction, outer vertex on X. The segment
ViVi+1 is called a span mate of AB.

1. SPAN MATES AND SPAN

We shall use the concept of span mates to obtain an estimate from below for the span
of any simple closed curve. First, we need the following definition and a lemma for a simple
closed polygonal path. We shall denote the outer vertices of a simple closed polygonal path
by V0, V1, . . . , VN , with the understanding that whenever an arbitrary segment VjVj+1 is
considered, j = 0, . . . , N, j + 1 is taken modulo N + 1.

Definition 2.1. Let X be simple closed polygonal path, and let V0, V1, . . . , VN be the
outer vertices of X, in their consecutive positive order. The span mate width smw(X) of
X is defined as

smw(X) = min




min
0≤j≤N

s(VjVj+1, VmVm+1)

m, such that VmVm+1 is a span mate of VjVj+1

min
0≤j≤N

s(VjVj+1, VmVm+1)

m, such that VmVm+1 is first with respect to VjVj+1

and VjVj+1 is first with respect to VmVm+1.

Lemma 2.2. If X is a simple closed polygonal path then σ(X) ≥ smw(X).
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Proof. Let VjVj+1 be a fixed, but arbitrary, segment on X. Note, that VjVj+1 has at least
one span mate. Ineed, the segment Vj+1Vj+2 is first with respect to VjVj+1 and the segment
Vj−1Vj is second, and not first, with respect to VjVj+1. Therefore, there exists at least one
outer vertex on X that is significant with respect to VjVj+1. Consequently, there exists
at least one span mate of VjVj+1. Suppose VmVm+1 is a span mate of VjVj+1. We next
claim that there exists a span mate of VmVm+1 on the positive arc Vj+1Vm. Indeed, since
VmVm+1 is second, and not first, with respect to VjVj+1 it follows that VjVj+1 is first, and
not second, with respect to VmVm+1. This, together with the fact that Vm−1Vm is second,
and not first with respect to VmVm+1 implies the existence of an outer vertex significant
with respect to VmVm+1 on the positive arc Vj+1Vm. Hence, the claim.

Partition the unit interval [0, 1] into 2(N + 1) line segments by letting P0 = 0, P1 =
1/2(N+1), . . . , Pn = n/2(N +1), . . . , P2(N+1) = 1. For a line segment PiPi+1 on [0, 1], 0 ≤
i ≤ 2N + 1, and a segment VjVj+1 on X, 0 ≤ j ≤ N, L[PiPi+1 −→ VjVj+1] shall represent
an affine transformation of PiPi+1 onto VjVj+1, with Pi and Pi+1 corresponding to Vj and
Vj+1, respectively.

We shall define two mappings f, g : [0, 1] −→ X as follows. Suppose that VjVj+1 is
a span mate of V0V1, and set f(t) = L[P0P1 −→ V0V1] and g(t) = Vj , for t ∈ [P0, P1].
Note that, as argued above, a span mate of VjVj+1 must exist on the positive arc V1Vj .
Let VmVm+1 be the first, in the positive direction on V1Vj , span mate of VjVj+1. There
are two possible cases. Either m = 1 or m > 1. If m = 1 then set f(t) = V1 and g(t) =
L[P1P2 −→ VjVj+1], for t ∈ [P1, P2]. If m > 1 then set f(t) = L[PkPk+1 −→ VkVk+1],
for t ∈ [Pk, Pk+1], k = 0, . . . , m − 1, and g(t) = Vj , for t ∈ [P1, Pm], and after that set
f(t) = Vm and g(t) = L[PmPm+1 −→ VjVj+1], for t ∈ [Pm, Pm+1].

Again, by the argument presented at the beginning of the proof, a span mate of VmVm+1

must exist on the positive arc Vj+1Vm. We take the first, in the positive direction on Vj+1Vm,
span mate of VmVm+1 and continue defining f and g in the manner described above. Note,
that whenever f covers an arbitrary segment ViVi+1 while g(t) = Vk, for some k, at least
one of the following conditions holds:

1) VkVk+1 is a span mate of ViVi+1

2) VkVk+1 is first with respect to of ViVi+1 and ViVi+1 is first with respectt to VkVk+1.

The same is true whenever g covers an arbitrary segment ViVi+1 while f(t) = Vk, for
some k. Therefore, it follows that dist[f(t), g(t)] ≥ smw(X) for all t ∈ [0, 1].

Since, as t covers [0, 1], f and g cover, between them, 2(N + 1) segments on X in the
positive direction, there are two cases to consider. Either both f and g are onto or one of
them is not onto. Suppose the latter holds, and assume, without loss of generality, then g is
not onto. Then continue the definition of f and g, in the manner described above, beyond
the interval [0, 1], on [1, 1+1/2(N+1)] and as many additional intervals of length 1/2(N+1)
as needed until g covers X. Let n be a natural number such that g([0, 1 +n/2(N + 1)]) = X
and put a = 1 + n/2(N + 1).

We have defined two mappings f, g : [0, a] −→ X for some a ≥ 1, f([0, a]) = g([0, a]) =
X and dist[(f(t), g(t)] ≥ smw(X) for all t ∈ [0, a]. Hence, σ(X) ≥ smw(X).

The, above result can be extended, via approximation, to a simple closed curve. Let X
be a simple closed curve, let L be a simple closed polygonal path with all of its vertices on X,
and let ε > 0. For each line segment AB on L, we shall denote by AB(X) the arc on X that
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corresponds to AB, i.e. AB(X) has the same endpoints as AB and AB(X)∩ (L \AB) = ∅.
We consider L to be an ε-approximation of X if and only if

(2) ∀AB on L ∀P ∈ AB(X) dist[P,AB] < ε.

For each natural n, we shall denote a 1/n-approximation of X by Ln.

Definition 2.3. Let X be a simple closed curve. The span mate width smw(X) of X is
defined as

smw(X) = lim
n

sup smw(Ln),

where Ln is a 1/n-approximation of x.

Theorem 2.4. If X is a simple closed curve then σ(X) ≥ smw(X).

Proof. Let ε be an arbitrary positive number, and let Ln be a simple closed polygonal path
and a 1/n-approximation of X, for each natural n. We choose a natural number k, 1/k < ε/4,
such that

(3) smw(Lk) > smw(X) − ε/4.

Since, by virtue of Lemma 2.2, σ(Lk) ≥ smw(Lk), there exist two mappings f, g :
[0, 1] −→ Lk such that

(4) ∀t ∈ [0, 1] dist[f(t), g(t)] ≥ smw(Lk) − ε/4.

Let h : Lk −→ X be a homeomorphism such that, for each line segment AB on
Lk h(AB) = AB(X), h(A) = A, h(B) = B, and for each x on Lk dist[x, h(x)] < 1/k.
We define two mappings F,G : [0, 1] −→ X by putting F (t) = h(f(t)) and G(t) = h(g(t))
for all t ∈ [0, 1]. Notice that

(5) ∀t ∈ [0, 1] dist[f(t), F (t)] < 1/k < ε/4,

(6) ∀t ∈ [0, 1] dist[g(t), G(t)] < 1/k < ε/4.

Therefore, in view of (3) - (6), we have

dist[F (t), G(t)] ≥ dist[f(t), g(t)] − ε/2 ≥ smw(Lk) − 3ε/4 > smw(X) − ε, for all t ∈ [0, 1].

Hence, since ε was arbitrary, it follows that σ(X) ≥ smw(X).

Finally, we point out that the equality holds in a known case. Let d(X) denote the
infimum of the set of the directional diameters of X, as defined in [6] for a simple closed
curve X. The following theorem follows from the proof of Theorem 3 in [6] and the definition
of the span mate width.

Theorem 2.5. Let X be the boundary of a bounded convex region in the plane. Then
σ(X) = σ0(X) = d(X) = smw(X).
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