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Abstract. This paper deals with a two-person zero-sum timing game with the following

structure: Player I has a gun with one bullet and player II has a gun with two bullets and they

�ght a duel. Player I's gun is noisy and player II's gun is silent, and hence player II hears the

shot of player I as soon as player I �res, whereas player I does not hear the shot of player II.

Player I is at the place 0 at the beginning of the duel and he can move as he likes and player

II is always at the place 1. The accuracy functions, which denote the probability of hitting the

opponent when a player �res his bullet, are arbitrary. If player I hits player II without being

hit himself �rst, then the payo� is +1; if player I is hit by player II without hitting player II

�rst, the payo� is -1; if they hit each other at the same time or both survive, the payo� is 0.

The objective of this paper is to obtain the game value and the optimal strategies for this

timing game. In the �nal section, some examples are given.

1. Introduction

A duel under arbitrary motion is a two-person zero-sum timing game with the following

structure: Each of two competitors, denoted by player I and player II, has a gun and he can

�re his bullets aiming at his opponent. At time t = 0; these two players are one distance

apart on a line and each player can move on the line as he likes. The maximum speed of

player I is v1; the maximum speed of player II is v2 and we assume v1 > v2 = 0: Without

loss of generality, we can suppose that v1 = 1 and v2 = 0; and hence, player II is motionless.

Thus we assume that player II is at the place 1 all the time and player I is at the place 0

at time t = 0 and he can move towards player II, he can move away from player II, and

he can stay in one place. If player I or player II �res his bullet when player I is at a place

x; he hits his opponent with probability p(x) or q(x), respectively. The functions p(x) and

q(x) are called accuracy functions for players I and II, respectively, and they are continuous

and strictly increasing on [0; 1] with p(0) = q(0) = 0 and p(1) = q(1) = 1: The duel ends

when at least one player is hit or both players �re all of their bullets; otherwise it continues

inde�nitely. If player I hits player II without being hit himself �rst, then the payo� of the

duel is +1; if player I is hit by player II without hitting player II �rst, the payo� is -1;

if they hit each other at the same time or both survive, the payo� is 0. The objective of

player I is to maximize the expected payo� and the objective of player II is to minimize it.

A gun is said to be silent if the shot of the owner is not heard by his opponent and a gun

is said to be noisy if the shot of the owner is heard by his opponent as soon as the owner of

the gun �res the bullet. Thus if a player has a silent gun, then his opponent does not know

whether the owner of the gun has �red or not. On the other hand, if a player has a noisy
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gun, then his opponent always knows whether the owner has �red or not. If each player

has a silent gun, the duel is said to be silent and if each player has a noisy gun, the duel is

said to be noisy.

Trybula [7, 8] solved the silent duel with arbitrary accuracy functions under arbitrary

motion under the assumption that each player has a silent gun with one bullet and that

p(x) and q(x) increase with a continuous second derivative each. Trybula [4-6] also solved

the noisy duel under arbitrary motion.

The author [2] dealt with the silent-versus-noisy duel under arbitrary motion in which

player I has a silent gun with one bullet and player II has a noisy gun with one bullet and

the accuracy functions are p(x) and q(x) for players I and II, respectively. The author [3]

also dealt with the noisy-versus-silent duel under arbitrary motion in which player I has a

noisy gun with one bullet and player II has a silent gun with one bullet and the accuracy

functions are p(x) and q(x) for players I and II, respectively.

Further researches on duels under arbitrary motion have been done by Trybula [9-11]

and general researches on games of timing are summarized by Karlin [1].

In this paper, we deal with the duel under arbitrary motion in which player I has a

noisy gun with one bullet and player II has a silent gun with two bullets and each player's

accuracy function is arbitrary.

2. Problem

In this paper, we deal with the one-noisy-versus-two-silent duel with arbitrary accuracy

functions under arbitrary motion. Player I has a noisy gun with one bullet and he is at

the place 0 at time t = 0: He can move as he likes. On the other hand, player II has a

silent gun with two bullets and he is always at the place 1. The accuracy functions are

p(x) and q(x) for player I and player II, respectively. We suppose that p(x) and q(x) have

positive and continuous derivatives p0(x) and q0(x), respectively, with p(0) = q(0) = 0 and

p(1) = q(1) = 1.

Suppose that player I �res his bullet and fails in hitting player II. Then player I will go

in the opposite direction from the place where player II is, since the probability of being

hit increases if he approaches player II. Obviously, this going back to the place 0 by player

I directly after �ring is necessary in any optimal strategy and it will be assumed in all of

player I's strategies for the rest of this paper. In addition, player II's chance of hitting the

opponent decreases as the distance between the players becomes large. Thus if player II

has bullets after player I has �red his bullet, then player II will �re these bullets as soon as

player I has �red since player I will escape from player II directly after player I has �red.

These �rings by player II directly after player I's �ring are necessary in any optimal strategy

and it will also be assumed in all of player II's strategies for the rest of this paper.

Assume that player I goes to x0, he then goes back to x (x < x0) and then he �res his

bullet at x. Then player I may be hit by his opponent during his movements from x to x0

and back to x, also his chance of hitting the opponent does not increase. Thus if player I

�res his bullet at a place, he should �re his bullet when he is at the place for the �rst time.

Therefore we can con�ne the strategy for player I to those going directly to the place where

he �res his bullet and then going back to the place 0 immediately after the �ring. Similarly,

we can con�ne the strategies for player II to those where he �res each of his bullets when

player I is at a place for the �rst time.

Let M(x; y; z) be the expected payo� of the duel when player I �res his bullet at the

place x (0 5 x 5 1), and player II �res his �rst and second bullet at the moments when

player I is at the place y and z (0 5 y 5 z 5 1), respectively. The function M(x; y; z);

called the payo� kernel, is of the form
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M(x; y; z) =

8>>>>>>>><
>>>>>>>>:

p(x)� f1� p(x)gf2� q(x)gq(x); if x < y 5 z;

�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x); if y < x < z;

�q(y)� f1� q(y)gq(z) + f1� q(y)gf1� q(z)gp(x); if y 5 z < x;

p(x)� q(x) � f1� p(x)gf1� q(x)gq(z); if x = y < z;

�q(y) + f1� q(y)gfp(x)� q(x)g; if y < x = z;!!

p(x)� f2� q(x)gq(x); if x = y = z:

For the duel described above, we shall search for an optimal strategy ff(x); �g for player
I consisting of density part f(x) on an interval [a; 1] with a mass � at x = 1 and an optimal

strategy fg(y); h(z)g for player II consisting of two densities g(y) and h(z), where

Z 1

a

f(x) dx+ � = 1;

Z
b

a

g(y) dy = 1

and Z 1

b

h(z) dz = 1

for some b in [a; 1]. In fact, optimal strategies such as ff(x); �g and fg(y); h(z)g may not

exist, but as we shall see, in some cases, such optimal strategies can exist for this timing

game.

3. Preliminary lemmas

The following lemma was proved by the author [3].

Lemma 1. If p(x) � q(x) + p(x)q(x) is increasing over [0; 1]; then there exists a unique

root in (0; 1) for the following equation:

exp

�
�
1

2

Z 1

x

q0(t)

p(t)q(t)
dt

�
+

Z 1

x

q0(t)

p(t)q(t)
3

2

exp

�
�
1

2

Z
t

x

q0(u)

p(u)q(u)
du

�
dt(3.1)

=
2f1� q(x)g

1 + p(x)� q(x) + p(x)q(x)
q(x)�

1

2 :

In this paper, we assume p(x) � q(x) + p(x)q(x) is increasing. We can see that p(x) �
q(x) + p(x)q(x) is increasing when p(x) = x and q(x) = xn with n = 1. We denote by b the

unique root in (0; 1) for the equation (3.1), and thus b satis�es the following equation

exp

�
�
1

2

Z 1

b

q0(x)

p(x)q(x)
dx

�
+

Z 1

b

q0(x)

p(x)q(x)
3

2

exp

�
�
1

2

Z
x

b

q0(t)

p(t)q(t)
dt

�
dx(3.2)

=
2f1� q(b)g

1 + p(b)� q(b) + p(b)q(b)
q(b)�

1

2 :

We set

A1(x) = 1 + p(x) � f1� p(x)gf2� q(x)gq(x);
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A2(x) =
1� q(x)

q(x)
1

2A1(x)
;

A3(x) = exp

(
�
1

2
q(x) +

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)

and

A4(x) = A2(x)A3(x) �
1

2

Z
b

x

q0(t)

p(t)q(t)
3

2

A3(t) dt:

In what follows, we assume that A1(x) is unimodal and thus A1(x) is decreasing over

[0; � ] and increasing over [�; 1] for some � in [0; 1].

Lemma 2. If A0

1(x) > 0 for x in [0; b], then A0

4(x) < 0 for the x.

Proof. We directly get

A0

4(x) = A0

2(x)A3(x) +A2(x)A
0

3(x) +
q0(x)

2p(x)q(x)
3

2

A3(x)

=

�
A0

2(x)�
p(x)q(x) + 1� q(x)

2p(x)q(x)
q0(x)A2(x) +

q0(x)

2p(x)q(x)
3

2

�
A3(x):

Further we have

A0

2(x) = �
f1 + q(x)gq0(x)
2q(x)

3

2A1(x)
�
f1� q(x)gA0

1(x)

q(x)
1

2 fA1(x)g
2

and
q0(x)

2p(x)q(x)
3

2

�
p(x)q(x) + 1� q(x)

2p(x)q(x)
q0(x)A2(x) =

f1 + q(x)gq0(x)
2q(x)

3

2A1(x)
:

Thus we get

A0

4(x) = �
f1� q(x)gA0

1(x)A3(x)

q(x)
1

2 fA1(x)g
2

:

Therefore if A0

1(x) > 0, then A0

4(x) < 0. This completes our proof.

Lemma 3. If A1(x) is increasing over [0; b], then there exists a unique root in [0; b) for the

following equation:

(3.3) A4(x) =
1

f1 + p(b)� q(b) + p(b)q(b)gq(b) 12
e�

1

2
q(b):

Proof. From lemma 2, there is at most one root for the equation (3. 3). We set

'(x) =
2f1 + p(x)� q(x) + p(x)q(x)gA4(x)

A3(x)

�
2f1 + p(x) � q(x) + p(x)q(x)g

f1 + p(b)� q(b) + p(b)q(b)gq(b)
1

2A3(x)
e�

1

2
q(b):
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It suÆces to show that there is an x in [0; b) with '(x) = 0. Since

'(x) =
2f1 + p(x)� q(x) + p(x)q(x)gf1� q(x)g

[1 + p(x)� f1� p(x)gf2� q(x)gq(x)]q(x)
1

2

�
1 + p(x) � q(x) + p(x)q(x)

A3(x)

Z
b

x

q0(t)

p(t)q(t)
3

2

A3(t) dt

�
2f1 + p(x) � q(x) + p(x)q(x)g
f1 + p(b)� q(b) + p(b)q(b)gq(b) 12

exp

(
1

2
q(x) �

1

2
q(b)�

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)
;

we get

'(b) =
2

q(b)
1

2

�
f1 + p(b)� q(b) + p(b)q(b)gf1� q(b)g
1 + p(b)� f1� p(b)gf2� q(b)gq(b)

� 1

�
< 0:

Further, since 1 + p(x)� q(x) + p(x)q(x) is increasing, we get

1 + p(x)� q(x) + p(x)q(x)

A3(x)

Z
b

x

q0(t)

p(t)q(t)
3

2

A3(t) dt

5
1

A3(x)

Z
b

x

1 + p(t)� q(t) + p(t)q(t)

p(t)q(t)
3

2

q0(t)A3(t) dt

=
2

q(x)
1

2

�
2

q(b)
1

2

exp

(
1

2
q(x)�

1

2
q(b)�

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)

for any x in (0; b], and thus

'(x) =
2

q(b)
1

2

�
1�

1 + p(x)� q(x) + p(x)q(x)

1 + p(b)� q(b) + p(b)q(b)

�

� exp

(
1

2
q(x) �

1

2
q(b)�

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)

�
4p(x)q(x)

1

2

1 + p(x)� f1� p(x)gf2� q(x)gq(x)
:

Therefore we get '(0) = 0. This completes our proof.

In the following sections, we suppose that there is a root a for the equation (3.3) in (�; b)

and thus a satis�es the following equation:

1� q(a)

[1 + p(a)� f1� p(a)gf2� q(a)gq(a)]q(a) 12
exp

(
�
1

2
q(a) +

1

2

Z
b

a

f1� q(t)gq0(t)
p(t)q(t)

dt

)(3.4)

�
1

2

Z
b

a

q0(x)

p(x)q(x)
3

2

exp

(
�
1

2
q(x) +

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)
dx

=
1

f1 + p(b)� q(b) + p(b)q(b)gq(b) 12
e�

1

2
q(b):
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4. A strategy for player I

As was stated in section 2, player II �res his bullets directly after he hears the shot by

his opponent if player II still has his bullets when he hears the shot. Suppose that player

II �res his �rst and second bullets at the moments when player I is at the places y and z,

respectively, under the assumption that player I has not �red his bullet until these moments.

Further suppose that player I applies the strategy ff(x); �g. In such a circumstance, we

denote the expected payo� by v1(y; z). The function v1(y; z) is represented as

v1(y; z) =

Z
y

a

[ p(x)� f1� p(x)gf2� q(x)gq(x)]f(x) dx

(4.1)

+

Z
z

y

[�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x)]f(x) dx

+

Z 1

z

[�q(y)� f1� q(y)gq(z) + f1� q(y)gf1� q(z)gp(x)]f(x) dx

+ �[�q(y)� f1� q(y)gq(z) + f1� q(y)gf1� q(z)g]

for all y and z with a 5 y 5 z < 1. We set

�1(z) =

Z
z

b

[1 + p(x)� f1� p(x)gq(x)]f(x) dx(4.2)

+ f1� q(z)g
Z 1

z

f1 + p(x)gf(x) dx + 2�f1� q(z)g

for z in [b; 1). Then we get

v1(y; z) =

Z
y

a

[1 + p(x) � f1� p(x)gf2� q(x)gq(x)]f(x) dx

+ f1� q(y)g
Z

b

y

[1 + p(x)� f1� p(x)gq(x)]f(x) dx

�
Z 1

a

f(x) dx � �+ f1� q(y)g�1(z)

for all y and z with a 5 y 5 b 5 z < 1.

Lemma 4. Set

(4.3) f(x) =

8>><
>>:

c1q
0(x)

p(x)q(x)
3

2

exp

�
�
1

2
q(x) �

1

2

Z
x

a

f1� q(t)gq0(t)
p(t)q(t)

dt

�
; a 5 x < b;

c2q
0(x)

p(x)q(x)
3

2

exp

�
�
1

2

Z
x

b

q0(t)

p(t)q(t)
dt

�
; b 5 x 5 1;

and

(4.4) � = c2 exp

�
�
1

2

Z 1

b

q0(t)

p(t)q(t)
dt

�
;
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where

(4.5) c1 =
q(a)

1

2

2f1� q(a)g
[1 + p(a)� f1� p(a)gf2� q(a)gq(a)]e

1

2
q(a)

and

(4.6) c2 =
c1

1� q(b)
exp

(
�
1

2
q(b)�

1

2

Z
b

a

f1� q(t)gq0(t)
p(t)q(t)

dt

)
:

Then the following statements hold;

(i)

Z 1

a

f(x) dx+ � = 1.

(ii) For all y and z with a 5 y 5 b 5 z < 1,

v1(y; z) = p(a)� f1� p(a)gf2� q(a)gq(a):

(iii) For all y and z with a 5 y 5 z 5 b,

v1(y; z) = p(a)� f1� p(a)gf2� q(a)gq(a):

(iv) For all y and z with b 5 y 5 z < 1,

v1(y; z) = p(a)� f1� p(a)gf2� q(a)gq(a):

Proof. (i) From (3.4) and (4.3), we directly get

Z
b

a

f(x) dx = c1

Z
b

a

q0(x)

p(x)q(x)
3

2

exp

�
�
1

2
q(x) �

1

2

Z
x

a

f1� q(t)gq0(t)
p(t)q(t)

dt

�
dx

=
2c1f1� q(a)g

[1 + p(a)� f1� p(a)gf2� q(a)gq(a)]q(a)
1

2

e�
1

2
q(a)

�
2c1

f1 + p(b)� q(b) + p(b)q(b)gq(b)
1

2

exp

(
�
1

2
q(b)�

1

2

Z
b

a

f1� q(t)gq0(t)
p(t)q(t)

dt

)
;

and hence, by (3.2), (4.3), (4.4), (4.5) and (4.6)

Z
b

a

f(x) dx = 1�
c1

1� q(b)
exp

(
�
1

2
q(b)�

1

2

Z
b

a

f1� q(t)gq0(t)
p(t)q(t)

dt�
1

2

Z 1

b

q0(t)

p(t)q(t)
dt

)

�
c1

1� q(b)
exp

(
�
1

2
q(b)�

1

2

Z
b

a

f1� q(t)gq0(t)
p(t)q(t)

dt

)

�
Z 1

b

q0(x)

p(x)q(x)
3

2

exp

�
�
1

2

Z
x

b

q0(t)

p(t)q(t)
dt

�
dx

= 1� �� c2

Z 1

b

q0(x)

p(x)q(x)
3

2

exp

�
�
1

2

Z
x

b

q0(t)

p(t)q(t)
dt

�
dx

= 1� ��
Z 1

b

f(x) dx:
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Accordingly we have Z 1

a

f(x) dx + � = 1

(ii) For any z in [b; 1], we get

Z 1

z

f1 + p(x)gf(x) dx

(4.7)

= 2c2q(z)
�

1

2 exp

�
�
1

2

Z
z

b

q0(t)

p(t)q(t)
dt

�
� 2c2 exp

�
�
1

2

Z 1

b

q0(t)

p(t)q(t)
dt

�
;

and thus,

�01(z) = 2p(z)q(z)f(z)� q0(z)

Z 1

z

f1 + p(x)gf(x) dx � 2�q0(z) = 0:

By (4.4) and (4.7), we further get

�1(b) = f1� q(b)g
Z 1

b

f1 + p(x)gf(x) dx + 2�f1� q(b)g

= 2c2f1� q(b)gq(b)�
1

2 :

Therefore

(4.8) �1(z) = 2c2f1� q(b)gq(b)�
1

2

for all z in [b; 1). Accordingly, we have

v1(y; z) = �1 +
Z

y

a

[1 + p(x)� f1� p(x)gf2� q(x)gq(x)]f(x) dx(4.9)

+ f1� q(y)g
Z

b

y

[1 + p(x)� f1� p(x)gq(x)]f(x) dx

+ 2c2f1� q(b)gf1� q(y)gq(b)�
1

2

for all y and z with a 5 y 5 b 5 z < 1. For any y in [a; b], we getZ
b

y

[1 + p(x)� f1� p(x)gq(x)]f(x) dx(4.10)

= 2c1q(y)
�

1

2 exp

�
�
1

2
q(y)�

1

2

Z
y

a

f1� q(t)gq0(t)
p(t)q(t)

dt

�

� 2c1q(b)
�

1

2 exp

(
�
1

2
q(b)�

1

2

Z
b

a

f1� q(t)gq0(t)
p(t)q(t)

dt

)

and

Z
y

a

[1 + p(x)� f1� p(x)gf2� q(x)gq(x)]f(x) dx

(4.11)

= 2c1q(a)
�

1

2 f1� q(a)ge�
1

2
q(a)

� 2c1q(y)
�

1

2 f1� q(y)g exp
�
�
1

2
q(y)�

1

2

Z
y

a

f1� q(t)gq0(t)
p(t)q(t)

dt

�
:
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It follows, from (4.5), (4,6), (4.9), (4.10) and (4.11), that

v1(y; z) = p(a)� f1� p(a)gf2� q(a)gq(a)

for all y and z with a 5 y 5 b 5 z < 1.

(iii) By (4.1), we get

1

1� q(y)

@v1(y; z)

@z
= 2p(z)q(z)f(z)� q0(z)

Z 1

z

f1 + p(x)gf(x) dx� 2�q0(z)

= 2p(z)q(z)f(z)� q0(z)

Z
b

z

[1 + p(x)� f1� p(x)gq(x)]f(x) dx

� q0(z)

Z
b

z

f1� p(x)gq(x)f(x) dx � q0(z)

Z 1

b

f1 + p(x)gf(x) dx � 2�q0(z)

for all y and z with a 5 y 5 z 5 b. Thus, from (4.3), (4.4), (4.6), (4.7) and (4.10), it follows

that

1

1� q(y)

@v1(y; z)

@z
= 2c1q(b)

�
1

2 q0(z) exp

(
�
1

2
q(b)�

1

2

Z
b

a

f1� q(t)gq0(t)
p(t)q(t)

dt

)

� q0(z)

Z
b

z

f1� p(x)gq(x)f(x) dx � 2c2q(b)
�

1

2 q0(z)

= �2c2q(b)
1

2 q0(z)� q0(z)

Z
b

z

f1� p(x)gq(x)f(x) dx < 0:

Therefore we have

v1(y; z) = v1(y; b) = p(a)� f1� p(a)gf2� q(a)gq(a)

for any y and z with a 5 y 5 z 5 b.

(iv) By (4.1), (4.2) and (4.8), we get

@v1(y; z)

@y
= 2p(y)q(y)f(y)� q0(y)

Z
z

y

f1 + p(x) � q(x) + p(x)q(x)gf(x) dx

� q0(y)f1� q(z)g
Z 1

z

f1 + p(x)gf(x) dx � 2�q0(y)f1� q(z)g

= 2p(y)q(y)f(y)� q0(y)�1(z)

+ q0(y)

Z
y

b

[1 + p(x) � f1� p(x)gq(x)]f(x) dx

= 2p(y)q(y)f(y)� q0(y)�1(z)

+ q0(y)

�
�1(y)� f1� q(y)g

Z 1

y

f1 + p(x)gf(x) dx � 2�f1� q(y)g
�

= 2p(y)q(y)f(y)� f1� q(y)gq0(y)
�Z 1

y

f1 + p(x)gf(x) dx+ 2�

�

for all y and z with b 5 y 5 z < 1. Thus, it follows, from (4.3), (4.4) and (4.7), that

@v1(y; z)

@y
= 2c2q(y)

1

2 q0(y) exp

�
�
1

2

Z
y

b

q0(t)

p(t)q(t)
dx

�
> 0:

Hence we have

v1(y; z) = v1(b; z) = p(a)� f1� p(a)gf2� q(a)gq(a)

for all y and z with b 5 y 5 z < 1. This completes our proof.
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5. A Strategies for Player II

We suppose that player II applies a strategy fg(y); h(z)g satisfying (1.2) and (1.3) and

that player I �res his bullet at the �rst moment when he is at a place x in [0; 1]. In this

circumstance, we denote the expected payo� by v2(x). We get

v2(x) =

Z
x

a

[�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x)]g(y) dy(5.1)

+

Z
b

x

[ p(x)� f1� p(x)gf2� q(x)gq(x)]g(y) dy

for all x in [a; b] and

v2(x) =

Z
b

a

Z
x

b

[�q(y)� f1� q(y)gq(z) + f1� q(y)gf1� q(z)gp(x)]g(y)h(z) dz dy

(5.2)

+

Z
b

a

Z 1

x

[�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x)]g(y)h(z) dz dy

for all x in [b; 1]. We set

B1(x) =
2

f1 + p(b)� q(b) + p(b)q(b)gq(b)
1

2

exp

(
1

2
q(x) �

1

2
q(b)�

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)

+ e
1

2
q(x)

Z
b

x

q0(t)

p(t)q(t)
3

2

exp

�
�
1

2
q(t)�

1

2

Z
t

x

f1� q(u)gq0(u)
p(u)q(u)

du

�
dt;

B2(x) = 1 + p(x)� q(x) + p(x)q(x);

B3(x) =
B0

2(x)

p(x)q(x)
1

2

+
�2q(x)p0(x) + f1� p(x)gf1� q(x)gq0(x)

2p(x)
2
q(x)

3

2

B2(x)

and

B4(x) =
2q(x)p0(x)� f1� p(x)gf1� q(x)gq0(x)

p(x)
2
q(x)

2
:

Then we directly get

(5.3) B0

1(x) =
1� q(x) + p(x)q(x)

2p(x)q(x)
q0(x)B1(x) �

q0(x)

p(x)q(x)
3

2

and by (3.4), we have

(5.4) B1(a) =
2f1� q(a)g

[1 + p(a)� f1� p(a)gf2� q(a)gq(a)]q(a) 12
:

Lemma 5. Set

(5.5) g(y) = c3B1(y)B3(y) + c3B4(y);
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for y in [a; b], where

(5.6) c3 =
1 + p(a)� f1� p(a)gf2� q(a)gq(a)

4
:

Then

(5.7)

Z
b

a

g(y) dy = 1

and

v2(x) = p(a)� f1� p(a)gf2� q(a)gq(a)
for all x in [a; b].

Proof. We put

B5(x) = 1�
2c3

p(x)q(x)
+

c3B1(x)B2(x)

p(x)q(x)
1

2

and

B6(x) = 1 +
c3f1� p(x)gf1� q(x)gq(x)

1

2

p(x)
B1(x) �

2c3

p(x)
:

Then (5.4) and (5.6) yield

B5(a) = B6(a) = 0:

Furthermore, by (5.3), we get

B0

5(x) = g(x)

and

B0

6(x) = q(x)g(x):

Thus we have

(5.8)

Z
x

a

g(y) dy = B5(x)

and

(5.9)

Z
x

a

q(y)g(y) dy = B6(x);

and hence Z
b

a

g(y) dy = B5(b) = 1:

Accordingly, from (5.1), (5.8) and (5.9), it follows that

v2(x) = p(x)� f1� p(x)gf2� q(x)gq(x) + f1� p(x)gf1� q(x)gq(x)
Z

x

a

g(y) dy

� f1 + p(x)� q(x) + p(x)q(x)g
Z

x

a

q(y)g(y) dy

= �1 + 4c3 = p(a)� f1� p(a)gf2� q(a)gq(a)

for all x in [a; b]. This completes our proof.

We set

B7(x) = exp

�
�
1

2

Z 1

x

q0(t)

p(t)q(t)
dt

�
+

Z 1

x

q0(t)

p(t)q(t)
3

2

exp

�
�
1

2

Z
t

x

q0(u)

p(u)q(u)
du

�
dt

for all x in [b; 1]. We directly get

(5.10) B0

7(x) =
q0(x)

2p(x)q(x)
B7(x)�

q0(x)

p(x)q(x)
3

2

:
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Lemma 6. Set

h(z) =
c4[2q(z)p

0(z)� f1� p(z)gq0(z)]
p(z)

2
q(z)

2
+

c4[f1� p(z)
2gq0(z)� 2q(z)p0(z)]

2p(z)
2
q(z)

3

2

B7(z)

for z in [b; 1], where

c4 =
1 + p(b)� q(b) + p(b)q(b)

4
:

Then Z 1

b

h(z) dz = 1

and

v2(x) = p(a)� f1� p(a)gf2� q(a)gq(a)

for all x in [b; 1].

Proof. By (3.2) and (5.10), we get

(5.11)

Z 1

x

h(z) dz =
2c4

p(x)q(x)
�

c4f1 + p(x)g
p(x)q(x)

1

2

B7(x)

and

(5.12)

Z
x

b

q(z)h(z) dz = 1�
2c4

p(x)
+

c4f1� p(x)gq(x)
1

2

p(x)
B7(x):

Thus it follows from (3.2) that

(5.13)

Z 1

b

h(z) dz = 1:

We set

�2(x) =

Z
x

b

[�q(z) + f1� q(z)gp(x)]h(z) dz +
Z 1

x

[ p(x)� f1� p(x)gq(x)]h(z) dz

for x in [b; 1). By (5.2) and (5.13), we have

v2(x) = �
Z

b

a

q(y)g(y) dy + �2(x)

Z
b

a

f1� q(y)gg(y) dy

for any x in [b; 1]. From (5.11), (5.12) and (5.13), it follows that

�2(x) = p(x)

Z 1

b

h(z) dz � f1 + p(x)g
Z

x

b

q(z)h(z) dz � f1� p(x)gq(x)
Z 1

x

h(z) dz

= �1 + 4c4 = p(b)� q(b) + p(b)q(b)

for all x in [b; 1). Thus

v2(x) = fp(b)� q(b) + p(b)q(b)g
Z

b

a

g(y) dy

� f1 + p(b)� q(b) + p(b)q(b)g
Z

b

a

q(y)g(y) dy
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and hence, from (5.7) and (5.9), we obtain

v2(x) = �1 + 4c3 = p(a)� f1� p(a)gf2� q(a)gq(a)

for all x in [b; 1). This completes our proof.

We set

B8(y) = 1�
1

2
q(y)

1

2B1(y)B2(y)

Then we get

(5.14)
g(y)

c3
=

B1(y)B
0

2(y)

p(y)q(y)
1

2

+B4(y)B8(y):

Lemma 7. g(y) given in Lemma 5 is non-negative for all y in [a; b].

Proof. First we suppose that B4(y) = 0. By (5.14) and B0

2(y) = 0, it suÆces to show

B8(y) = 0. We set

B9(y) =

�
2

q(y)
1

2

�B1(y)B2(y)

�
exp

(
�
1

2
q(y) +

1

2

Z
b

y

f1� q(t)gq0(t)
p(t)q(t)

dt

)
:

Then, by (5.3) and B0

2(y) = 0, we get

B0

9(y) = �B1(y)B
0

2(y) exp

(
�
1

2
q(y) +

1

2

Z
b

y

f1� q(t)gq0(t)
p(t)q(t)

dt

)
5 0

for all y in [a; b]. Further, we have B9(b) = 0, and thus B9(y) = 0 for the y in [a; b].

Accordingly, we obtain

B8(y) =
q(y)

1

2

2
B9(y) exp

(
1

2
q(y)�

1

2

Z
b

y

f1� q(t)gq0(t)
p(t)q(t)

dt

)
= 0

Now we suppose that B4(y) < 0. From the de�nition of a, we get

(5.15) B1(y) >
2f1� q(y)g
A1(y)q(y)

1

2

for all y in (a; b], and we have B3(y) > 0 since B4(y) < 0. Therefore, from (5.5) and (5.15),

it follows that

g(y)

c3
>

2f1� q(y)gB3(y)

A1(y)q(y)
1

2

+B4(y)

=
f1� q(y)gf2B0

2(y)� p(y)q(y)B2(y)B4(y)g+ p(y)q(y)A1(y)B4(y)

p(y)q(y)A1(y)
:

By assumption, A1(y) = 1 + p(y) � f1 � p(y)gf2� q(y)gq(y) is increasing over [�; b], and

thus,

2p2(y)q2(y)B4(y) + p0(y)f1� 2q(y)� q2(y)g = A0

1(y) > 0:
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Hence we have

(5.16) f1� q(y)gB0

2(y) = p0(y)f1� 2q(y)� q2(y)g+ p2(y)q2(y)B4(y) > �p2(y)q2(y)B4(y):

Further, it is easily seen that

(5.17) A1(y) = f1� q(y)gB2(y) + 2p(y)q(y)

Thus, from (5.16) and (5.17), it follows that

f1� q(y)gf2B0

2(y)� p(y)q(y)B2(y)B4(y)g+ p(y)q(y)A1(y)B4(y)

= 2f1� q(y)gB0

2(y) + p(y)q(y)B4(y)[A1(y)� f1� q(y)gB2(y)]

> �2p2(y)q2(y)B4(y) + 2p2(y)q2(y)B4(y) = 0

Therefore we obtain g(y) = 0 for all x in [a; b]. This completes our proof.

Lemma 8. The function h(z) de�ned in Lemma 6 is positive over [b; 1]:

Proof. We directly getZ 1

z

q0(t)

p(t)q(t)
3

2

exp

�
�
1

2

Z
t

z

q0(u)

p(u)q(u)
du

�
dt

= �2
Z 1

z

q(t)�
1

2

d

dt

�
exp

�
�
1

2

Z
t

z

q0(u)

p(u)q(u)
du

��
dt

= 2q(z)�
1

2 � 2 exp

�
�
1

2

Z 1

z

q0(t)

p(t)q(t)
dt

�

�
Z 1

z

q(t)�
3

2 q0(t) exp

�
�
1

2

Z
t

z

q0(u)

p(u)q(u)
du

�
dt

and hence

2�q(z)
1

2B7(z)

= q(z)
1

2 exp

�
�
1

2

Z 1

z

q0(t)

p(t)q(t)
dt

�
+ q(z)

1

2

Z 1

z

q(t)�
3

2 q0(t) exp

�
�
1

2

Z
t

z

q0(u)

p(u)q(u)
du

�
dt

> 0

for all z in [b; 1]: Furthermore, since p(z)� q(z) + p(z)q(z) is increasing we have

p0(z) >
f1� p(z)gq0(z)

1 + q(z)
:

Thus,

h(z)

c4
=

2q(z)p0(z)f2� q(z)
1

2B7(z)g+ f1� p(z)gq0(z)
h
f1 + p(z)gq(z)

1

2B7(z)� 2
i

2p(z)
2
q(z)

2

>
2q(z)f1� p(z)g

n
2� q(z)

1

2B7(z)
o

2p(z)
2
q(z)

2f1 + q(z)g
q0(z) +

f1� p(z)g
h
f1 + p(z)gq(z)

1

2B7(z)� 2
i

2p(z)
2
q(z)

2
q0(z)

=
f1� p(z)gq0(z)

2p(z)
2
q(z)

2f1 + q(z)g

h
f1 + p(z)� q(z) + p(z)q(z)gq(z)

1

2B7(z)� 2f1� q(z)g
i
:
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From the de�nition of b, we have

B7(z) =
2f1� q(z)g

1 + p(z)� q(z) + p(z)q(z)
q(z)�

1

2

for all z in [b; 1]; and thus, we obtain h(z) > 0 for all z in [b; 1]. This completes our proof.

So far, we have assumed that the equaton (3.3) has a root a in [�; b]. From now on, in

this section, we assume that the equation (3.3) does not have a root in [�; b]. We set, for x

in (0; b],

�3(x) =
2

f1 + p(x)� q(x) + p(x)q(x)gq(x) 12
exp

(
�
1

2
q(x) +

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)

�
Z

b

x

q0(t)

p(t)q(t)
3

2

exp

(
�
1

2
q(t) +

1

2

Z
b

t

f1� q(u)gq0(u)
p(u)q(u)

du

)
dt:

It is easily seen that �03(x) < 0 for all x in (0; b), and hence

2

f1 + p(b)� q(b) + p(b)q(b)gq(b) 12
e�

1

2
q(b)

<
2

f1 + p(x)� q(x) + p(x)q(x)gq(x) 12
exp

(
�
1

2
q(x) +

1

2

Z
b

x

f1� q(t)gq0(t)
p(t)q(t)

dt

)

�
Z

b

x

q0(t)

p(t)q(t)
3

2

exp

(
�
1

2
q(t) +

1

2

Z
b

t

f1� q(u)gq0(u)
p(u)q(u)

du

)
dt

for any x in (0; b). Consequently we get

2� q(x)
1

2B1(x)B2(x) > 0

for all x in (0; b).

Lemma 9. Set

g�(y) = c�3fB1(y)B3(y) +B4(y)g;

where

c�3 =
p(�)q(�)

2� q(�)
1

2B1(�)B2(�)
:

Then Z
b

�

g�(y) dy = 1

and

v�2(x) 5 p(�)� f1� p(�)gf2� q(�)gq(�)

for all x in [�; 1], where v�2(x) denotes the expected payo� when player II applies the strategy

fg�(y); h(z)g and player I �res his bullet at the �rst moment when he is at the place x.

Proof. We set

B�

5 (x) = 1�
2c�3

p(x)q(x)
+

c�3B1(x)B2(x)

p(x)q(x)
1

2
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and

B�

6 (x) = q(�) + 2c�3q(�)
1

2B1(�)�
2c�3
p(x)

+
c�3f1� p(x)gf1� q(x)gq(x)

1

2

p(x)
B1(x):

It is easy to see that

B�

5 (�) = B�

6(�) = 0;

Z
x

�

g�(y) dy = B�

5(x)

and Z
x

�

q(y)g�(y) dy = B�

6 (x):

Thus we have Z
b

�

g�(y) dy = B�

5 (b) = 1

Further, for any x in [�; b], we get

v�2(x) =

Z
x

�

[�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x)]g�(y) dy

+

Z
b

x

[p(x)� f1� p(x)gf2� q(x)gq(x)]g�(y) dy

= p(�)� f1� p(�)gf2� q(�)gq(�)

+

�
1�

B2(x)

B2(�)

�
[4c�3 � 1� p(�) + f1� p(�)gf2� q(�)gq(�)] :

Since the equation (3.3) does not have a root in [�; b], we have

1

f1 + p(b)� q(b) + p(b)q(b)gq(b)
1

2

e�
1

2
q(b)

>
1� q(�)

[1 + p(�) � f1� q(�)gf2� q(�)gq(�)]q(�)
1

2

exp

(
�
1

2
q(�) +

1

2

Z
b

�

f1� q(t)gq0(t)
p(t)q(t)

dt

)

�
1

2

Z
b

�

q0(t)

p(t)q(t)
3

2

exp

(
�
1

2
q(t) +

1

2

Z
b

t

f1� q(u)gq0(u)
p(u)q(u)

du

)
dt;

and thus

B1(�) >
2f1� q(�)g

[1 + p(�)� f1� p(�)gf2� q(�)gq(�)]q(�) 12
:

Therefore we have

4c�3 > 1 + p(�) � f1� p(�)gf2� q(�)gq(�)

and hence

v�2(x) 5 p(�)� f1� p(�)gf2� q(�)gq(�)
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for all x in [�; b]. Further, for x in [b; 1], we get

v�2(x) =

Z
b

�

Z
x

b

[�q(y)� f1� q(y)gq(z) + f1� q(y)gf1� q(z)gp(x)]g�(y)h(z) dz dy

+

Z
b

�

Z 1

x

[�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x)]g�(y)h(z) dz dy

= �2(x)

Z
b

�

f1� q(y)gg�(y) dy �
Z

b

�

q(y)g�(y) dy

= p(b)� q(b) + p(b)q(b)� f1 + p(b)� q(b) + p(b)q(b)g
Z

b

�

q(y)g�(y) dy

= v�2(b) 5 p(�) � f1� p(�)gf2� q(�)gq(�):

This completes our proof.

6. Optimal Strategies

In this section, we give the game value and the optimal strategies for the duel.

Theorem 1. If there is a root a with p(a)�f1� p(a)gf2� q(a)gq(a) > 0 for the equation

(3.3), then the strategy ff(x); �g given in Lemma 4 is optimal for player I and the strategy

fg(y); h(z)g given in Lemma 5 and Lemma 6 is optimal for player II. Furthermore, the

game value v is p(a)� f1� p(a)gf2� q(a)gq(a).

Proof. It suÆces to show that

v1(y; z) = p(a)� f1� p(a)gf2� q(a)gq(a)

for all y and z with 0 5 y 5 z 5 1 and

v2(x) 5 p(a)� f1� p(a)gf2� q(a)gq(a)

for all x in [0; 1]: From Lemma 4,

v1(y; z) = p(a)� f1� p(a)gf2� q(a)gq(a)

for all y and z with a 5 y 5 z < 1. For y in [0; a] and z in [a; 1), we get

v1(y; z) = �q(y) + f1� q(y)g
Z

z

a

[ p(x) � f1� p(x)gq(x)]f(x) dx

� f1� q(y)g
Z 1

z

[ q(z)� f1� q(z)gp(x)]f(x) dx+ �f1� q(y)gf1� 2q(z)g

= �1 + f1� q(y)g
Z

z

a

[ 1 + p(x)� f1� p(x)gq(x)]f(x) dx

+ f1� q(y)gf1� q(z)g
Z 1

z

f1 + p(x)gf(x) dx + 2�f1� q(y)gf1� q(z)g

= v1(a; z) = p(a)� f1� p(a)gf2� q(a)gq(a);

and for y and z with 0 5 y 5 z 5 a, we have

v1(y; z) = �q(y)� f1� q(y)gq(z) + f1� q(y)gf1� q(z)g
Z 1

a

p(x)f(x) dx

+ �f1� q(y)gf1� q(z)g

= �1 + f1� q(y)gf1� q(z)g
�
1 +

Z 1

a

p(x)f(x) dx + �

�
= v1(a; a) = p(a)� f1� p(a)gf2� q(a)gq(a):
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Further, for all y in [a; 1]

v1(y; 1) =

Z
y

a

[ p(x)� f1� p(x)gf2� q(x)gq(x)]f(x) dx

+

Z 1

y

[�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x)]f(x) dx

=

Z
y

a

[ p(x)� f1� p(x)gf2� q(x)gq(x)]f(x) dx

+

Z 1

y

[�q(y) + f1� q(y)gp(x)� f1� q(y)gf1� p(x)gq(x)]f(x) dx � �

= p(a)� f1� p(a)gf2� q(a)gq(a);

and for any y in [0; a]

v1(y; 1) = �q(y) + f1� q(y)g
Z 1

a

[ p(x) � f1� p(x)gq(x)]f(x) dx

= �q(y) + f1� q(y)g
Z 1

a

[ p(x) � f1� p(x)gq(x)]f(x) dx � �f1� q(y)g

= p(a)� f1� p(a)gf2� q(a)gq(a):

Thus we obtain

v1(y; z) = p(a)� f1� p(a)gf2� q(a)gq(a)

for all y and z with 0 5 y 5 z 5 1.

By Lemma 5 and Lemma 6,

v2(x) = p(a)� f1� p(a)gf2� q(a)gq(a):

for any x in [a; 1]. Further, for x in [0; a], we have

v2(x) = p(x) � f1� p(x)gf2� q(x)gq(x)

5 p(a)� f1� p(a)gf2� q(a)gq(a)

since p(x)�f1� p(x)gf2� q(x)gq(x) is unimodal and p(a)�f1� p(a)gf2� q(a)gq(a) > 0.

Thus we get

v2(x) 5 p(a)� f1� p(a)gf2� q(a)gq(a)

for all x in [0; 1]. This completes our proof.

In the following theorem, we assume that there is not a root for the equation (3.3) in the

interval [�; b). In this case, p(�) � f1 � p(�)gf2 � q(�)gq(�) < 0 since A1(x) is unimodal.

We denote by I0 the strategy of player I where player I stays inde�nitely at the place 0.

Theorem 2. If there is not a root for the equation (3:3) in the interval [�; b), then the

strategy I0 is optimal for player I and the strategy fg�(y); h(z)g given in Lemma 9 and

Lemma 6 is optimal for player II. Furthermore, the game value v is 0.

Proof. From Lemma 9, it follows that

v�2(x) 5 p(�)� f1� p(�)gf2� q(�)gq(�) 5 0

for any x in [�; 1] and since p(x)� f1� p(x)gf2� q(x)gq(x) is unimodal,

v�2(x) = p(x)� f1� p(x)gf2� q(x)gq(x) 5 0

for any x in [0; � ]. Thus we have v�2(x) 5 0 for all x in [0; 1]. Further, if player I stays at 0

inde�nitely, then the expected payo� is obviously 0. This completes the proof.
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7. Examples

In this section, we give examples which illustrate some of the results in Theorem 1 and

Theorem 2.

Example 1. If p(x) = x and q(x) = x2, then p(x) � q(x) + p(x)q(x) and 1 + p(x) � f1�
p(x)gf2� q(x)gq(x) are increasing over [0; 1]: In this case we have

f(x) =

8>><
>>:

c�1

x3
exp

�
�
x2

2
+

1

x
+ x

�
; a 5 x < b;

c�2

x3
exp

�
1

x

�
; b 5 x 5 1;

� =
af1 + a� (1� a)(2� a2)a2g

2(1� a2)(1� b2)
exp

�
a2

2
�

1

a
� a�

b2

2
+ 1 + b

�
= 0:0135;

g(y) =
2c3(1� x)(1� 3x2 � 2x3 + x4 � x5)

x4
exp

�
x2

2
�

1

x
� x

�

�

"
1

(1 + b� b2 + b3)b
exp

�
�
b2

2
+

1

b
+ b

�
+

Z
b

x

t�3 exp

�
�
t2

2
+ t+

1

t

�
dt

#

�
2c3(1� 2x� x2 + x3)

x5
;

h(z) =
2c4

x2
+

c4(1� x� x2)

x4
exp

�
1�

1

x

�

and

v = a� (1� a)(2� a2)a2(= 0:1655);

where b (= 0.3987) is the unique root in (0; 1) of the equation

2x(1� x)2

1 + x� x2 + x3
= exp

�
1�

1

x

�
;

a (= 0.2652) is the unique root in (0; b) of the equation

1� x2

xf1 + x� (1� x)(2� x2)x2g
exp

�
�
x2

2
+

1

x
+ x

�
�
Z

b

x

t�3 exp

�
�
t2

2
+

1

t
+ t

�
dt

=
1

(1 + b� b2 + b3)b
exp

�
�
b2

2
+

1

b
+ b

�
;

c�1 =
af1 + a� (1� a)(2� a2)a2g

1� a2
exp

�
a2

2
�

1

a
� a

�
;

c�2 =
af1 + a� (1� a)(2� a2)a2g

(1� a2)(1� b2)
exp

�
a2

2
�

1

a
� a�

b2

2
+ b

�
;

c3 =
1 + a� (1� a)(2� a2)a2

4

and

c4 =
1 + b� b2 + b3

4
:



530 TADASHI KURISU

Example 2. If p(x) = q(x) = x; then p(x)� q(x) + p(x)q(x) = x2 is increasing over [0; 1]:

Further A1(x) = 1� x+ 3x2 � x3 is decreasing over [0; �) and increasing over (�; 1], where

� = (3�
p
6)=3 = 0:1835: The unique root b in (0; 1) of the equation

e
1

2 +

Z 1

x

t�
5

2 e
1

2t dt =
2(1� x)

x2 + 1
x�

1

2 e
1

2x

is 0.2524 and there is no root in (�; b) for the equation

1� x

1 + x� (1� x)(2� x)x
exp

�
�
x

2
+

1

2x

�
�

1

2

Z
b

x

t�2 exp

�
1

2t
�

t

2

�
dt

=
1

1 + b2
exp

�
1

2b
�

b

2

�

which corresponds to (3.3). Thus, by Theorem 2, the optimal strategy for player I is staying

at 0 inde�nitely and the optimal strategy fg�(y); h(z)g for player II is

g�(y) =
c�3(y

4 + 2y2 � 4y + 1)

(1 + b2)y4
exp

�
1

2b
�

b

2
+

y

2
�

1

2y

�

+
c�3(y

4 + 2y2 � 4y + 1)

2y4
exp

�
y

2
�

1

2y

�Z
b

y

t�2 exp

�
1

2t
�

t

2

�
dt

�
c�3(y

2 � 4y + 1)

y4

h(z) =
(1 + b2)(3z � 1)

4z4
+

(1 + b2)(1� 2z � z2)

8z
7

2

e�
1

2z

�
e
1

2 +

Z 1

z

t�
5

2 e
1

2t dt

�
;

where c�3 = 0:9078. Further, the game value is 0.
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