N-MAPS OF BCK-ALGEBRAS

ZHAN JIANMING & TAN ZHISONG

Received November 27, 2001

ABSTRACT. In this paper, we introduce the concept of n-maps of BCK-algebras and study some ideals of n-fold positive implicative BCK-algebras. Moreover, we show that if X is n-fold positive implicative BCK-algebras, then X is isomorphic to N(X)

1 Introduction and Preliminaries.

By a *BCK*-algebras we mean an algebra (X; *, 0) of type (2, 0) satisfying the following axioms:

(I) $(x * y) * (x * z) \le (z * y)$, (II) $x * (x * y) \le y$, (III) $x \le x$, (IV) $x \le y$ and $y \le x$ implies x = y, (V) $0 \le x$.

where $x \leq y$ is defined by x * y = 0.

A *BCK*-algebra X is said to be n-fold positive implicative (briefly, PI^n) if there exists a natural number n such that $(x * y) * z^n = (x * z^n) * (y * z^n)$ for all $x, y, z \in X$. For any elements x and y of a *BCK*-algebras, $x * y^n$ denotes $(\cdots (x * y) * \cdots) * y$ in which y occurs n times. A nonempty subset A of a *BCK*-algebras X is called an ideal of X if (i) $0 \in A$ and (ii) $y, x * y \in A$ implies $x \in A$.

Definition 1.1 ([2])Let X be a *BCK*-algebras and n a natural number. A self-map N_x over X defined by $N_x(t) = x * t^n$ for all $t \in X$ is called an n-map over X.

Let A be a subset of a BCK-algebra X. Denote $N_A = \{N_x \mid x \in A\}$ and $N(X) = \{N_x \mid x \in X\}$, we define * on N(X) by $(N_x * N_y)(t) = N_x(t) * N_y(t)$ for all $t \in X$.

It's clear that A BCK-algebras X is PI^n if and only if $N_{x*y} = N_x * N_y$ for all $x, y \in X$.

Definition 1.2 ([1])A nonempty subset A of a BCK-algebras X is called an n-fold positive implicative ideal (briefly, PI^n -ideal) if it satisfies:

(i) $0 \in A$,

(ii) $(x * y) * z^n \in A, y * z^n \in A$ imply $x * z^n \in A$ for all $x, y, z \in X$.

²⁰⁰⁰ Mathematics Subject Classification. 03G25, 06F35.

Key words and phrases. n-maps, PI^n -BCK-algebras, PI^n -ideals, homomorphism.

2 Characterizations of some ideals by n-maps.

Theorem 2.1 A *BCK*-algebras X is PI^n , then so N(X) is.

Proof. If X is a PI^{n} -BCK-algebra, then for every $t \in X$, we have $((N_{x} * N_{y}) * (N_{z}^{n}))(t) = ((x * t^{n}) * (y * t^{n})) * (z * t^{n})^{n} = ((x * t^{n}) * (z * t^{n})^{n}) * ((y * t^{n}) * (z * t^{n})^{n}) = ((N_{x} * N_{z}^{n}) * (N_{y} * N_{z}^{n}))(t)$ that is, $(N_{x} * N_{y}) * N_{z}^{n} = (N_{x} * N_{z}^{n}) * (N_{y} * N_{z}^{n})$. Hence N(X) is a PI^{n} -BCK-algebras.

Theorem 2.2 Let X be a PI^n -BCK-algebra and A a subset of X. Then A is a PI^n -ideal if and only if N_A is PI^n -ideal in N(X).

Proof. Assume that A is a PI^n -ideal of $X, 0 \in A$ implies $N_0 \in N_A$. Let $(N_x * N_y) * N_z^n \in N_A$ and $N_y * N_z^n \in N_A$ for all $x, y, z \in X$. Since X is PI^n , we have $N_{(x*y)*z^n} \in N_A$ and $N_{y*z^n} \in N_A$, and so $(x*y) * z^n \in A$ and $y * z^n \in A$. Since A is a PI^n -ideal, it follows that $x * z^n \in A$, and hence $N_{x*z^n} \in N_A$.

Conversely, let N_A be a PI^n -ideal of N(X), then $N_0 \in N_A$ implies $0 \in A$. Let $x, y, z \in A$ be such that $(x*y)*z^n \in A$ and $y*z^n \in A$. Then we have $N_{(x*y)*z^n} \in N_A$ and $N_{y*z^n} \in N_A$. Since X is PI^n -BCK-algebra and N_A is a PI^n -ideal, it follows that $N_{x*z^n} \in N_A$ and so $x*z^n \in A$. The proof is complete.

Corollary 2.3 Let X be a PI^n -BCK-algebras and A a subset of X. Then A is an ideal in X if and only if N_A is an ideal in N(X).

Definition 2.4 ([3]) A proper ideal A of *BCK*-algebra X is said to be obstinate if $x \in A$ and $y \notin A$ implies $x * y \in A$.

Theorem 2.5 Let X be a PI^n -BCK-algebra and A a subset of X. Then A is an obstinate ideal in X if and only if N_A is an obstinate ideal in N(X).

Proof. Assume that A is an obstinate ideal of X. Then by corollary 2.3, N_A is an ideal of N(X). Let $N_x, N_y \in N(X) - N_A$. Then $x, y \notin A$, and so $x * y \in A$ because A is obstinate. Since X is PI^n -BCK-algebra, we have $N_x * N_y = N_{x*y} \in N_A$. Hence N_A is an obstinate ideal of N(X).

Conversely suppose that N_A is an obstinate ideal of N(X). Using corollary 2.3, A is an ideal of N(X). If $x, y \in X - A$, then $N_x, N_y \in N(X) - N_A$. Since N_A is an obstinate ideal, it follows that $N_x * N_y = N_{x*y} \in N_A$. Hence $x * y \in A$, which shows that A is an obstinate ideal of X. The proof is complete.

Let X be a *BCK*-algebra. Then for any N_x, N_y in L, we define $(N_x \wedge L_y)(t) = N_x(t) \wedge N_y(t)$. where $x \wedge y = y * (y * x)$.

In general, $N_x \wedge N_y \neq N_{x \wedge y}$

Theorem 2.6 If X is a PI^n -BCK-algebra, then we have $N_x \wedge N_y = N_{x \wedge y}$.

Proof. For any $t \in X$, we have $(N_x \wedge N_y)(t) = N_x(t) \wedge N_y(t) = (x * t^n) \wedge (y * t^n) = (y * t^n) * ((y * t^n) * (x * t^n)) = (y * (y * x)) * t^n = (x \wedge y) * t^n = N_{x \wedge y}(t)$. The proof is complete.

Definition 2.7([4]) An ideal A of a BCK-algebra X is said to be prime if for all $x, y \in X, x \land y \in X, x \land y \in A$ implies $x \in A$ or $y \in A$.

Theorem 2.8 Let X be a PI^n -BCK-algebra and A a subset of X. Then A is a prime

ideal in X if and only if N_A is a prime ideal in N(X).

Proof. Assume that A is a prime ideal of X. Then by corollary 2.3, N_A is an ideal of N(X). Let $N_x \wedge N_y \in N_A$. Then by Theorem 2.6 we have $N_{x*y} \in N_A$, and so $x*y \in A$ Since A is a prime ideal, it follows that $x \in A$ or $y \in A$, and hence $N_x \in N_A$ of $N_y \in N_A$. Hence N_A is a prime ideal of N(X).

Conversely suppose that N_A is a prime ideal of N(X). Using corollary 2.3, A is an ideal of X If $x \wedge y \in A$, then $N_{x \wedge y} \in N_A$. By Theorem 2.6, we have $N_x \wedge N_y \in N_A$. Since N_A is a prime ideal of N(X). we have $N_x \in N_A$ or $N_y \in N_A$, which imply that $x \in A$ or $y \in A$. Thus A is a prime ideal of X. The proof is complete.

Definition 2.9 ([7]) A nonempty subset F of a BCK-algebra X is called a filter of X if it satisfies:

(i) $x \in F$ and $y \leq y$ imply $y \in F$.

(ii) $x \in F$ and $y \in F$ imply $x \wedge y \in F$.

Theorem 2.10 Let X be a PI^n -BCK-algebra and F a subset of X. If N_F is a filter of N(X), then F is a filter of X.

Proof. Assume that N_F is a filter of N(X). Let $x \in F$. If $x \leq y$, then $(N_x * N_y)(t) = N_x(t) * N_y(t) = (x * t^n) * (y * t^n) = (x * y) * t^n = 0 * t^n = N_0(t)$ for all $t \in X$. Hence $N_x \leq N_y$ since N_F is a filter of N(X). It follows that $N_y \in N_F$ and so $y \in F$. Let $x, y \in F$. Then $N_x, N_y \in N_F$. Using Theorem 2.6, we have $N_x \wedge N_y \in N_F$. Hence $x \wedge y \in F$, and so F is a filter of X. The proof is complete.

Definition 2.11 ([8]) Let X be a *BCK*-algebra and let a, b be any fixed elements of X. we suppose that there is a greatest element X satisfying $x * a \leq b$. Then the *BCK*-algebra X is said to be with condition (S). In this case X is denoted by $a \circ b$.

Lemma 2.12 Let X be a *BCK*-algebra with condition (S). Then X is PI^n if and only if $(x \circ y) * z^n = (x * z^n) \circ (y * z^n)$ for all $x, y, z \in X$.

Let X be a BCK-algebra with condition (S), then for any $N_x, N_y \in N(X)$ we define:

$$(N_x \circ N_y)(t) = N_x(t) \circ N_y(t)$$

Theorem 2.13 If X is a PI^n -BCK-algebra with condition (S), then we have $N_x \circ N_y = N_{x \circ y}$.

Proof. For any $t \in X$, we have $(N_x \circ N_y)(t) = N_x(t) \circ N_y(t) = (x * t^n) \circ (y * t^n) = (x \circ y) * t^n = N_{x \circ y}(t)$. The proof is complete.

Theorem 2.14 If X is a PI^{n} -BCK-algebra with condition (S), then N(X) is a PI^{n} -BCK-algebra with condition (S).

Proof. It is easy to see that N(x) is a PI^n -BCK-algebra. For every $N_a, N_b \in N(x), (N_a \circ N_b) * N_a = N_{a \circ b} * N_a = N_{(a \circ b)*a} \leq N_b$ because $(a \circ b) * a \leq b$. Let $N_x * N_a \leq N_b$. Then by Theorem 2.1, we have $N_{(a \circ b)*a} = N_0$. Thus, we have (x * a) * b = 0 Since X is with condition (S) we obtain $x \leq a \circ b$. Hence by Theorem 2.13, we have $N_x \leq N_{a \circ b} = N_a \circ N_b$. Therefore N(X) is also with condition (S). The proof is complete.

3 On homomorphism of n-maps.

Definition 3.1 Let X and X' be BCK-algebras. A mapping $f : X \to X'$ is called a homomorphism if for any x and y in X, f(x * y) = f(x) *' f(y), where * and *' are operators in X and X', respectively. Now if we consider a natural map $f : X \to N(X)$ as $f(x) = N_x$, then we have:

Theorem 3.2 If X is a PI^n -BCK-algebra, then X is isomorphic to N(X).

Proof. By Theorem 2.1, N(X) is a PI^n -BCK-algebra. We have to show that a map $f: X \to N(X)$ as $f(x) = N_x$ is a bijective homomorphism. First of all we prove that f is an injective map. Suppose that f(x) = f(y), that is, $N_x = N_y$. For every t in X. $N_x(t) = N_y(t)$ and hence $x * t^n = y * t^n$. If we set t = y, we have x = y. This implies that f is an injective map. Clearly f is a surjective map.

Finally, we show that f is a homomorphism. Since $f(x*y) = N_{x*y}$, $f(x)*'f(y) = N_x*'N_y$ and $N_x*'N_y = N_{x*y}$ because X is PI^n , we have f(x*y) = f(x*y) = f(x)*'f(y), that is f is a homomorphism. The proof is complete.

Theorem 3.3 N_x is a homomorphism if and only if x = 0.

Proof. First we suppose that N_x is a homomorphism. Then $N_x(0) = N_x(0 * 0) = N_x(0) * N_x(0) = (x * 0^n) * (x * 0^n) = 0$ and hence $x = x * 0^n = 0$. This implies that x = 0. Conversely if x = 0, then clearly that we obtain N_0 is a homomorphism.

References

- [1] Y. Huang and Z. Chen, On ideals in BCK-algebra, Math. Japon 50 (1999), 211-226.
- [2] Zhan Jianming and Tan Zhisong, On the BCI-KG part of BCI-algebras, Sci. Math. Japon 55 (2002), 149-152.
- [3] S. K. Goel and A. K. Arora, Obstinate ideals in BCK-algebras, Math. Japon 32 (1987), 559-561.
- [4] E. Y. Deeba, Finitely generated ideal of BCK-algebras, Math. Seminar Notes. 7 (1979), 385-390.
- [5] Y. B. Jun etc, Characterizations of some ideals by left maps, Soochow J. of Math. 22 (1996), 411-416.
- [6] Michiro Kondo, Positive implicative BCK-algebra and its dual algebra, Math. Japon 35 (1990), 289-291.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyuang Moon Sa Co., 1994. (Seoul Korea)
- [8] K. Iseki and S. Tanaki, An introduction to the theory of BCK-algebras, Math. Japon 23 (1978), 1-26.

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P. R. China.

E-mail: zhanjianming@hotmail.com