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Abstract. We de�ne a notion of radical in a BCI-algebra, and some fundamental results

concerning this notation are proved. The notion of �-ideal is introduced, and we discuss

p-ideals in BCI-algebras and their relations with �-ideals.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Is�eki in 1966. In the same

year, K. Is�eki introduced the notion of BCI-algebras which is a generalization of BCK-

algebras([Is1]).

As we know, the primary aim of the theory of BCI-algebras is to determine the structure

of all BCI-algebras. The main task of a structure theorem is to �ne a complete system of

invariants describing the BCI-algebra up to isomorphism, or to establish some connection

with other mathematics branches. In addition, the ideal theory plays an important role in

studying BCI-algebras, and some interesting results have been obtained by several authors.

In this paper, we de�ne a notion of radical in a BCI-algebra, and some fundamental

results concerning this notation are proved. The notion of �-ideal is introduced, and we

discuss p-ideals in BCI-algebras and their relations with �-ideals.

2. Preliminaries

We review some de�nitions and properties that will be useful in our results.

By a BCI-algebra we mean an algebra (X; �; 0) of type (2,0) satisfying the following

conditions:

(BCI-1) ((x � y) � (x � z)) � (z � y) = 0,

(BCI-2) (x � (x � y)) � y = 0,

(BCI-3) x � x = 0,

(BCI-4) x � y = 0 and y � x = 0 imply x = y.

A BCI-algebra X satisfying 0 � x = 0 for all x 2 X is called a BCK-algebra. In any

BCI-algebra X one can de�ne a partial order \�" by putting x � y if and only if x � y = 0.

A BCI-algebra X is said to be p-semisimple if X+ = f0g, where X+ is the BCK-part of

X , i:e:; X+ := fx 2 X j0 � xg. Note that a BCI-algebra X is p-semisimple if and only if

x � y = 0 implies x = y for all x; y 2 X if and only if x � y = 0 � (y � x) for all x; y 2 X . A

BCI-algebra X is said to be associative if (x � y) � z = x � (y � z) for all x; y; z 2 X . Note

that a BCI-algebra X is associative if and only if 0 � x = x for all x 2 X .

An element a of a BCI-algebraX is called an atom if z�a = 0 implies z = a for all z 2 X .

Denote by L(X) the set of all atoms of X . Clearly, 0 2 L(X) and L(X) is a subalgebra of
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X , i:e:; L(X) is a p-semisimple BCI-algebra. Note that if a 2 L(X), then a � x 2 L(X) for

all x 2 X .

A BCI-algebra X has the following properties for any x; y; z 2 X :

(1) x � 0 = x,

(2) (x � y) � z = (x � z) � y;

(3) x � y implies that x � z � y � z and z � y � z � x,

(4) (x � z) � (y � z) � x � y;

(5) x � (x � (x � y)) = x � y,

(6) 0 � (x � y) = (0 � x) � (0 � y).

A nonempty subset I of a BCI-algebra X is called an ideal of X if it satis�es

(7) 0 2 I ,

(8) x � y 2 I and y 2 I imply x 2 I 8x; y 2 X .

In general, an ideal I of a BCI-algebra X need not be a subalgebra. However, if X is a

p-semisimple BCI-algebra then any subalgebra of X is an ideal. A nonempty subset I in a

BCI-algebra X is called a p-ideal of X , if it satis�es (7) and

(9) (x � z) � (y � z) 2 I and y 2 I imply x 2 I 8x; y; z 2 X .

Note that an ideal I of a BCI-algebra X is a p-ideal if and only if 0 � (0 � x) 2 I implies

x 2 I for any x 2 X . A mapping f : X ! Y of BCI-algebras is called a homomorphism if

f(x � y) = f(x) � f(y) for all x; y 2 X . Clearly, f(0) = 0.

3. A radical approach in BCI-algebras

De�nition 1 ([MW]). For any x in a BCI-algebra X and any positive integer n, the n-th

power xn of x is de�ned by

x
1 = x and x

n = x � (0 � xn�1):

Clearly 0n = 0.

De�nition 2. An element x of a BCI-algebra X is nilpotent if xn = 0 for some positive

integer n. An ideal R of X is called a nil ideal of X if every element of R is nilpotent. In

particular, if every x in X is nilpotent, then X is called a nil algebra.

The following example shows that there is an element which is not nilpotent.

Example 3. Let X = f0; a; b; cg be a BCI-algebra in which �-operation is de�ned by:

* 0 a b c

0 0 c 0 a

a a 0 a c

b b c 0 a

c c a c 0

Then, by routine calculations, we can see that 0; a and c are nilpotent elements of X , but

b is not a nilpotent elements of X .

In the following theorem we give some properties of BCK-algebras.

Theorem 4. Let X be a BCI-algebra. Then the BCK-part X+ of X is subset of the set

fx 2 X jx
2 = xg.

Proof. Let x 2 X+. Then we have x
2 = x � (0 � x) = x � 0 = x, and hence X+ � fx 2

X jx2 = xg. �

Following Theorem 4, we know that there is no nonzero nilpotent element in the BCK-

part X+ of a BCI-algebra X .
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Corollary 5. If X is a BCK-algebra, then X = fx 2 X jx2 = xg.

Noticing that a BCI-algebra X is p-semisimple if and only if X = L(X), the following

lemma follows from [MW, Theorem 2].

Lemma 6. Let X be a p-semisimple BCI-algebra. Then for any a; b 2 X and any positive

integer m;n, we have

(10) a
m+n = a

m � (0 � an),

(11) (am)n = a
mn,

(12) (a � b)m = a
m � bm.

The following theorem is a generalization of Theorem 7 and Corollary 8 in [M].

Theorem 7. For any x in a BCI-algebra and any positive integer n, we have

(0 � x)n = 0 � xn:

Proof. We argue by induction on the positive integer n. For n = 1 there is nothing to prove.

Assume that the theorem is true for positive integer n. Then using (6) we have

(0 � x)n+1 = (0 � x) � (0 � (0 � x)n)

= (0 � x) � (0 � (0 � xn))

= 0 � (x � (0 � xn))

= 0 � xn+1: �

The following corollary is an immediate consequence of Lemma 6 and Theorem 7.

Corollary 8. For any x in a BCI-algebra X and any positive integer n, we have

(13) 0 � xn 2 L(X),

(14) 0 � (x � y)n = (0 � xn) � (0 � yn).

De�nition 9. Let R be a non-empty subset of a BCI-algebra X and k a positive integer.

Then we de�ne

[R; k] := fx 2 Rjx
k = 0g;

which is called the radical of R.

By using radical, we give an equivalent condition in order that a BCI-algebra X would

be associative.

Theorem 10. Let X be a BCI-algebra. Then X is associative if and only if X = [X ; 2]:

Proof. Let X be an associative BCI-algebra. Then for all x 2 X , we have

x
2 = x � (0 � x) = (x � 0) � x = x � x = 0;

and hence X = [X ; 2]. Conversely, assume that x2 = 0 for all x 2 X . Then we have

(0 � x) � x = (x2 � x) � x

= (((x � (0 � x)) � x) � x

= (0 � (0 � x)) � x

= 0;

and hence 0 � x = x for all x 2 X . Therefore X is an associative BCI-algebra. �

Following Theorem 10, we know that every associative BCI-algebra is a nil algebra.
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Remark. We know that, in general, the radical of an ideal in a BCI-algebra X may not be

an ideal. In fact, taking an ideal R = X in Example 3, then [R; 3] = f0; a; cg is not an ideal

of X since b � a = c 2 [R; 3] and b =2 [R; 3]: In the following theorem, we give a condition in

order that a radical would be an ideal.

Theorem 11. Let R be an ideal of a p-semisimple BCI-algebra X. Then the radical of R

is an ideal of X.

Proof. Let [R; k] be a radical of R for some positive integer k. Then clearly 0 2 [R; k]. Let

x; y 2 X be such that x�y 2 [R; k] and y 2 [R; k]. Then we have (x�y)k = 0; yk = 0; x�y 2 R

and y 2 R. Hence using Lemma 6 and R is an ideal of X , we obtain

x
k = x

k � yk = (x � y)k = 0 and x 2 R:

Therefore x 2 [R; k]. �

Theorem 12. Let R be a subalgebra of a p-semisimple BCI-algebra X. Then the radical

of R is a subalgebra of X.

Proof. Assume that [R; k] is a radical of R for some positive integer k. Let x; y 2 X be

such that x; y 2 [R; k]. Then x
k = 0 and y

k = 0. Hence by Lemma 6 we have

(x � y)k = x
k � yk = 0 and x � y 2 R;

and so x � y 2 [R; k]. �

Theorem 13. Let R be a subalgebra of a BCI-algebra X and k a positive integer. If

x 2 [R; k], then 0 � x 2 [R; k].

Proof. Let x 2 [R; k]. Then x
k = 0 and x 2 R. Thus by Theorem 7 we have

(0 � x)k = 0 � xk = 0 and 0 � x 2 R;

and hence 0 � x 2 [R; k]. �

This leave open question, if R is a subalgebra of a BCI-algebra X and 0 � x 2 [R; k],

then is x in [R; k]? The answer is negative. In Example 3, [X ; 3] is a subalgebra of X and

0 � b 2 [X ; 3], but b =2 [X ; 3].

It is then natural to ask that given a nonempty subset R of a BCI-algebra X , under

which condition of X and R is x in [R; k]? Solving this problem, we de�ne the following

de�nition.

De�nition 14. If an ideal R of a BCI-algebra X satis�es the condition

(A) 0 � x 2 R implies x 2 R;

then we say that R is an �-ideal of X .

Example 15. Let X = f0; 1; 2; 3; 4; 5g and � table is given by:

* 0 1 2 3 4 5

0 0 0 0 3 3 3

1 1 0 0 3 3 3

2 2 2 0 5 5 3

3 3 3 3 0 0 0

4 4 3 3 1 0 0

5 5 5 3 2 2 0
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Then (X ; �; 0) is a BCI-algebra. By routine calculations, we can see that f0; 1; 2g is an

�-ideal X and R := f0; 1; 3; 4g is an ideal of X . But R is not an �-ideal of X because

0 � 5 2 R and 5 =2 R.

Next, we discuss p-ideals in BCI-algebras and their relation with �-ideals.

Theorem 16. In a BCI-algebra, every �-ideal is a p-ideal, but the converse does not hold.

Proof. Suppose that R is an �-ideal of a BCI-algebraX . Let x 2 X be such that 0�(0�x) 2

R. Since R is an �-ideal of X , we have 0 � x 2 R and so x 2 R. Therefore R is a p-ideal of

X .

The last part is shown by the following example. �

Example 17. Let X = f0; 1; 2; 3g in which �-operation is de�ned by:

* 0 1 2 3

0 0 3 0 3

1 1 0 3 2

2 2 3 0 1

3 3 0 3 0

Then (X ; �; 0) is a BCI-algebra. By routine calculations, we can see that f0; 3g is a p-ideal

of X , but it is not an �-ideal since 0 � 1 2 f0; 3g and 1 =2 f0; 3g.

The following theorem is a generalization of Theorem 1.3 in [Ho].

Theorem 18. Let R be an ideal in a BCI-algebra X. Then for any x; y 2 X, the following

are equivalent.

(15) x � y 2 R implies that y � x 2 R,

(16) 0 � x 2 R implies that x 2 R.

Proof. (15) ) (16) is obvious. (16) ) (15). Let x; y 2 X be such that x � y 2 R. Then by

(6) and BCI-2, we have

(0 � (y � x)) � (x � y) = ((0 � y) � (0 � x)) � (x � y)

= ((0 � (x � y)) � (0 � x)) � y

= (((0 � x) � (0 � x)) � (0 � y)) � y

= (0 � (0 � y)) � y

= 0 2 R:

Using (16) and R is an ideal of X , we get y � x 2 R. �

By applying Theorem 18, we obtain the following theorem.

Theorem 19. Let R be an �-ideal of a p-semisimple BCI-algebra X and k a positive

integer. If x � y 2 [R; k], then y � x 2 [R; k].

Proof. Let x; y 2 X be such that x � y 2 [R; k]. Then we have (x � y)k = 0 and x � y 2 R.

Using Theorem 7 and X is p-semisimple, we obtain

(y � x)k = (0 � (x � y))k = 0 � (x � y)k = 0 � 0 = 0:

By Theorem 18, y � x 2 R is obvious. Therefore y � x 2 [R; k]. �

By applying Theorems 11, 18 and 19, we obtain the following corollary, which is the

positive answer for the open question.
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Corollary 20. Let R be an �-ideal of a p-semisimple BCI-algebra X and k a positive

integer. If 0 � x 2 [R; k], then x 2 [R; k].

Theorem 21. Let R be a nonempty subset of a p-semisimple BCI-algebra X and let k and

r be positive integers. If kjr, then [R; k] � [R; r].

Proof. If kjr, then r = kq for some positive integer q. Let x 2 [R; k]. Then by Lemma 6 we

have xr = x
kq = (xk)q = 0q = 0, and so [R; k] � [R; r]. �

Theorem 22. Let R be a subalgebra of a p-semisimple BCI-algebra X. Then the set

[R] := fx 2 Rj x is a nilpotent element in Xg

is a nil closed ideal of R.

Proof. It is suÆcient to show that [R] is a subalgebra of R. Assume that x; y 2 [R]. Then

there exist positive integer k and r such that xk = 0; yr = 0 and x; y 2 R. It follows from

Theorem 21 that xkr = 0 and y
kr = 0. Hence by Lemma 6 we have

(x � y)kr = x
kr
� y

kr = 0 and x � y 2 R;

and so x � y 2 [R]. �

In the following, we give quotient algebras via ideals. Let I be an ideal of a BCI-algebra

X . De�ne a binary relation � on X as follows:

x � y if and only if x � y 2 I and y � x 2 I:

Then � is a congruence relation on X . Denote by [x] := fy 2 X jy � xg the equivalence

class containing x 2 X and X=I := f[x]jx 2 Xg. De�ne [x] � [y] = [x � y]. Then [0] is the

greatest closed ideal contained in I , and (X=I ; �; 0) is a BCI-algebra, called the quotient

algebra of X by I . But [0] may not equal I . We can easily check that [0] = I if I is a closed

ideal.

Theorem 23. Let R be a subalgebra of a p-semisimple BCI-algebra X, then X=[R] has no

nonzero nilpotent element.

Proof. Let [x] 2 X=[R] be a nilpotent element. Then [xk] = [x]k = [0] for some positive

integer k. Thus we know that xk is a nilpotent element in X . Hence x
kr = (xk)r = 0 for

some positive integer r, and so we get x 2 [R; kr] � [R]. Therefore [x] = [0]. �

Now we give some properties of radicals related to BCI-homomorphisms.

Theorem 24. Let X be a BCI-algebra, Y be a p-semisimple BCI-algebra and f : X ! Y

be a homomorphism. Then for every subalgebra R of Y , f�1([R; k]) is a subalgebra of X

containing [f�1(R); k] for any positive integer k.

Proof. To prove that [f�1(R); k] � f
�1([R; k]); let x 2 [f�1(R); k]: Then x

k = 0 and

x 2 f
�1(R). Since f is a homomorphism, we have

f(x)k = f(xk) = f(0) = 0 and f(x) 2 R:

Thus f(x) 2 [R; k], and so x 2 f
�1([R; k]). If x; y 2 f

�1([R; k]), then f(x); f(y) 2 [R; k].

It follows from Theorem 12 that

f(x � y) = f(x) � f(y) 2 [R; k];

and so x � y 2 f
�1([R; k]). �

Note that the inverse image of an ideal under a BCI-homomorphism is an ideal. Hence

we have the following theorem.
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Theorem 25. Let X be a BCI-algebra, Y be a p-semisimple BCI-algebra and f : X ! Y

be a homomorphism. If R is an ideal of Y , then f
�1([R; k]) is an ideal of X containing

[f�1(R); k] for any positive integer k.

Theorem 26. Let f : X ! Y be a homomorphism of BCI-algebras, R be a subalgebra of

X and k be a positive integer. Then

(17) f([R; k]) � [f(R); k],

(18) if f is 1-1, then f([R; k]) = [f(R); k].

Proof. (17) Let x 2 [R; k]. Then we have

0 = f(0) = f(xk) = f(x)k and f(x) 2 f(R):

Hence f(x) 2 [f(R); k], and so f([R; k]) � [f(R); k].

(18) Assume that f is 1-1 and let y 2 [f(R); k]. Then y
k = 0 and y = f(x) for some

x 2 R. It follows that

0 = y
k = f(x)k = f(xk):

Since f is 1-1, we have xk = 0. Thus x 2 [R; k], which implies that y = f(x) 2 f([R; k]). �
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