EUN HWAN ROH

Received October 23, 2001

ABSTRACT. We define a notion of radical in a BCI-algebra, and some fundamental results concerning this notation are proved. The notion of α -ideal is introduced, and we discuss p-ideals in BCI-algebras and their relations with α -ideals.

1. INTRODUCTION

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki introduced the notion of BCI-algebras which is a generalization of BCK-algebras([Is1]).

As we know, the primary aim of the theory of BCI-algebras is to determine the structure of all BCI-algebras. The main task of a structure theorem is to fine a complete system of invariants describing the BCI-algebra up to isomorphism, or to establish some connection with other mathematics branches. In addition, the ideal theory plays an important role in studying BCI-algebras, and some interesting results have been obtained by several authors.

In this paper, we define a notion of radical in a BCI-algebra, and some fundamental results concerning this notation are proved. The notion of α -ideal is introduced, and we discuss p-ideals in BCI-algebras and their relations with α -ideals.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions:

(BCI-1) ((x * y) * (x * z)) * (z * y) = 0,

(BCI-2) (x * (x * y)) * y = 0,

(BCI-3) x * x = 0,

(BCI-4) x * y = 0 and y * x = 0 imply x = y.

A BCI-algebra X satisfying 0 * x = 0 for all $x \in X$ is called a *BCK-algebra*. In any BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0. A BCI-algebra X is said to be *p*-semisimple if $X_+ = \{0\}$, where X_+ is the *BCK-part* of X, *i.e.*, $X_+ := \{x \in X | 0 \leq x\}$. Note that a BCI-algebra X is *p*-semisimple if and only if x * y = 0 implies x = y for all $x, y \in X$ if and only if x * y = 0 * (y * x) for all $x, y \in X$. A BCI-algebra X is said to be associative if (x * y) * z = x * (y * z) for all $x, y, z \in X$. Note that a BCI-algebra X is associative if and only if 0 * x = x for all $x \in X$.

An element a of a BCI-algebra X is called an *atom* if z * a = 0 implies z = a for all $z \in X$. Denote by L(X) the set of all atoms of X. Clearly, $0 \in L(X)$ and L(X) is a subalgebra of

²⁰⁰¹ Mathematics Subject Classification. 06F35, 03G25.

Keywords and phrases. nilpotent, nil ideal, nil-algebra, radical, α -ideal.

This work was supported by Korea Research Foundation Grant. 1997.

X, *i.e.*, L(X) is a p-semisimple BCI-algebra. Note that if $a \in L(X)$, then $a * x \in L(X)$ for all $x \in X$.

A BCI-algebra X has the following properties for any $x, y, z \in X$:

 $(1) \quad x * 0 = x,$

(2) (x * y) * z = (x * z) * y,

(3) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$,

(4) $(x * z) * (y * z) \le x * y$,

- (5) x * (x * (x * y)) = x * y,
- (6) 0 * (x * y) = (0 * x) * (0 * y).

A nonempty subset I of a BCI-algebra X is called an *ideal* of X if it satisfies

 $(7) \quad 0 \in I,$

(8) $x * y \in I$ and $y \in I$ imply $x \in I \quad \forall x, y \in X$.

In general, an ideal I of a BCI-algebra X need not be a subalgebra. However, if X is a p-semisimple BCI-algebra then any subalgebra of X is an ideal. A nonempty subset I in a BCI-algebra X is called a *p-ideal* of X, if it satisfies (7) and

(9) $(x * z) * (y * z) \in I$ and $y \in I$ imply $x \in I \quad \forall x, y, z \in X$.

Note that an ideal I of a BCI-algebra X is a p-ideal if and only if $0 * (0 * x) \in I$ implies $x \in I$ for any $x \in X$. A mapping $f : X \to Y$ of BCI-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. Clearly, f(0) = 0.

3. A RADICAL APPROACH IN BCI-ALGEBRAS

Definition 1 ([MW]). For any x in a BCI-algebra X and any positive integer n, the n-th power x^n of x is defined by

$$x^1 = x$$
 and $x^n = x * (0 * x^{n-1})$.

Clearly $0^n = 0$.

Definition 2. An element x of a BCI-algebra X is *nilpotent* if $x^n = 0$ for some positive integer n. An ideal R of X is called a *nil ideal* of X if every element of R is nilpotent. In particular, if every x in X is nilpotent, then X is called a *nil algebra*.

The following example shows that there is an element which is not nilpotent.

Example 3. Let $X = \{0, a, b, c\}$ be a BCI-algebra in which *-operation is defined by:

*	0	a	b	с
0	0	с	0	\mathbf{a}
\mathbf{a}	a	0	\mathbf{a}	с
b	b	с	0	\mathbf{a}
с	с	a	с	0

Then, by routine calculations, we can see that 0, a and c are nilpotent elements of X, but b is not a nilpotent elements of X.

In the following theorem we give some properties of BCK-algebras.

Theorem 4. Let X be a BCI-algebra. Then the BCK-part X_+ of X is subset of the set $\{x \in X | x^2 = x\}$.

Proof. Let $x \in X_+$. Then we have $x^2 = x * (0 * x) = x * 0 = x$, and hence $X_+ \subseteq \{x \in X | x^2 = x\}$. □

Following Theorem 4, we know that there is no nonzero nilpotent element in the BCKpart X_+ of a BCI-algebra X. **Corollary 5.** If X is a BCK-algebra, then $X = \{x \in X | x^2 = x\}$.

Noticing that a BCI-algebra X is p-semisimple if and only if X = L(X), the following lemma follows from [MW, Theorem 2].

Lemma 6. Let X be a p-semisimple BCI-algebra. Then for any $a, b \in X$ and any positive integer m, n, we have

- (10) $a^{m+n} = a^m * (0 * a^n),$
- (11) $(a^m)^n = a^{mn}$,
- (12) $(a * b)^m = a^m * b^m$.

The following theorem is a generalization of Theorem 7 and Corollary 8 in [M].

Theorem 7. For any x in a BCI-algebra and any positive integer n, we have

 $(0*x)^n = 0*x^n.$

Proof. We argue by induction on the positive integer n. For n = 1 there is nothing to prove. Assume that the theorem is true for positive integer n. Then using (6) we have

$$(0 * x)^{n+1} = (0 * x) * (0 * (0 * x)^n)$$

= (0 * x) * (0 * (0 * x^n))
= 0 * (x * (0 * x^n))
= 0 * x^{n+1}. \Box

The following corollary is an immediate consequence of Lemma 6 and Theorem 7.

Corollary 8. For any x in a BCI-algebra X and any positive integer n, we have

- $(13) \quad 0 * x^n \in L(X),$
- (14) $0 * (x * y)^n = (0 * x^n) * (0 * y^n).$

Definition 9. Let R be a non-empty subset of a BCI-algebra X and k a positive integer. Then we define

$$[R;k] := \{ x \in R | x^k = 0 \},\$$

which is called the radical of R.

By using radical, we give an equivalent condition in order that a BCI-algebra X would be associative.

Theorem 10. Let X be a BCI-algebra. Then X is associative if and only if X = [X; 2]. Proof. Let X be an associative BCI-algebra. Then for all $x \in X$, we have

$$x^{2} = x * (0 * x) = (x * 0) * x = x * x = 0,$$

and hence X = [X; 2]. Conversely, assume that $x^2 = 0$ for all $x \in X$. Then we have

$$(0 * x) * x = (x^{2} * x) * x$$

= (((x * (0 * x)) * x) * x
= (0 * (0 * x)) * x
= 0.

and hence 0 * x = x for all $x \in X$. Therefore X is an associative BCI-algebra. \Box

Following Theorem 10, we know that every associative BCI-algebra is a nil algebra.

Remark. We know that, in general, the radical of an ideal in a BCI-algebra X may not be an ideal. In fact, taking an ideal R = X in Example 3, then $[R; 3] = \{0, a, c\}$ is not an ideal of X since $b * a = c \in [R; 3]$ and $b \notin [R; 3]$. In the following theorem, we give a condition in order that a radical would be an ideal.

Theorem 11. Let R be an ideal of a p-semisimple BCI-algebra X. Then the radical of R is an ideal of X.

Proof. Let [R; k] be a radical of R for some positive integer k. Then clearly $0 \in [R; k]$. Let $x, y \in X$ be such that $x * y \in [R; k]$ and $y \in [R; k]$. Then we have $(x * y)^k = 0, y^k = 0, x * y \in R$ and $y \in R$. Hence using Lemma 6 and R is an ideal of X, we obtain

$$x^{k} = x^{k} * y^{k} = (x * y)^{k} = 0$$
 and $x \in R$

Therefore $x \in [R; k]$. \Box

Theorem 12. Let R be a subalgebra of a p-semisimple BCI-algebra X. Then the radical of R is a subalgebra of X.

Proof. Assume that [R; k] is a radical of R for some positive integer k. Let $x, y \in X$ be such that $x, y \in [R; k]$. Then $x^k = 0$ and $y^k = 0$. Hence by Lemma 6 we have

$$(x*y)^k = x^k * y^k = 0$$
 and $x*y \in R$,

and so $x * y \in [R; k]$. \Box

Theorem 13. Let R be a subalgebra of a BCI-algebra X and k a positive integer. If $x \in [R; k]$, then $0 * x \in [R; k]$.

Proof. Let $x \in [R; k]$. Then $x^k = 0$ and $x \in R$. Thus by Theorem 7 we have

$$(0*x)^k = 0*x^k = 0$$
 and $0*x \in R$,

and hence $0 * x \in [R; k]$. \Box

This leave open question, if R is a subalgebra of a BCI-algebra X and $0 * x \in [R; k]$, then is x in [R; k]? The answer is negative. In Example 3, [X; 3] is a subalgebra of X and $0 * b \in [X; 3]$, but $b \notin [X; 3]$.

It is then natural to ask that given a nonempty subset R of a BCI-algebra X, under which condition of X and R is x in [R; k]? Solving this problem, we define the following definition.

Definition 14. If an ideal R of a BCI-algebra X satisfies the condition

(A)
$$0 * x \in R$$
 implies $x \in R$.

then we say that R is an α -ideal of X.

Example 15. Let $X = \{0, 1, 2, 3, 4, 5\}$ and * table is given by:

*	0	1	2	3	4	5
0	0	0	0	3	3	3
1	1	0	0	3	3	3
2	2	2	0	5	5	3
3	3	3	3	0	0	0
4	4	3	3	1	0	0
5	5	5	3	2	2	0

Then (X; *, 0) is a BCI-algebra. By routine calculations, we can see that $\{0, 1, 2\}$ is an α -ideal X and $R := \{0, 1, 3, 4\}$ is an ideal of X. But R is not an α -ideal of X because $0 * 5 \in R$ and $5 \notin R$.

Next, we discuss p-ideals in BCI-algebras and their relation with α -ideals.

Theorem 16. In a BCI-algebra, every α -ideal is a p-ideal, but the converse does not hold.

Proof. Suppose that R is an α -ideal of a BCI-algebra X. Let $x \in X$ be such that $0 * (0 * x) \in R$. Since R is an α -ideal of X, we have $0 * x \in R$ and so $x \in R$. Therefore R is a p-ideal of X.

The last part is shown by the following example. \Box

Example 17. Let $X = \{0, 1, 2, 3\}$ in which *-operation is defined by:

*	0	1	2	3
0	0	3	0	3
1	1	0	3	2
2	2	3	0	1
3	3	0	3	0

Then (X; *, 0) is a BCI-algebra. By routine calculations, we can see that $\{0, 3\}$ is a p-ideal of X, but it is not an α -ideal since $0 * 1 \in \{0, 3\}$ and $1 \notin \{0, 3\}$.

The following theorem is a generalization of Theorem 1.3 in [Ho].

Theorem 18. Let R be an ideal in a BCI-algebra X. Then for any $x, y \in X$, the following are equivalent.

(15) $x * y \in R$ implies that $y * x \in R$,

(16) $0 * x \in R$ implies that $x \in R$.

Proof. (15) \Rightarrow (16) is obvious. (16) \Rightarrow (15). Let $x, y \in X$ be such that $x * y \in R$. Then by (6) and BCI-2, we have

$$(0 * (y * x)) * (x * y) = ((0 * y) * (0 * x)) * (x * y)$$

= ((0 * (x * y)) * (0 * x)) * y
= (((0 * x) * (0 * x)) * (0 * y)) * y
= (0 * (0 * y)) * y
= 0 \in R.

Using (16) and R is an ideal of X, we get $y * x \in R$. \Box

By applying Theorem 18, we obtain the following theorem.

Theorem 19. Let R be an α -ideal of a p-semisimple BCI-algebra X and k a positive integer. If $x * y \in [R; k]$, then $y * x \in [R; k]$.

Proof. Let $x, y \in X$ be such that $x * y \in [R; k]$. Then we have $(x * y)^k = 0$ and $x * y \in R$. Using Theorem 7 and X is p-semisimple, we obtain

$$(y * x)^{k} = (0 * (x * y))^{k} = 0 * (x * y)^{k} = 0 * 0 = 0$$

By Theorem 18, $y * x \in R$ is obvious. Therefore $y * x \in [R; k]$. \Box

By applying Theorems 11, 18 and 19, we obtain the following corollary, which is the positive answer for the open question.

Corollary 20. Let R be an α -ideal of a p-semisimple BCI-algebra X and k a positive integer. If $0 * x \in [R; k]$, then $x \in [R; k]$.

Theorem 21. Let R be a nonempty subset of a p-semisimple BCI-algebra X and let k and r be positive integers. If k|r, then $[R;k] \subseteq [R;r]$.

Proof. If k|r, then r = kq for some positive integer q. Let $x \in [R; k]$. Then by Lemma 6 we have $x^r = x^{kq} = (x^k)^q = 0^q = 0$, and so $[R; k] \subseteq [R; r]$. \Box

Theorem 22. Let R be a subalgebra of a p-semisimple BCI-algebra X. Then the set

 $[R] := \{ x \in R \mid x \text{ is a nilpotent element in } X \}$

is a nil closed ideal of R.

Proof. It is sufficient to show that [R] is a subalgebra of R. Assume that $x, y \in [R]$. Then there exist positive integer k and r such that $x^k = 0, y^r = 0$ and $x, y \in R$. It follows from Theorem 21 that $x^{kr} = 0$ and $y^{kr} = 0$. Hence by Lemma 6 we have

$$(x * y)^{kr} = x^{kr} * y^{kr} = 0 \text{ and } x * y \in R$$

and so $x * y \in [R]$. \Box

In the following, we give quotient algebras via ideals. Let I be an ideal of a BCI-algebra X. Define a binary relation \sim on X as follows:

$$x \sim y$$
 if and only if $x * y \in I$ and $y * x \in I$.

Then \sim is a congruence relation on X. Denote by $[x] := \{y \in X | y \sim x\}$ the equivalence class containing $x \in X$ and $X/I := \{[x] | x \in X\}$. Define [x] * [y] = [x * y]. Then [0] is the greatest closed ideal contained in I, and (X/I; *, 0) is a BCI-algebra, called the *quotient algebra* of X by I. But [0] may not equal I. We can easily check that [0] = I if I is a closed ideal.

Theorem 23. Let R be a subalgebra of a p-semisimple BCI-algebra X, then X/[R] has no nonzero nilpotent element.

Proof. Let $[x] \in X/[R]$ be a nilpotent element. Then $[x^k] = [x]^k = [0]$ for some positive integer k. Thus we know that x^k is a nilpotent element in X. Hence $x^{kr} = (x^k)^r = 0$ for some positive integer r, and so we get $x \in [R; kr] \subseteq [R]$. Therefore [x] = [0]. \Box

Now we give some properties of radicals related to BCI-homomorphisms.

Theorem 24. Let X be a BCI-algebra, Y be a p-semisimple BCI-algebra and $f : X \to Y$ be a homomorphism. Then for every subalgebra R of Y, $f^{-1}([R;k])$ is a subalgebra of X containing $[f^{-1}(R);k]$ for any positive integer k.

Proof. To prove that $[f^{-1}(R); k] \subseteq f^{-1}([R; k])$, let $x \in [f^{-1}(R); k]$. Then $x^k = 0$ and $x \in f^{-1}(R)$. Since f is a homomorphism, we have

$$f(x)^{k} = f(x^{k}) = f(0) = 0$$
 and $f(x) \in R$

Thus $f(x) \in [R; k]$, and so $x \in f^{-1}([R; k])$. If $x, y \in f^{-1}([R; k])$, then $f(x), f(y) \in [R; k]$. It follows from Theorem 12 that

$$f(x * y) = f(x) * f(y) \in [R; k],$$

and so $x * y \in f^{-1}([R; k])$. \Box

Note that the inverse image of an ideal under a BCI-homomorphism is an ideal. Hence we have the following theorem. **Theorem 25.** Let X be a BCI-algebra, Y be a p-semisimple BCI-algebra and $f: X \to Y$ be a homomorphism. If R is an ideal of Y, then $f^{-1}([R; k])$ is an ideal of X containing $[f^{-1}(R); k]$ for any positive integer k.

Theorem 26. Let $f : X \to Y$ be a homomorphism of BCI-algebras, R be a subalgebra of X and k be a positive integer. Then

- $(17) \quad f([R;k]) \subseteq [f(R);k],$
- (18) if f is 1-1, then f([R; k]) = [f(R); k].

Proof. (17) Let $x \in [R; k]$. Then we have

$$0 = f(0) = f(x^k) = f(x)^k$$
 and $f(x) \in f(R)$

Hence $f(x) \in [f(R); k]$, and so $f([R; k]) \subseteq [f(R); k]$.

(18) Assume that f is 1-1 and let $y \in [f(R); k]$. Then $y^k = 0$ and y = f(x) for some $x \in R$. It follows that

$$0 = y^{k} = f(x)^{k} = f(x^{k}).$$

Since f is 1-1, we have $x^k = 0$. Thus $x \in [R; k]$, which implies that $y = f(x) \in f([R; k])$. \Box

References

- [Ho] C. S. Hoo, Closed ideals and p-semisimple BCI-algebras, Math. Japonica 35 (1990), 1103-1112.
- [Is1] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
- [Is2] K. Iséki, On BCI-algebras, Math. Seminar Notes (presently Kobe J. Math.) 8 (1980), 125-130.
- [II] Y. Imai and K. Iséki, On axiom system of propositional calculus XIV, Proc. Japan. Acad. 42 (1966), 19-22.
- [M] J. Meng, Powers of elements and cyclic subalgebras in BCI-algebras, Math. Japonica 39 (1994), 437-446.
- [MW] J. Meng and S. M. Wei, Periods of elements in BCI-algebras, Math. Japonica 38 (1993), 427-431.
- [MX] J. Meng and X. L. Xin, Characterization of atoms in BCI-algebras, Math. Japonica 37 (1992), 359-361.

[ZHB] X. Zhang, J. Hao and S. A. Bhatti, On p-ideals of a BCI-algebra, PUJM 27 (1994), 121-128.

Eun Hwan Roh Department of Mathematics Education Chinju National University of Education Chinju 660-756, Korea E-mail : ehroh@cue.ac.kr