ON A RADICAL APPROACH IN BCI-ALGEBRAS

Eun Hwan Roh

Received October 23, 2001

Abstract

We define a notion of radical in a BCI-algebra, and some fundamental results concerning this notation are proved. The notion of α-ideal is introduced, and we discuss p-ideals in BCI-algebras and their relations with α-ideals.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki introduced the notion of BCI-algebras which is a generalization of BCKalgebras([Is1]).

As we know, the primary aim of the theory of BCI-algebras is to determine the structure of all BCI-algebras. The main task of a structure theorem is to fine a complete system of invariants describing the BCI-algebra up to isomorphism, or to establish some connection with other mathematics branches. In addition, the ideal theory plays an important role in studying BCI-algebras, and some interesting results have been obtained by several authors.

In this paper, we define a notion of radical in a BCI-algebra, and some fundamental results concerning this notation are proved. The notion of α-ideal is introduced, and we discuss p-ideals in BCI-algebras and their relations with α-ideals.

2. Preliminaries

We review some definitions and properties that will be useful in our results.
By a $B C I$-algebra we mean an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:
$(\mathrm{BCI}-1)((x * y) *(x * z)) *(z * y)=0$,
(BCI-2) $(x *(x * y)) * y=0$,
(BCI-3) $x * x=0$,
(BCI-4) $x * y=0$ and $y * x=0$ imply $x=y$.
A BCI-algebra X satisfying $0 * x=0$ for all $x \in X$ is called a $B C K$-algebra. In any BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if $x * y=0$.

A BCI-algebra X is said to be p-semisimple if $X_{+}=\{0\}$, where X_{+}is the BCK-part of X, i.e., $X_{+}:=\{x \in X \mid 0 \leq x\}$. Note that a BCI-algebra X is p-semisimple if and only if $x * y=0$ implies $x=y$ for all $x, y \in X$ if and only if $x * y=0 *(y * x)$ for all $x, y \in X$. A BCI-algebra X is said to be associative if $(x * y) * z=x *(y * z)$ for all $x, y, z \in X$. Note that a BCI-algebra X is associative if and only if $0 * x=x$ for all $x \in X$.

An element a of a BCI-algebra X is called an atom if $z * a=0$ implies $z=a$ for all $z \in X$. Denote by $L(X)$ the set of all atoms of X. Clearly, $0 \in L(X)$ and $L(X)$ is a subalgebra of

[^0]X, i.e., $L(X)$ is a p-semisimple BCI-algebra. Note that if $a \in L(X)$, then $a * x \in L(X)$ for all $x \in X$.

A BCI-algebra X has the following properties for any $x, y, z \in X$:
(1) $x * 0=x$,
(2) $(x * y) * z=(x * z) * y$,
(3) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$,
(4) $(x * z) *(y * z) \leq x * y$,
(5) $x *(x *(x * y))=x * y$,
(6) $0 *(x * y)=(0 * x) *(0 * y)$.

A nonempty subset I of a BCI-algebra X is called an ideal of X if it satisfies
(7) $0 \in I$,
(8) $x * y \in I$ and $y \in I$ imply $x \in I \forall x, y \in X$.

In general, an ideal I of a BCI-algebra X need not be a subalgebra. However, if X is a p-semisimple BCI-algebra then any subalgebra of X is an ideal. A nonempty subset I in a BCI-algebra X is called a p-ideal of X, if it satisfies (7) and
(9) $(x * z) *(y * z) \in I$ and $y \in I$ imply $x \in I \forall x, y, z \in X$.

Note that an ideal I of a BCI-algebra X is a p-ideal if and only if $0 *(0 * x) \in I$ implies $x \in I$ for any $x \in X$. A mapping $f: X \rightarrow Y$ of BCI-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Clearly, $f(0)=0$.

3. A radical approach in BCI-algebras

Definition 1 ([MW]). For any x in a BCI-algebra X and any positive integer n, the n-th power x^{n} of x is defined by

$$
x^{1}=x \text { and } x^{n}=x *\left(0 * x^{n-1}\right) .
$$

Clearly $0^{n}=0$.
Definition 2. An element x of a BCI-algebra X is nilpotent if $x^{n}=0$ for some positive integer n. An ideal R of X is called a nil ideal of X if every element of R is nilpotent. In particular, if every x in X is nilpotent, then X is called a nil algebra.

The following example shows that there is an element which is not nilpotent.
Example 3. Let $X=\{0, a, b, c\}$ be a BCI-algebra in which $*$-operation is defined by:

$*$	0	a	b	c
0	0	c	0	a
a	a	0	a	c
b	b	c	0	a
c	c	a	c	0

Then, by routine calculations, we can see that $0, a$ and c are nilpotent elements of X, but b is not a nilpotent elements of X.

In the following theorem we give some properties of BCK-algebras.
Theorem 4. Let X be a BCI-algebra. Then the BCK-part X_{+}of X is subset of the set $\left\{x \in X \mid x^{2}=x\right\}$.
Proof. Let $x \in X_{+}$. Then we have $x^{2}=x *(0 * x)=x * 0=x$, and hence $X_{+} \subseteq\{x \in$ $\left.X \mid x^{2}=x\right\}$.

Following Theorem 4, we know that there is no nonzero nilpotent element in the BCKpart X_{+}of a BCI-algebra X.

Corollary 5. If X is a BCK-algebra, then $X=\left\{x \in X \mid x^{2}=x\right\}$.
Noticing that a BCI-algebra X is p-semisimple if and only if $X=L(X)$, the following lemma follows from [MW, Theorem 2].
Lemma 6. Let X be a p-semisimple BCI-algebra. Then for any $a, b \in X$ and any positive integer m, n, we have
(10) $a^{m+n}=a^{m} *\left(0 * a^{n}\right)$,
(11) $\left(a^{m}\right)^{n}=a^{m n}$,
(12) $(a * b)^{m}=a^{m} * b^{m}$.

The following theorem is a generalization of Theorem 7 and Corollary 8 in [M].
Theorem 7. For any x in a BCI-algebra and any positive integer n, we have

$$
(0 * x)^{n}=0 * x^{n}
$$

Proof. We argue by induction on the positive integer n. For $n=1$ there is nothing to prove. Assume that the theorem is true for positive integer n. Then using (6) we have

$$
\begin{aligned}
(0 * x)^{n+1} & =(0 * x) *\left(0 *(0 * x)^{n}\right) \\
& =(0 * x) *\left(0 *\left(0 * x^{n}\right)\right) \\
& =0 *\left(x *\left(0 * x^{n}\right)\right) \\
& =0 * x^{n+1} .
\end{aligned}
$$

The following corollary is an immediate consequence of Lemma 6 and Theorem 7.
Corollary 8. For any x in a BCI-algebra X and any positive integer n, we have
(13) $0 * x^{n} \in L(X)$,
(14) $0 *(x * y)^{n}=\left(0 * x^{n}\right) *\left(0 * y^{n}\right)$.

Definition 9. Let R be a non-empty subset of a BCI-algebra X and k a positive integer. Then we define

$$
[R ; k]:=\left\{x \in R \mid x^{k}=0\right\}
$$

which is called the radical of R.
By using radical, we give an equivalent condition in order that a BCI-algebra X would be associative.

Theorem 10. Let X be a BCI-algebra. Then X is associative if and only if $X=[X ; 2]$.
Proof. Let X be an associative BCI-algebra. Then for all $x \in X$, we have

$$
x^{2}=x *(0 * x)=(x * 0) * x=x * x=0
$$

and hence $X=[X ; 2]$. Conversely, assume that $x^{2}=0$ for all $x \in X$. Then we have

$$
\begin{aligned}
(0 * x) * x & =\left(x^{2} * x\right) * x \\
& =(((x *(0 * x)) * x) * x \\
& =(0 *(0 * x)) * x \\
& =0
\end{aligned}
$$

and hence $0 * x=x$ for all $x \in X$. Therefore X is an associative BCI-algebra.
Following Theorem 10, we know that every associative BCI-algebra is a nil algebra.

Remark. We know that, in general, the radical of an ideal in a BCI-algebra X may not be an ideal. In fact, taking an ideal $R=X$ in Example 3, then $[R ; 3]=\{0, a, c\}$ is not an ideal of X since $b * a=c \in[R ; 3]$ and $b \notin[R ; 3]$. In the following theorem, we give a condition in order that a radical would be an ideal.

Theorem 11. Let R be an ideal of a p-semisimple BCI-algebra X. Then the radical of R is an ideal of X.

Proof. Let $[R ; k]$ be a radical of R for some positive integer k. Then clearly $0 \in[R ; k]$. Let $x, y \in X$ be such that $x * y \in[R ; k]$ and $y \in[R ; k]$. Then we have $(x * y)^{k}=0, y^{k}=0, x * y \in R$ and $y \in R$. Hence using Lemma 6 and R is an ideal of X, we obtain

$$
x^{k}=x^{k} * y^{k}=(x * y)^{k}=0 \text { and } x \in R .
$$

Therefore $x \in[R ; k]$.
Theorem 12. Let R be a subalgebra of a p-semisimple BCI-algebra X. Then the radical of R is a subalgebra of X.

Proof. Assume that $[R ; k]$ is a radical of R for some positive integer k. Let $x, y \in X$ be such that $x, y \in[R ; k]$. Then $x^{k}=0$ and $y^{k}=0$. Hence by Lemma 6 we have

$$
(x * y)^{k}=x^{k} * y^{k}=0 \text { and } x * y \in R,
$$

and so $x * y \in[R ; k]$.
Theorem 13. Let R be a subalgebra of a BCI-algebra X and k a positive integer. If $x \in[R ; k]$, then $0 * x \in[R ; k]$.
Proof. Let $x \in[R ; k]$. Then $x^{k}=0$ and $x \in R$. Thus by Theorem 7 we have

$$
(0 * x)^{k}=0 * x^{k}=0 \text { and } 0 * x \in R
$$

and hence $0 * x \in[R ; k]$.
This leave open question, if R is a subalgebra of a BCI-algebra X and $0 * x \in[R ; k]$, then is x in $[R ; k]$? The answer is negative. In Example $3,[X ; 3]$ is a subalgebra of X and $0 * b \in[X ; 3]$, but $b \notin[X ; 3]$.

It is then natural to ask that given a nonempty subset R of a BCI-algebra X, under which condition of X and R is x in $[R ; k]$? Solving this problem, we define the following definition.

Definition 14. If an ideal R of a BCI-algebra X satisfies the condition

$$
\begin{equation*}
0 * x \in R \text { implies } x \in R \text {, } \tag{A}
\end{equation*}
$$

then we say that R is an α-ideal of X.
Example 15. Let $X=\{0,1,2,3,4,5\}$ and $*$ table is given by:

$*$	0	1	2	3	4	5
0	0	0	0	3	3	3
1	1	0	0	3	3	3
2	2	2	0	5	5	3
3	3	3	3	0	0	0
4	4	3	3	1	0	0
5	5	5	3	2	2	0

Then $(X ; *, 0)$ is a BCI-algebra. By routine calculations, we can see that $\{0,1,2\}$ is an α-ideal X and $R:=\{0,1,3,4\}$ is an ideal of X. But R is not an α-ideal of X because $0 * 5 \in R$ and $5 \notin R$.

Next, we discuss p-ideals in BCI-algebras and their relation with α-ideals.
Theorem 16. In a BCI-algebra, every α-ideal is a p-ideal, but the converse does not hold.
Proof. Suppose that R is an α-ideal of a BCI-algebra X. Let $x \in X$ be such that $0 *(0 * x) \in$ R. Since R is an α-ideal of X, we have $0 * x \in R$ and so $x \in R$. Therefore R is a p-ideal of X.

The last part is shown by the following example.
Example 17. Let $X=\{0,1,2,3\}$ in which $*$-operation is defined by:

$*$	0	1	2	3
0	0	3	0	3
1	1	0	3	2
2	2	3	0	1
3	3	0	3	0

Then $(X ; *, 0)$ is a BCI-algebra. By routine calculations, we can see that $\{0,3\}$ is a p-ideal of X, but it is not an α-ideal since $0 * 1 \in\{0,3\}$ and $1 \notin\{0,3\}$.

The following theorem is a generalization of Theorem 1.3 in [Ho].
Theorem 18. Let R be an ideal in a BCI-algebra X. Then for any $x, y \in X$, the following are equivalent.
(15) $x * y \in R$ implies that $y * x \in R$,
(16) $0 * x \in R$ implies that $x \in R$.

Proof. (15) $\Rightarrow(16)$ is obvious. (16) \Rightarrow (15). Let $x, y \in X$ be such that $x * y \in R$. Then by (6) and BCI-2, we have

$$
\begin{aligned}
(0 *(y * x)) *(x * y) & =((0 * y) *(0 * x)) *(x * y) \\
& =((0 *(x * y)) *(0 * x)) * y \\
& =(((0 * x) *(0 * x)) *(0 * y)) * y \\
& =(0 *(0 * y)) * y \\
& =0 \in R .
\end{aligned}
$$

Using (16) and R is an ideal of X, we get $y * x \in R$.
By applying Theorem 18, we obtain the following theorem.
Theorem 19. Let R be an α-ideal of a p-semisimple $B C I$-algebra X and k a positive integer. If $x * y \in[R ; k]$, then $y * x \in[R ; k]$.
Proof. Let $x, y \in X$ be such that $x * y \in[R ; k]$. Then we have $(x * y)^{k}=0$ and $x * y \in R$. Using Theorem 7 and X is p-semisimple, we obtain

$$
(y * x)^{k}=(0 *(x * y))^{k}=0 *(x * y)^{k}=0 * 0=0
$$

By Theorem 18, $y * x \in R$ is obvious. Therefore $y * x \in[R ; k]$.
By applying Theorems 11, 18 and 19, we obtain the following corollary, which is the positive answer for the open question.

Corollary 20. Let R be an α-ideal of a p-semisimple BCI-algebra X and k a positive integer. If $0 * x \in[R ; k]$, then $x \in[R ; k]$.
Theorem 21. Let R be a nonempty subset of a p-semisimple BCI-algebra X and let k and r be positive integers. If $k \mid r$, then $[R ; k] \subseteq[R ; r]$.

Proof. If $k \mid r$, then $r=k q$ for some positive integer q. Let $x \in[R ; k]$. Then by Lemma 6 we have $x^{r}=x^{k q}=\left(x^{k}\right)^{q}=0^{q}=0$, and so $[R ; k] \subseteq[R ; r]$.
Theorem 22. Let R be a subalgebra of a p-semisimple BCI-algebra X. Then the set

$$
[R]:=\{x \in R \mid x \text { is a nilpotent element in } X\}
$$

is a nil closed ideal of R.
Proof. It is sufficient to show that $[R]$ is a subalgebra of R. Assume that $x, y \in[R]$. Then there exist positive integer k and r such that $x^{k}=0, y^{r}=0$ and $x, y \in R$. It follows from Theorem 21 that $x^{k r}=0$ and $y^{k r}=0$. Hence by Lemma 6 we have

$$
(x * y)^{k r}=x^{k r} * y^{k r}=0 \text { and } x * y \in R,
$$

and so $x * y \in[R]$.
In the following, we give quotient algebras via ideals. Let I be an ideal of a BCI-algebra X. Define a binary relation \sim on X as follows:

$$
x \sim y \text { if and only if } x * y \in I \text { and } y * x \in I .
$$

Then \sim is a congruence relation on X. Denote by $[x]:=\{y \in X \mid y \sim x\}$ the equivalence class containing $x \in X$ and $X / I:=\{[x] \mid x \in X\}$. Define $[x] *[y]=[x * y]$. Then $[0]$ is the greatest closed ideal contained in I, and $(X / I ; *, 0)$ is a BCI-algebra, called the quotient algebra of X by I. But [0] may not equal I. We can easily check that $[0]=I$ if I is a closed ideal.

Theorem 23. Let R be a subalgebra of a p-semisimple BCI-algebra X, then $X /[R]$ has no nonzero nilpotent element.
Proof. Let $[x] \in X /[R]$ be a nilpotent element. Then $\left[x^{k}\right]=[x]^{k}=[0]$ for some positive integer k. Thus we know that x^{k} is a nilpotent element in X. Hence $x^{k r}=\left(x^{k}\right)^{r}=0$ for some positive integer r, and so we get $x \in[R ; k r] \subseteq[R]$. Therefore $[x]=[0]$.

Now we give some properties of radicals related to BCI-homomorphisms.
Theorem 24. Let X be a BCI-algebra, Y be a p-semisimple BCI-algebra and $f: X \rightarrow Y$ be a homomorphism. Then for every subalgebra R of $Y, f^{-1}([R ; k])$ is a subalgebra of X containing $\left[f^{-1}(R) ; k\right]$ for any positive integer k.
Proof. To prove that $\left[f^{-1}(R) ; k\right] \subseteq f^{-1}([R ; k])$, let $x \in\left[f^{-1}(R) ; k\right]$. Then $x^{k}=0$ and $x \in f^{-1}(R)$. Since f is a homomorphism, we have

$$
f(x)^{k}=f\left(x^{k}\right)=f(0)=0 \text { and } f(x) \in R .
$$

Thus $f(x) \in[R ; k]$, and so $x \in f^{-1}([R ; k])$. If $x, y \in f^{-1}([R ; k])$, then $f(x), f(y) \in[R ; k]$. It follows from Theorem 12 that

$$
f(x * y)=f(x) * f(y) \in[R ; k],
$$

and so $x * y \in f^{-1}([R ; k])$.
Note that the inverse image of an ideal under a BCI-homomorphism is an ideal. Hence we have the following theorem.

Theorem 25. Let X be a BCI-algebra, Y be a p-semisimple BCI-algebra and $f: X \rightarrow Y$ be a homomorphism. If R is an ideal of Y, then $f^{-1}([R ; k])$ is an ideal of X containing $\left[f^{-1}(R) ; k\right]$ for any positive integer k.
Theorem 26. Let $f: X \rightarrow Y$ be a homomorphism of BCI-algebras, R be a subalgebra of X and k be a positive integer. Then
(17) $f([R ; k]) \subseteq[f(R) ; k]$,
(18) if f is 1-1, then $f([R ; k])=[f(R) ; k]$.

Proof. (17) Let $x \in[R ; k]$. Then we have

$$
0=f(0)=f\left(x^{k}\right)=f(x)^{k} \text { and } f(x) \in f(R)
$$

Hence $f(x) \in[f(R) ; k]$, and so $f([R ; k]) \subseteq[f(R) ; k]$.
(18) Assume that f is 1-1 and let $y \in[f(R) ; k]$. Then $y^{k}=0$ and $y=f(x)$ for some $x \in R$. It follows that

$$
0=y^{k}=f(x)^{k}=f\left(x^{k}\right)
$$

Since f is $1-1$, we have $x^{k}=0$. Thus $x \in[R ; k]$, which implies that $y=f(x) \in f([R ; k])$.

References

[Ho] C. S. Hoo, Closed ideals and p-semisimple BCI-algebras, Math. Japonica 35 (1990), 1103-1112.
[Is1] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
[Is2] K. Iséki, On BCI-algebras, Math. Seminar Notes (presently Kobe J. Math.) 8 (1980), 125-130.
[II] Y. Imai and K. Iséki, On axiom system of propositional calculus XIV, Proc. Japan. Acad. 42 (1966), 19-22.
[M] J. Meng, Powers of elements and cyclic subalgebras in BCI-algebras, Math. Japonica 39 (1994), 437-446.
[MW] J. Meng and S. M. Wei, Periods of elements in BCI-algebras, Math. Japonica 38 (1993), 427-431.
[MX] J. Meng and X. L. Xin, Characterization of atoms in BCI-algebras, Math. Japonica 37 (1992), 359-361.
[ZHB] X. Zhang, J. Hao and S. A. Bhatti, On p-ideals of a BCI-algebra, PUJM 27 (1994), 121-128.
Eun Hwan Roh
Department of Mathematics Education
Chinju National University of Education
Chinju 660-756, Korea
E-mail : ehroh@cue.ac.kr

[^0]: 2001 Mathematics Subject Classification. 06F35, 03G25.
 Keywords and phrases. nilpotent, nil ideal, nil-algebra, radical, α-ideal.
 This work was supported by Korea Research Foundation Grant. 1997.

