ON THE KP-SEMISIMPLE PART IN BCI-ALGEBRAS

Zhan Jianming \& Tan Zhisong

Received November 2, 2001

Abstract

In this paper, we introduce the concept of kp-semisimple part in $B C I$-algebras and give some characterization of such algebras

1. Introduction and Preliminaries

A $B C I$-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ with the following conditions:
(1) $((x * y) *(x * z)) *(z * y)=0$
(2) $(x *(x * y)) * y=0$
(3) $x * x=0$
(4) $x * y=y * x=0$ implies $x=y$.

A partial ordering \leq on X can be defined by $x \leq y$ if and only if $x * y=0$.
The following identities hold for any $B C I$-algebra X :
(1) $x * 0=x$,
(2) $\left(x * y^{k}\right) * z^{k}=\left(x * z^{k}\right) * y^{k}$,
(3) $0 *(x * y)^{k}=\left(0 * x^{k}\right) *\left(0 * y^{k}\right)$,
(4) $0 *(0 * x)^{k}=0 *\left(0 * x^{k}\right)$.
where k is any positive integer.
A nonempty subset I of a $B C I$-algebra X is called an ideal if $0 \in I$ and if $x * y, y \in I$ then $x \in I$. For any $B C I$-algebra X , the set $P(X)=\{x \mid 0 * x=0\}$ is called the $B C K$-part of X . If $P(X)=0$, then we say that X is a p-semisimple $B C I$-algebra.
Definition 1.1([1]). A nonempty subset I of a $B C I$-algebra X is called a k-ideal of X if
(1) $0 \in I$
(2) $x * y^{k} \in I$ and $y \in I$ imply $x \in I$.

Definition 1.2. Let X be a $B C I$-algebra and k a positive integer, we define

$$
S P_{k}(X)=\left\{x \in X \mid 0 *(0 * x)^{k}=x\right\}
$$

We say that $S P_{k}(X)$ is the kp-semisimple part of X. In particular, if $k=1$. the $S P(X)$ is called the p-semisimple part of $\mathrm{X}([2])$

Proposition 1.3. $S P_{k}(X) \cap P(X)=0$
Proof. If $x \in S P_{k}(X) \cap P(X)$, then $0 * x=0$ and $0 *(0 * x)^{k}=x$. Hence $x=0$ and that $S P_{k}(X) \cap P(X)=0$.

Proposition 1.4. For any $B C I$-algebra $X, S P_{k}(X)$ is a subalgebra of X.

Proof. Let $x, y \in S P_{k}(X)$, then $0 *(0 * x)^{k}=x$ and $0 *(0 * y)^{k}=y$.

$$
0 *\left(0 *(x * y)^{k}\right)=0 *\left(0 *(x * y)^{k}\right)=\left(0 *\left(0 * x^{k}\right)\right) *\left(0 *\left(0 * y^{k}\right)\right)=x * y
$$

Hence $x * y \in S P_{k}(X)$.

2. Main Results

Theorem 2.1. For any $B C I$-algebra $\mathrm{X} . S P_{k}(X)$ is a k-ideal if and only if for $x, y \in P(X)$ and $u, v \in S P_{k}(X)$, then $x * u^{k}=y * u^{k}$ implies $x=y$ and $u=v$.

Proof. If $S P_{k}(X)$ is a k-ideal of X and $x * u^{k}=y * v^{k}$ for any $x, y \in P(X)$ and $u, v \in S P_{k}(X)$, then $0 *\left(x * u^{k}\right)=0 *\left(y * v^{k}\right)$ and thus $(0 * x) *\left(0 * u^{k}\right)=(0 * y) *\left(0 * v^{k}\right)$. Hence $0 *\left(0 * u^{k}\right)=0 *\left(0 * v^{k}\right)$ since $x, y \in P(X)$. It follows that $u=v$ since $u, v \in S P_{k}(X)$. From this, we have $x * u^{k}=y * u^{k}$ and thus $(x * y) * u^{k}=\left(x * u^{k}\right) * y=\left(y * u^{k}\right) * y=(y * y) * u^{k}=0 * u^{k} \in S P_{k}(X)$ by proposition 1.4. Hence $x * y \in S P_{k}(X)$ since $S P_{k}(X)$ is a k-ideal. Therefore $x * y=0$ since $x * y \in S P_{k}(X) \cap P(X)$. Similarly, we have $y * x=0$ and thus $x=y$.

Conversely, if $y, x * y^{k} \in S P_{k}(X)$, then
$x * y^{k}=0 *\left(0 *\left(x * y^{k}\right)^{k}\right)=0 *\left(\left(0 * x^{k}\right) *\left(0 * y^{k}\right)^{k}\right)=0 *\left(\left(0 * x^{k}\right) *\left(0 * y^{k}\right)^{k}\right)=$ $\left(0 *\left(0 * x^{k}\right)\right) *\left(0 *\left(0 * y^{k}\right)^{k}\right)=\left(0 *\left(0 * x^{k}\right)\right) * y^{k}$

By hypothesis, $x=0 *\left(0 * x^{k}\right)$. Hence $x \in S P_{k}(X)$ and consequently $S P_{k}(X)$ is a k-ideal of X.

For any $B C I$-algebra X and any element a in X, we use a_{r}^{k} denote the k-selfmap of X defined by $a_{r}^{k}(x)=x * a^{k}$.

Theorem 2.2. For any $B C I$-algebra X, then $S P_{k}(X)$ is a k-ideal of X if and only if a_{r}^{k} is bijective for any $S P_{k}(X)$.

Proof. At first we assume that $S P_{k}(X)$ is a k-ideal of X and $a \in S P_{k}(X)$. If $a_{r}^{k}(x)=a_{r}^{k}(y)$, then $x * a^{k}=y * a^{k}$ for any $x, y \in X$. $(x * y) * a^{k}=\left(x * a^{k}\right) * y=\left(y * a^{k}\right) * y=0 * a^{k} \in S P_{k}(X)$. From this it follows that $x * y \in S P_{k}(X)$ since $S P_{k}(X)$ is a k-ideal of X, and
$a=0 *(0 * a)^{k}=\left(0 *(x * y)^{k}\right) *\left(0 * a^{k}\right)=\left(0 *\left(0 * a^{k}\right)\right) *(x * y)^{k}=a *(x * y)^{k}$
In particular, $0 *(x * y)^{k}=0$, and thus $x * y=0 *\left(0 *\left(x * y^{k}\right)=0\right.$.
Similarly, we have $y * x=0$, Therefore $x=y$ Hence a_{r}^{k} is injective. On the other hard, for any

$$
\begin{aligned}
& \quad x \in X,\left(\left(x * a^{k}\right) *(0 * a)\right) * x=\left(\left(x * a^{k}\right) * x\right) *(0 * a)= \\
& \left(0 * a^{k}\right) *(0 * a)=0 * a^{k-1}=a * a^{k}=\left(0 *\left(0 * a^{k}\right)\right) * a^{k}=0 \text { and } \\
& (0 * a)_{r}^{k} a_{r}^{k}\left(x *\left(\left(x * a^{k}\right) *(0 * a)\right)\right)=\left(\left(x *\left(\left(x * a^{k}\right) *(0 * a)\right)\right) * a^{k}\right) *(0 * a)^{k}= \\
& \left.\left.\left.\left(\left(x *\left(\left(x * a^{k}\right) *(0 * a)\right)\right) * a^{k}\right) *(0 * a)^{k}=\left(\left(x * a^{k}\right) *(0 * a)^{k}\right) *(0 * a)\right)\right) * a^{k}\right) *(0 * a)^{k}= \\
& \left(\left(x * a^{k}\right) *(0 * a)^{k}\right) *\left(\left(x * a^{k}\right) *(0 * a)\right)=0 *(0 * a)^{k-1}=(0 * a) *(0 * a)^{k}= \\
& \left(0 *(0 * a)^{k}\right) * a=a * a=0=\left(0 * a^{k}\right) *\left(0 * a^{k}\right)=\left(0 *\left(0 * a^{k}\right)\right) * a^{k}=(0 * a)_{r}^{k} a_{r}^{k}
\end{aligned}
$$

Since $(0 * a)_{r}^{k}$ and a_{r}^{k} are injective, we have

$$
x *\left(\left(x * a^{k}\right) *(0 * a)\right)=0
$$

Hence $x=\left(x * a^{k}\right) *(0 * a)=(x *(0 * a)) * a^{k}=a_{r}^{k}(x *(0 * a))$
Therefore a_{r}^{k} is surjective.
Conversely if a_{r}^{k} is bijective for any $a \in S P_{k}(X)$, then $S P_{k}(X)$ is a k-ideal of X by
Theorem 2.1.

From the proof of Theorem 2.1, it's easy to see that $(0 * a)_{r}^{k}$ is the inverse of a_{r}^{k}.
Theorem 2.3. Let X be a $B C I$-algebra. If $S P_{k}(X)$ is a k-ideal of X, then $a_{r}^{k} b_{r}^{k}=\left(a *\left(0 * b^{k}\right)\right)_{r}^{k}$ for any $a, b \in S P_{k}(X)$.
Proof. For any $x \in X .\left(a *\left(0 * b^{k}\right)\right)_{r}^{k}\left(\left(\left(x * b^{k}\right) * a^{k}\right) *\left(x *\left(a *\left(0 * b^{k}\right)\right)^{k}\right)=\right.$ $\left(\left(\left(x * b^{k}\right) * a^{k}\right) *\left(x *\left(a *\left(0 * b^{k}\right)\right)^{k}\right)\right) *\left(a *\left(0 * b^{k}\right)\right)^{k}=\left(0 * b^{k}\right) * a^{k}=0 *\left(a *\left(0 * b^{k}\right)\right)^{k}=\left(a *\left(0 * b^{k}\right)\right)_{r}^{k}(0)$ and $a_{r}^{k} b_{r}^{k}\left(\left(x *\left(a *\left(0 * b^{k}\right) *\left(\left(x * b^{k}\right) * a^{k}\right)\right)=\left(\left(\left(x *\left(a *\left(0 * b^{k}\right)\right)^{k}\right) *\left(\left(x * b^{k}\right)\right) * a^{k}\right)\right) * a^{k}=\right.\right.$ $0 *\left(a *\left(0 * b^{k}\right)\right)^{k}=\left(0 * a^{k}\right) *\left(0 *\left(0 * b^{k}\right)\right)^{k}=\left(0 * a^{k}\right) * b^{k}=a_{r}^{k} b_{r}^{k}(0)$

Since $\left(a *\left(0 * b^{k}\right)_{r}^{k}\right.$ and $a_{r}^{k} b_{r}^{k}$ are injective, we have $\left(\left(x * b^{k}\right) * a^{k}\right) *\left(x *\left(a *\left(0 * b^{k}\right)\right)^{k}\right)=0$ and $\left(x *\left(a *\left(0 * b^{k}\right)\right) k\right) *\left(\left(x * b^{k}\right) * a^{k}\right)=0$. Hence $\left.x *\left(a *\left(0 * b^{k}\right)\right)^{k}\right)=\left(x * b^{k}\right) * a^{k}$ and that $a_{r}^{k} b_{r}^{k}(x)=\left(a *\left(0 * b^{k}\right)\right)_{r}^{k}(x)$ for any $x \in X$. Hence $a_{r}^{k} b_{r}^{k}=\left(a *\left(0 * b^{k}\right)\right)_{r}^{k}$.

References

[1] Zhan Jianming \& Tan Zhisong, On the BCI-KG part of BCI-algebras, Math. Japon 55 (2002), 149-152.
[2] Huang Wenping, On the P-semisimple part in BCI-algebras, Math. Japon 37 (1992), 159-161.
[3] L. Tiande and X. Changchang, P-radical in BCI-algebras, Math. Japon 30 (1985), 511-517.
[4] Y. B. Jun and Eoh. E. W., On the BCI-G part of BCI-algebras, Math. Japon 38 (1993), 697-702.
Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, China
E-mail:zhanjianming@hotmail.com

