ON THE KP-SEMISIMPLE PART IN BCI-ALGEBRAS

ZHAN JIANMING & TAN ZHISONG

Received November 2, 2001

ABSTRACT. In this paper, we introduce the concept of kp-semisimple part in BCI-algebras and give some characterization of such algebras

1. Introduction and Preliminaries

A BCI-algebra is an algebra (X, *, 0) of type (2, 0) with the following conditions: (1) ((x * y) * (x * z)) * (z * y) = 0(2) (x * (x * y)) * y = 0(3) x * x = 0(4) x * y = y * x = 0 implies x = y. A partial ordering \leq on X can be defined by $x \leq y$ if and only if x * y = 0. The following identities hold for any BCI-algebra X: (1) x * 0 = x, (2) $(x * y^k) * z^k = (x * z^k) * y^k$, (3) $0 * (x * y)^k = (0 * x^k) * (0 * y^k)$, (4) $0 * (0 * x)^k = 0 * (0 * x^k)$. where k is any positive integer.

A nonempty subset I of a *BCI*-algebra X is called an ideal if $0 \in I$ and if $x * y, y \in I$ then $x \in I$. For any *BCI*-algebra X, the set $P(X) = \{x | 0 * x = 0\}$ is called the *BCK*-part of X. If P(X) = 0, then we say that X is a p-semisimple *BCI*-algebra.

Definition 1.1([1]). A nonempty subset I of a *BCI*-algebra X is called a k-ideal of X if (1) $0 \in I$

(2) $x * y^k \in I$ and $y \in I$ imply $x \in I$.

Definition 1.2. Let X be a *BCI*-algebra and k a positive integer, we define

$$SP_k(X) = \{x \in X \mid 0 * (0 * x)^k = x\}$$

We say that $SP_k(X)$ is the kp-semisimple part of X. In particular, if k = 1. the SP(X) is called the p-semisimple part of X([2])

Proposition 1.3. $SP_k(X) \cap P(X) = 0$

Proof. If $x \in SP_k(X) \cap P(X)$, then 0 * x = 0 and $0 * (0 * x)^k = x$. Hence x = 0 and that $SP_k(X) \cap P(X) = 0$.

Proposition 1.4. For any *BCI*-algebra $X, SP_k(X)$ is a subalgebra of X.

²⁰⁰⁰ Mathematics Subject Classification. 03G25, 06F35.

Key words and phrases. kp-semisimple part, BCK-part, k-ideal.

Proof. Let $x, y \in SP_k(X)$, then $0 * (0 * x)^k = x$ and $0 * (0 * y)^k = y$.

$$0*(0*(x*y)^k) = 0*(0*(x*y)^k) = (0*(0*x^k))*(0*(0*y^k)) = x*y^k$$

Hence $x * y \in SP_k(X)$.

2. Main Results

Theorem 2.1. For any *BCI*-algebra X. $SP_k(X)$ is a k-ideal if and only if for $x, y \in P(X)$ and $u, v \in SP_k(X)$, then $x * u^k = y * u^k$ implies x = y and u = v.

Proof. If $SP_k(X)$ is a k-ideal of X and $x * u^k = y * v^k$ for any $x, y \in P(X)$ and $u, v \in SP_k(X)$, then $0 * (x * u^k) = 0 * (y * v^k)$ and thus $(0 * x) * (0 * u^k) = (0 * y) * (0 * v^k)$. Hence $0 * (0 * u^k) = 0 * (0 * v^k)$ since $x, y \in P(X)$. It follows that u = vsince $u, v \in SP_k(X)$. From this, we have $x * u^k = y * u^k$ and thus $(x * y) * u^k = (x * u^k) * y = (y * u^k) * y = (y * y) * u^k = 0 * u^k \in SP_k(X)$ by proposition 1.4. Hence $x * y \in SP_k(X)$ since $SP_k(X)$ is a k-ideal. Therefore x * y = 0 since $x * y \in SP_k(X) \cap P(X)$. Similarly, we have y * x = 0 and thus x = y. Conversely, if $y, x * y^k \in SP_k(X)$, then $\begin{array}{l} x*y^k = 0*(0*(x*y^k)^k) = 0*((0*x^k)*(0*y^k)^k) = 0*((0*x^k)*(0*y^k)^k) = 0*((0*x^k)*(0*y^k)^k) = (0*(0*x^k))*(0*(0*y^k)^k) = (0*(0*x^k))*y^k \end{array}$ By hypothesis, $x = 0 * (0 * x^k)$. Hence $x \in SP_k(X)$ and consequently $SP_k(X)$ is a

k-ideal of X.

For any BCI-algebra X and any element a in X, we use a_r^k denote the k-selfmap of X defined by $a_r^k(x) = x * a^k$.

Theorem 2.2. For any BCI-algebra X, then $SP_k(X)$ is a k-ideal of X if and only if a_r^k is bijective for any $SP_k(X)$.

Proof. At first we assume that $SP_k(X)$ is a k-ideal of X and $a \in SP_k(X)$. If $a_r^k(x) = a_r^k(y)$, then $x * a^k = y * a^k$ for any $x, y \in X$. $(x * y) * a^{k} = (x * a^{k}) * y = (y * a^{k}) * y = 0 * a^{k} \in SP_{k}(X)$. From this it follows that $x * y \in SP_k(X)$ since $SP_k(X)$ is a k-ideal of X, and $a = 0 * (0 * a)^{k} = (0 * (x * y)^{k}) * (0 * a^{k}) = (0 * (0 * a^{k})) * (x * y)^{k} = a * (x * y)^{k}$ In particular, $0 * (x * y)^k = 0$, and thus $x * y = 0 * (0 * (x * y^k) = 0)$.

Similarly, we have y * x = 0, Therefore x = y Hence a_x^k is injective. On the other hard, for any

 $x \in X, ((x * a^k) * (0 * a)) * x = ((x * a^k) * x) * (0 * a) =$ $(0 * a^k) * (0 * a) = 0 * a^{k-1} = a * a^k = (0 * (0 * a^k)) * a^k = 0$ and $(0*a)_r^k a_r^k (x*((x*a^k)*(0*a))) = ((x*((x*a^k)*(0*a)))*a^k)*(0*a)^k = (0*a)_r^k (0*a)_r^k (0*a)_r^k = (0*a)_r^k (0*a)_r^$ $((x * ((x * a^k) * (0 * a))) * a^k) * (0 * a)^k = ((x * a^k) * (0 * a)^k) * (0 * a)) * a^k) * (0 * a)^k = ((x * a^k) * (0 * a)^k) * (0 * a)) * a^k = ((x * a^k) * (0 * a)) * a^k = ((x * a^k) * (0 * a)) * ((x * a^k) * (0 * a)) * ((x * a^k) * (0 * a))) * ((x * a^k) * (0 * a)) * ((x * a^k) * (0 * a))) * ((x * a^k) * (0 * a)) * ((x * a^k) * (0 * a))) * ((x * a^k$ $((x*a^k)*(0*a)^k)*((x*a^k)*(0*a)) = 0*(0*a)^{k-1} = (0*a)*(0*a)^k = 0$ $(0*(0*a)^k)*a = a*a = 0 = (0*a^k)*(0*a^k) = (0*(0*a^k))*a^k = (0*a)^k_r a^k_r$

Since $(0 * a)_r^k$ and a_r^k are injective, we have

$$x * ((x * a^k) * (0 * a)) = 0$$

Hence $x = (x * a^k) * (0 * a) = (x * (0 * a)) * a^k = a_x^k (x * (0 * a))$

Therefore a_r^k is surjective.

Conversely if a_r^k is bijective for any $a \in SP_k(X)$, then $SP_k(X)$ is a k-ideal of X by Theorem 2.1.

From the proof of Theorem 2.1, it's easy to see that $(0 * a)_r^k$ is the inverse of a_r^k .

Theorem 2.3. Let X be a *BCI*-algebra. If $SP_k(X)$ is a k-ideal of X, then $a_r^k b_r^k = (a * (0 * b^k))_r^k$ for any $a, b \in SP_k(X)$.

Proof. For any $x \in X$. $(a * (0 * b^k))_r^k (((x * b^k) * a^k) * (x * (a * (0 * b^k))^k) = (((x*b^k)*a^k)*(x*(a*(0*b^k))^k))*(a*(0*b^k))^k = (0*b^k)*a^k = 0*(a*(0*b^k))^k = (a*(0*b^k))_r^k(0)$ and $a_r^k b_r^k ((x * (a * (0 * b^k) * ((x * b^k) * a^k))) = (((x * (a * (0 * b^k))^k) * ((x * b^k)) * a^k)) * a^k = 0*(a * (0 * b^k))^k = (0 * a^k) * (0 * (0 * b^k))^k = (0 * a^k) * b^k = a_r^k b_r^k(0)$ Since $(a * (0 * b^k)_r^k$ and $a_r^k b_r^k$ are injective, we have $((x * b^k) * a^k) * (x * (a * (0 * b^k))^k) = 0$

Since $(a * (0 * b^k)_r^k$ and $a_r^k b_r^k$ are injective, we have $((x * b^k) * a^k) * (x * (a * (0 * b^k))^k) = 0$ and $(x * (a * (0 * b^k))k) * ((x * b^k) * a^k) = 0$. Hence $x * (a * (0 * b^k))^k) = (x * b^k) * a^k$ and that $a_r^k b_r^k(x) = (a * (0 * b^k))_r^k(x)$ for any $x \in X$. Hence $a_r^k b_r^k = (a * (0 * b^k))_r^k$.

References

- Zhan Jianming & Tan Zhisong, On the BCI-KG part of BCI-algebras, Math. Japon 55 (2002), 149-152.
- [2] Huang Wenping, On the P-semisimple part in BCI-algebras, Math. Japon 37 (1992), 159-161.
- [3] L. Tiande and X. Changchang, P-radical in BCI-algebras, Math. Japon 30 (1985), 511-517.
- [4] Y. B. Jun and Eoh. E. W., On the BCI-G part of BCI-algebras, Math. Japon 38 (1993), 697-702.

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, China E-mail:zhanjianming@hotmail.com