SEQUENTIAL $\sigma(E(X), E'(X^*))$ -COMPACTNESS AND COMPLETENESS IN KÖTHE-BOCHNER SPACES E(X)

MARIAN NOWAK

Received March 4, 2002

ABSTRACT. Let E be a Banach function space over a complete finite measure space (Ω, Σ, μ) , E'-the Köthe dual of E and let X be a Banach space, X^* -the topological dual of X. We give a criterion for relative sequential $\sigma(E(X), E'(X^*))$ -compactness in Köthe-Bochner spaces E(X). We characterize Banach spaces X having the Radon-Nikodym Property in terms of relatively sequentially $\sigma(E(X), E'(X^*))$ -compact subsets of E(X). Moreover, we show that E(X) is sequentially $\sigma(E(X), E'(X^*))$ -compact give f and only if E is sequentially $\sigma(E, E')$ -complete, X has the Radon-Nikodym Property (with respect to μ) and X is sequentially weakly complete. We generalize F. Bomball, J. Batt and W. Hiermayer's results concerning weak compactness and sequential weak completeness in Lebesgue-Bochner spaces $L^p(X)(1 \le p < \infty)$ and Orlicz-Bochner spaces $L^{\varphi}(X)$.

1. Introduction and preliminaries

Given a dual pair $\langle L, M \rangle$ a subset A of L is said to be conditionally $\sigma(L, M)$ -compact (resp. relatively sequentially $\sigma(L, M)$ -compact) whenever each sequence in A contains a $\sigma(L, M)$ -Cauchy subsequence (resp. each sequence in A contains a subsequence which is $\sigma(L, M)$ -convergent to some element of L).

The problem of characterizing of relatively sequentially $\sigma(L^p(X), L^q(X^*))$ -compact subsets of Lebesque-Bochner spaces $L^p(X)$ for $1 \leq p < \infty$ and q conjugate to p over a finite measure space (Ω, Σ, μ) has been considered in [B₁], [BD], [BH], [D].

In particular, F. Bombal [B₁] showed that if 1 and the Banach space X has $the Radon-Nikodym Property (RNP) with respect to <math>\mu$, then a subset H of $L^p(X)$ is relatively sequentially $\sigma(L^p(X), L^q(X^*))$ -compact iff the following conditions are satisfied:

- (ii) the set $\{\int_A f(\omega)d\mu : f \in H\}$ is relatively weakly compact in X for every $A \in \Sigma$,
- (iii) $\lim_{\mu(A)\to 0} \sup \{ \int_A \langle f(\omega), g(\omega) \rangle d\mu : f \in H \} = 0$ for every $g \in L^q(X^*)$.

Moreover, in [B₁] it is shown that the condition on X to have the RNP is also necessary in order that relatively sequentially $\sigma(L^p(X), L^q(X^*))$ -compact subset of $L^p(X)$ (1 be exactly those satisfying the above conditions (i)–(iii) for each finite measures. As a consequence, a characterization of sequential

 $\sigma(L^p(X), L^q(X^*))$ -completeness of $L^p(X)$ is obtained.

Next, in [B₂] the above results are extended to the class of Orlicz-Bochner spaces $L^{\varphi}(X)$ with topology $\sigma(L^{\varphi}(X), L^{\varphi}(X^*))$, where φ is a Young function satisfying the condition: $\varphi(t)/t \to \infty$ as $t \to \infty$ (so the space $L^1(X)$ is excluded) and φ^* denotes the complementary Young function.

⁽i) H is norm bounded,

²⁰⁰⁰ Mathematics Subject Classification. 46B25, 46E40.

Key words and phrases. Köthe-Bochner spaces, relative weak sequential compactness, sequential weak completeness, the Radon-Nikodym Property.

J. Batt and W. Hiermeyer [BH] characterized the relatively $\sigma(L^p(X), L^q(X^*))$ -compact subsets of $L^p(X)$ $(1 \le p < \infty)$ for a general Banach space X. Moreover, G. Schluchtermann and R. Wheeler [SW] found a characterization of sequential $\sigma(L^1(X), L^\infty(X^*))$ completeness of $L^1(X)$.

The purpose of this paper is to extend the above results to the class of Köthe-Bochner spaces E(X) provided with the weak topology $\sigma(E(X), E'(X^*))$, where E is a Banach function space (not necessarily order continuous), E' denotes the Köthe dual of E and X is a real Banach space.

Now we establish notation and terminology (see [KA], [AB]).

From now on we shall assume that (Ω, Σ, μ) is a complete finite measure space, and let $(E, \|\cdot\|_E)$ be a Banach function spaces over (Ω, Σ, μ) such that $L^{\infty} \subset E \subset L^1$, where the inclusion maps are continuous. For a subset A of Ω let χ_A stand for its characteristic function. Let \mathbb{N} denote the set of all natural numbers.

Let E' stand for the Köthe dual of E. Then the associated norm $\|\cdot\|_{E'}$ on E' can be defined by $\|v\|_{E'} = \sup \{|\int_{\Omega} u(\omega) v(\omega) d\mu| : u \in E, \|u\|_{E} \leq 1\}$. Recall that E is said to be *perfect* if E = E''.

The following characterization of perfect Banach function spaces will be needed (see [KA, Theorem 6.1.7, Corollary 10.3.2], $[N_3]$).

Theorem 1.1 For a Banach function space $(E, \|\cdot\|_E)$ the following statements are equivalent:

(i) E is perfect.

- (ii) The norm $\|\cdot\|_{E}$ satisfies both the σ -Fatou property and the σ -Levy property.
- (iii) E is sequentially $\sigma(E, E')$ -complete.

It is known that a the norm bounded subset Z of E is conditionally $\sigma(E, E')$ -compact iff for each $v \in E'$ the subset $\{uv : u \in Z\}$ of L^1 is uniformly integrable (see [N₁, Proposition 2.1]).

Let $(X, \|\cdot\|_x)$ be a real Banach space, and let X^* stand for the Banach dual of X. Let S_x and S_{x^*} denote the unit spheres in X and X^* resp.

By $L^0(X)$ we will denote the set of equivalence classes of strongly Σ -measurable function $f: \Omega \to X$. For $f \in L^0(X)$ let $\tilde{f}(\omega) = \|f(\omega)\|_X$ for $\omega \in \Omega$. The space $E(X) = \{ f \in L^0(X) : \tilde{f} \in E \}$ equipped with the norm $\|f\|_{E(X)} := \|\tilde{f}\|_E$ is called a Köthe-Bochner space.

We shall need the following two lemmas:

Lemma 1.2 Let $(E, \|\cdot\|_E)$ be a Banach function space with the σ -Fatou property (i.e., $u_n \uparrow u$ in E implies $\|u_n\|_E \uparrow \|u\|_E$). The for $f \in E(X)$ we have

 $\|f\|_{E(X)} = \sup \{ |\int_{\Omega} \langle f(\omega), g(\omega) \rangle \, d\mu \, | : \ g \in L^{\infty}(X^*), \ \|g\|_{E'(X^*)} \le 1 \}.$

Proof. In view of [Bu, Theorem 1.1 (4)] we have

$$\|f\|_{E(X)} = \sup \{ |\int_{\Omega} \langle f(\omega), g(\omega) \rangle \, d\mu \, | : g \in E'(X^*), \|g\|_{E'(X^*)} \le 1 \}.$$

Let $\varepsilon > 0$ be given. Hence there exists $g \in E'(X^*)$ with $||g||_{E'(X^*)} \leq 1$ such that $||f||_{E(X)} \leq |\int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu | + \varepsilon$. For $n \in \mathbb{N}$ let us put

$$g_n(\omega) = \begin{cases} g(\omega) & \text{if } ||g(\omega)||_{x^*} \le n, \\ 0 & \text{elsewhere.} \end{cases}$$

Then $g_n \in L^{\infty}(X^*)$ and $\|g_n(\omega) - g(\omega)\|_{X^*} \longrightarrow 0$ for $\omega \in \Omega$. Moreover, $\|g_n(\omega)\|_{X^*} \leq \|g(\omega)\|_{X^*}$ for $\omega \in \Omega$, so $g_n \in E'(X^*)$ and $\|g_n\|_{E'(X^*)} \leq \|g\|_{E'(X^*)} \leq 1$. Since $\widetilde{f}\widetilde{g} \in L^1$, by the Lebesgue dominated convergence theorem we get

$$\left|\int_{\Omega}\left\langle f(\omega),g(\omega)\right\rangle d\mu - \int_{\Omega}\left\langle f(\omega),g_{n}(\omega)\right\rangle d\mu\right| \leq \int_{\Omega}\left\|f(\omega)\right\|_{x}\left\|g(\omega) - g_{n}(\omega)\right\|_{x^{*}} d\mu \to 0$$

so there exists $n_o \in \mathbb{N}$ such that

$$|\int_{\Omega} \left\langle f(\omega), g(\omega) \right\rangle d\mu \,| \ \leq \ |\int_{\Omega} \left\langle f(\omega), g_{n_o}(\omega) \right\rangle d\mu \,| \ + \ \frac{\varepsilon}{2}$$

It follows that

$$\left\|f\right\|_{\scriptscriptstyle E(X)} = \sup\left\{\left|\int_\Omega \left\langle f(\omega),g(\omega)\right\rangle d\mu\right|: \ g\in L^\infty(X^*), \ \left\|g\right\|_{\scriptscriptstyle E'(X^*)} \leq 1\right\},$$

and the proof is complete.

Lemma 1.3 Let $(E, \|\cdot\|_E)$ be a perfect Banach function space. Then for $f \in L^0(X)$ the following statements are equivalent:

$$\begin{array}{ll} (i) & f \in E(X). \\ (ii) & \sup\left\{ \left| \int_{\Omega} \left\langle f(\omega), g(\omega) \right\rangle d\mu \right| : \ g \in L^{\infty}(X^*), \ \left\| g \right\|_{E'(X^*)} \leq 1 \right\} < \infty \ . \end{array}$$

Proof. (i) \implies (ii) It follows from Lemma 1.2.

(ii) \Longrightarrow (i) Since $\tilde{f} \in L^0$ by [KA, Corollary 4.3.1] there exists a sequence (A_n) in Σ such that $A_n \uparrow \Omega$ with $\tilde{f}\chi_{A_n} \in E$ for $n \in \mathbb{N}$ and $\tilde{f}\chi_{A_n} \uparrow \tilde{f}$. Let $f_n = f\chi_{A_n}$ for $n \in \mathbb{N}$. Then $\tilde{f}_n = \tilde{f}\chi_{A_n}$ and $f_n \in E(X)$ for $n \in \mathbb{N}$. In view of Lemma 1.1 and (ii) for all $n \in \mathbb{N}$ we have

$$\begin{split} \|f_n\|_{E(X)} &= \sup \left\{ \left| \int_{\Omega} \left\langle f_n(\omega), g(\omega) \right\rangle d\mu \right| : \ g \in L^{\infty}(X^*), \ \|g\|_{E'(X^*)} \leq 1 \right\} \\ (1) &= \sup \left\{ \left| \int_{\Omega} \left\langle f(\omega) \chi_{A_n}(\omega), g(\omega) \right\rangle d\mu \right| : \ g \in L^{\infty}(X^*), \ \|g\|_{E'(X^*)} \leq 1 \right\} \\ &\leq \sup \left\{ \left| \int_{\Omega} \left\langle f(\omega), g(\omega) \right\rangle d\mu \right| : \ g \in L^{\infty}(X^*), \ \|g\|_{E'(X^*)} \leq 1 \right\} < \infty. \end{split}$$

To show that $f \in E(X)$, let $0 \leq v \in E'$. Then $\tilde{f}_n v \uparrow \tilde{f} v$. Hence in view of the Fatou lemma, the Hölder's inequality and (1) we get

$$\int_{\Omega} \widetilde{f}(\omega) \upsilon(\omega) \, d\mu \; \leq \; \sup_n \int_{\Omega} \widetilde{f}_n(\omega) \upsilon(\omega) \, d\mu \; \leq \; \sup_n \|f_n\|_{_{E(X)}} \|\upsilon\|_{_{E'}} < \infty.$$

It follows that $\widetilde{f} \in (E')' = E$, i.e., $f \in E(X)$, as desired.

2. Sequential $\sigma(E(X), E'(X^*))$ -compactness in E(X)

We start by recalling some definitions. For a finite Σ -partition π of Ω let E_{π} stand for the conditional expectation operator for π . Following [BH] for all increasing sequences (π_n) of finite Σ -partition of Ω let us define

$$\begin{split} \Lambda_1(c_o,(\pi_n)) &:= \left\{ \ T \in \mathcal{L}(L^1(X), c_o) : \exists (g_n) \subset L^\infty(X^*), \ \|g_n\|_\infty \le 1, \\ g_n &= (E_{\pi_{n+1}} - E_{\pi_n})g_n \ , \ n \in \mathbb{N}, \\ \forall f \in L^1(X), \ T(f) &= \left(\int_\Omega \left\langle f(\omega), g_n(\omega) \right\rangle d\mu \right) \right\}, \end{split}$$

and let $\Lambda_1(c_o) := \bigcup \Lambda_1(c_o, (\pi_n)).$

The following criterion for relative $\sigma(L^1(X), L^{\infty}(X^*))$ -compactness in $L^1(X)$ will be of importance.

Theorem 2.1 [BH, Theorem 2.1]. For a subset H of $L^1(X)$ the following statements are equivalent:

- (i) H is relatively $\sigma(L^1(X), L^{\infty}(X^*))$ -compact.
- (ii) H is relatively sequentially $\sigma(L^1(X), L^{\infty}(X^*))$ -compact.
- (iii) H is relatively countably $\sigma(L^1(X), L^{\infty}(X^*))$ -compact.
- (iv) a) $\sup_{f \in H} \|f\|_{L^1(X)} < \infty$,
 - b) the set $\{\widetilde{f}: f \in H\}$ in L^1 is uniformly integrable,
 - c) for each $A \in \Sigma$ the set $\{\int_A f(\omega) d\mu : f \in H\}$ is relatively weakly compact in X,
 - d) T(H) is relatively weakly compact in c_o for all $T \in \Lambda_1(c_o)$.

Now we are ready to state our main result.

Theorem 2.2 Let (Ω, Σ, μ) be a finite measure space and let $(E, \|\cdot\|_E)$ be a perfect Banach function space. Then for a norm bounded subset H of E(X) the following statements are equivalent:

- (i) H is relatively sequentially $\sigma(E(X), E'(X^*))$ -compact.
- (ii) (a) the set $\widetilde{H} = \{\widetilde{f} : f \in H\}$ is relatively sequentially $\sigma(E, E')$ -compact, (b) for each $A \in \Sigma$ the set $\{\int_A f(\omega)d\mu : f \in H\}$ is relatively weakly compact in X,
 - (c) T(H) is relatively weakly compact in c_o for all $T \in \Lambda_1(c_o)$.
- (iii) (a) the set $\widetilde{H} = \{\widetilde{f} : f \in H\}$ is relatively sequentially $\sigma(E, E')$ -compact,
 - (b) for each $A \in \Sigma$ the set $\{\int_A f(\omega)d\mu : f \in H\}$ is relatively weakly compact in X,
 - (c) any measure $m: \Sigma \to X$ of the form $m(A) = weak \lim_{M \to \infty} \int_A f_n(\omega) d\mu$ for every $A \in \Sigma$ and some sequence (f_n) in H has the RNP (with respect to μ).

Proof. (i) \Longrightarrow (ii) Assume that H is relatively sequentially $\sigma(E(X), E'(X^*))$ -compact. Since H is conditionally compact, by $[N_2, \text{ Theorem 2.3}]$, the set $\widetilde{H} = \{\widetilde{f} : f \in H\}$ is conditionally $\sigma(E, E')$ -compact. In view of Theorem 1.1 \widetilde{H} is relatively sequentially $\sigma(E, E')$ -compact. Thus (a) holds.

Since $H \subset E(X) \subset L^1(X)$ and $\sigma(L^1(X), L^{\infty}(X^*))|_{E(X)} \subset \sigma(E(X), E'(X^*))$ the set H is relatively sequentially $\sigma(L^1(X), L^{\infty}(X^*))$ -compact, so by Theorem 2.1 conditions (b) and (c) are satisfied.

(ii) \implies (i) Assume that (ii) holds and let (f_n) be a sequence in H. Since $H \subset E(X) \subset L^1(X)$ and $L^{\infty}(X^*) \subset E(X^*)$, by Theorem 2.1 the subset H of $L^1(X)$ is relatively

sequentially $\sigma(L^1(X), L^{\infty}(X^*))$ -compact. Thus there exist a subsequence (f_{k_n}) of (f_n) and $f_o \in L^1(X)$ such that $f_{k_n} \to f_o$ for $\sigma(L^1(X), L^{\infty}(X^*))$. We shall show that $f_o \in E(X)$ and $f_{k_n} \to f_o$ for $\sigma(E(X), E'(X^*))$. To show that $f_o \in E(X)$ in view of Lemma 1.3 it is enough to show that

$$\sup\left\{ \left|\int_{\Omega}\left\langle f_{\scriptscriptstyle 0}(\omega),g(\omega)\right\rangle d\mu\right|: \ g\in L^\infty(X^*), \ \left\|g\right\|_{{}_{E'(X^*)}}\leq 1\right\}<\infty.$$

Indeed, let $g \in L^{\infty}(X^*)$ and $\|g\|_{E'(X^*)} \leq 1$. Since $f_{k_n} \to f_0$ for $\sigma(L^1(X), L^{\infty}(X^*))$ we can choose $n_o \in \mathbb{N}$ such that $\|\int_{\Omega} \langle f_0(\omega) - f_{k_{n_o}}(\omega), g(\omega) \rangle d\mu \| \leq 1$. Hence, since $\sup_{f \in H} \|f\|_{E(X)} = c < \infty$ for some c > 0, by the Hölder's inequality we get

$$\begin{split} |\int_{\Omega} \left\langle f_{\circ}(\omega), g(\omega) \right\rangle d\mu | &\leq | \int_{\Omega} \left\langle f_{\circ}(\omega) - f_{k_{n_{o}}}(\omega), g(\omega) \right\rangle d\mu | + | \int_{\Omega} \left\langle f_{k_{n_{o}}}(\omega), g(\omega) \right\rangle d\mu | \\ &\leq |1 + \int_{\Omega} \| f_{k_{n_{o}}}(\omega) \|_{X} \| g(\omega) \|_{X^{*}} d\mu \\ &\leq |1 + \| f_{k_{n_{o}}} \|_{E(X)} \| g \|_{E'(X^{*})} \leq |1 + c. \end{split}$$

We shall now show that $f_{k_n} \to f_{\circ}$ for $\sigma(E(X), E'(X^*))$. Indeed, let $g \in E'(X^*)$ and for every $m \in \mathbb{N}$ let us put

$$g_m(\omega) = \begin{cases} g(\omega) & \text{if } ||g(\omega)||_{x^*} \le m, \\ 0 & \text{elsewhere.} \end{cases}$$

Let $\varepsilon > 0$ be given. Then by (a) there exists $\delta > 0$ such that for every $A \in \Sigma$ with $\mu(A) \leq \delta$ we have

$$\sup_n \int_A \|f_{k_n}(\omega)\|_x \|g(\omega)\|_{x^*} d\mu \leq \frac{\varepsilon}{8} \quad \text{and} \quad \int_A \|f_\circ(\omega)\|_x \|g(\omega)\|_{x^*} d\mu \leq \frac{\varepsilon}{8}.$$

Let $r = \max(c, \int_{\Omega} \|f_{k_{n_o}}(\omega)\|_x d\mu)$. For $\eta = \min(\frac{\varepsilon}{8r}, 1)$ and $m \in \mathbb{N}$ let us put

$$B_m = \{ \omega \in \Omega : \|g(\omega) - g_m(\omega)\|_{X^*} \ge \eta \}.$$

It is seen that $B_m = \{\omega \in \Omega : \|g(\omega)\|_{x^*} \ge m\}$ and $B_m \downarrow$, $\mu(\bigcap_{m=1}^{\infty} B_m) = 0$, so $\mu(B_m) \longrightarrow 0$. Choose $m_o \in \mathbb{N}$ such that $\mu(B_{m_o}) \le \delta$. Then we get

$$\sup_n \int_{B_{m_o}} \|f_{k_n}(\omega)\|_x \|g(\omega)\|_{x^*} \ d\mu \leq \tfrac{\varepsilon}{8} \quad \text{and} \quad \int_{B_{m_o}} \|f_{\circ}(\omega)\|_x \|g(\omega)\|_{x^*} \ d\mu \leq \tfrac{\varepsilon}{8}.$$

Hence for all $n \in \mathbb{N}$ we have

$$\begin{split} &|\int_{\Omega} \left\langle f_{k_{n}}(\omega) - f_{\circ}(\omega), g(\omega) - g_{m_{\circ}}(\omega) \right\rangle d\mu \,|\\ \leq & \int_{\Omega} \left\| f_{k_{n}}(\omega) - f_{\circ}(\omega) \right\|_{X} \left\| g(\omega) - g_{m_{\circ}}(\omega) \right\|_{X^{*}} d\mu \\ \leq & \int_{B_{m_{\circ}}} \left\| f_{k_{n}}(\omega) \right\|_{X} \left\| g(\omega) - g_{m_{\circ}}(\omega) \right\|_{X^{*}} d\mu \\ &+ \int_{B_{m_{\circ}}} \left\| f_{\circ}(\omega) \right\|_{X} \left\| g(\omega) - g_{m_{\circ}}(\omega) \right\|_{X^{*}} d\mu \\ &+ \int_{\Omega \smallsetminus B_{m_{\circ}}} \left\| f_{k_{n}}(\omega) \right\|_{X} \left\| g(\omega) - g_{m_{\circ}}(\omega) \right\|_{X^{*}} d\mu \\ &+ \int_{\Omega \smallsetminus B_{m_{\circ}}} \left\| f_{\circ}(\omega) \right\|_{X} \left\| g(\omega) - g_{m_{\circ}}(\omega) \right\|_{X^{*}} d\mu \\ &\leq & \frac{\varepsilon}{8} + \frac{\varepsilon}{8} + \eta r + \eta r & \leq & \frac{\varepsilon}{2}. \end{split}$$

Choose $n_1 \in \mathbb{N}$ such that for $n \ge n_1$

$$\int_{\Omega} \left\langle f_{k_n}(\omega) - f_{\circ}(\omega), g_{m_o}(\omega) \right\rangle d\mu \,| \quad \leq \quad \frac{\varepsilon}{2}.$$

Hence for $n \ge n_1$ we have

$$\begin{aligned} &|\int_{\Omega} \left\langle f_{k_{n}}(\omega) - f_{o}(\omega), g(\omega) \right\rangle d\mu |\\ &\leq |\int_{\Omega} \left\langle f_{k_{n}}(\omega) - f_{o}(\omega), g(\omega) - g_{m_{o}}(\omega) \right\rangle d\mu | + |\int_{\Omega} \left\langle f_{k_{n}}(\omega) - f_{o}(\omega), g_{m_{o}}(\omega) \right\rangle d\mu |\\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad = \quad \varepsilon, \end{aligned}$$

and the proof is complete.

(i) \Longrightarrow (iii) Assume that H is relatively sequentially $\sigma(E(X), E'(X^*))$ -compact. As in the proof of (i) \Longrightarrow (ii) we obtain that conditions (a), (b) in (iii) hold. Assume that condition (c) does not hold, i.e., there exists a measure $m: \Sigma \to X$ with $|m|(\Omega) < \infty$, $|m| \ll \mu$ of the form

$$m(A) = \text{weak} - \lim \int_A f_n(\omega) d\mu \quad \text{for} \quad A \in \Sigma,$$

for some (f_n) in H such that m does not have a Bochner derivative with respect to μ . Then there exist a subsequence (f_{k_n}) of (f_n) and $f_o \in E(X)$ such that $f_{k_n} \to f_o$ for $\sigma(E(X), E'(X^*))$. Hence for each $A \in \Sigma$ and $x^* \in X^*$ we get $x^*(\int_A f_{k_n}(\omega)d\mu) \to x^*(\int_A f_o(\omega)d\mu)$. It easily follows that for each $x^* \in X^*$ $x^*(m(A)) = x^*(\int_A f_o(\omega)d\mu)$ for each $A \in \Sigma$, so $m(A) = \int_A f_o(\omega)d\mu$. This means that m has the RNP (with respect to μ), and we get a contradiction.

(iii) \Longrightarrow (i) Assume that (iii) holds. Then in view of [N₂, Theorem 2.3] the set H is conditionally $\sigma(E(X), E'(X^*))$ -compact. Let (f_n) be a sequence in H. Then there is a $\sigma(E(X), E'(X^*))$ -Cauchy subsequence (f_{k_n}) of (f_n) . Since $H \subset E(X) \subset L^1(X)$ and $L^{\infty}(X^*) \subset E'(X^*)$, (f_{k_n}) is also a $\sigma(L^1(X), L^{\infty}(X^*))$ -Cauchy sequence. But for each $A \in \Sigma$, and $x^* \in X^*$, $x^*(\int_A f_{k_n}(\omega)d\mu) = \int_{\Omega} \langle f_{k_n}(\omega), \chi_A(\omega)x^* \rangle d\mu$ and $\chi_A x^* \in L^{\infty}(X^*)$, so for each $A \in \Sigma$, $(\int_A f_{k_n}(\omega)d\mu)$ is a weak Cauchy sequence in X. By the (b) there is a subsequence $(f_{l_{k_n}})$ of (f_{k_n}) such that the sequence $(\int_A f_{l_{k_n}}(\omega)d\mu)$ is weakly convergent in X, i.e., there is $m(A) \in X$ such that $m(A) = \text{weak} - \lim \int_A f_{l_{k_n}}(\omega)d\mu$. But for each $x^* \in X^*$,

$$\begin{aligned} |x^*(m(A) - \int_A f_{k_n}(\omega) d\mu)| \\ &\leq |x^*(m(A) - \int_A f_{l_{k_n}}(\omega) d\mu)| + |x^*(\int_A f_{l_{k_n}}(\omega) d\mu - \int_A f_{k_n}(\omega) d\mu)|, \end{aligned}$$

 \mathbf{SO}

$$m(A) = \text{weak} - \lim \int_A f_{k_n}(\omega) d\mu.$$

One can show that the set function $m: \Sigma \to X$ is a countably additive measure with $|m|(\Omega) < \infty$ and $|m| \ll \mu$ (see [BD, p. 178]). Hence by (c) there exists $f_{\circ} \in L^{1}(X)$ such that $m(A) = \int_{A} f_{\circ}(\omega) d\mu$ for each $A \in \Sigma$. Arguing as in [BD, p. 178–179] we obtain that $f_{k_{n}} \longrightarrow f_{\circ}$ for $\sigma(L^{1}(X), L^{\infty}(X^{*}))$. Similarly as in the proof of implication (ii) \Longrightarrow (i) we obtain that $f_{\circ} \in E(X)$ and $f_{k_{n}} \longrightarrow f_{\circ}$ for $\sigma(E(X), E'(X^{*}))$.

As a consequence of Theorem 2.2 we obtain a characterization of Banach spaces having the RNP in terms of relatively sequentially $\sigma(E(X), E'(X^*))$ -compact sets in E(X).

Theorem 2.3 Let (Ω, Σ, μ) be a finite measure space, and let $(E, \|\cdot\|_E)$ be a perfect Banach function space. Then following statements are equivalent: (i) X has the RNP (with respect to μ). (ii) Every norm bounded subset H of E(X) satisfying the following conditions:

- (a) the set $\widetilde{H} = \{\widetilde{f} : f \in H\}$ is relatively sequentially $\sigma(E, E')$ -compact,
- (b) for each $A \in \Sigma$ the set $\{\int_A f(\omega)d\mu : f \in H\}$ is relatively weakly compact in X,

is relatively sequentially $\sigma(E(X), E'(X^*))$ -compact.

Proof. (i) \implies (ii) If X has the RNP (with respect to μ), then the condition (c) in (iii) of Theorem 2.2 is superfluous.

(ii) \Longrightarrow (i) Assume that X lacks the RNP with respect to μ . Then there is a μ continuous vector measure $G: \Sigma \longrightarrow X$ of bounded variation that does not have a Bochner
integrable Radon-Nikodym derivative with respect to μ . Moreover, by the discussion of [DU,
Chap. III] we may assume that $||G(A)||_X \leq \mu(A)$ for all $A \in \Sigma$. Let S stand for the
set of all finite Σ -partitions π of Ω partially ordered by refinement. For $\pi \in S$ let us set $f_{\pi} = \sum_{A \in \pi} \chi_A \frac{G(A)}{\mu(A)}$. Let $H = \{f_{\pi} : \pi \in S\}$. Arguing as in the proof of Theorem 3 of
[DU, Chap. III, § 2] one can show that H obeys (b).

To show that (a) holds, it is enough to show that for each $v \in E'$ the set $\tilde{f}_{\pi}v : \pi \in S$ } in L^1 is uniformly integrable. Indeed, let $v \in E'$. Then for each $B \in \Sigma$ and $\pi \in S$ we get $\int_B \|f_{\pi}(\omega)\|_X |v(\omega)| d\mu \leq \int_B |v(\omega)| d\mu$. Since $v \in E' \subset (L^{\infty})' = L^1$, $\sup_{\pi \in S} \int_B \|f_{\pi}(\omega)\|_X |v(\omega)| d\mu \longrightarrow 0$ as $\mu(B) \longrightarrow 0$, as desired.

We shall now show that H is not relatively sequentially $\sigma(E(X), E'(X^*))$ -compact subset of E(X). Assume on the contrary that H is relatively sequentially $\sigma(E(X), E'(X^*))$ compact. Then H is relatively sequentially $\sigma(L^1(X), L^{\infty}(X^*))$ -compact, so by Theorem 2.1 H is relatively $\sigma(L^1(X), L^{\infty}(X^*))$ -compact in $L^1(X)$. Since (f_{π}) is a net in $L^1(X)$, there is a subnet $(f_{\pi'})$ of (f_{π}) such that $f_{\pi'} \xrightarrow{\to} f_0$ for $\sigma(L^1(X), L^{\infty}(X^*))$ and some $f_0 \in L^1(X)$. Hence, for each $B \in \Sigma$ and $x^* \in X^*$, we have

$$\int_{\Omega} \left\langle f_{\pi'}(\omega), \chi_{_{B}}(\omega) x^{*} \right\rangle d\mu \xrightarrow[\pi']{} \int_{\Omega} \left\langle f_{_{0}}(\omega), \chi_{_{B}}(\omega) x^{*} \right\rangle d\mu$$

But $\int_{\Omega} \left\langle f_{\circ}(\omega), \chi_{B}(\omega)x^{*} \right\rangle d\mu = x^{*}(\int_{B} f_{\circ}(\omega) d\mu).$ On the other hand, we easily get $\int_{\Omega} \left\langle f_{\pi'}(\omega), \chi_{B}(\omega)x^{*} \right\rangle d\mu = x^{*}(\sum_{A \in \pi'} \frac{\mu(B \cap A)}{\mu(A)}G(A)).$ One can calculate that

$$\sum_{A \in \pi'} \frac{\mu(B \cap A)}{\mu(A)} G(A) \xrightarrow[\pi']{} G(B).$$

Thus $x^*(G(B)) = x^*(\int_B f_o(\omega) d\mu)$, so $G(B) = \int_B f_o(\omega) d\mu$, and this means that G has the RNP (with respect to μ). This contradicts the choice of G. It follows that H is not relatively sequentially $\sigma(E(X), E'(X^*))$ -compact, as desired.

In particular, we obtain:

Corollary 2.4 For a Banach space X the following statements are equivalent: (i) X has the RNP.

- (ii) For every finite measure space (Ω, Σ, μ) any norm bounded subset H of $L^1(X)$ satisfying the conditions:
 - (a) the set $\{\widetilde{f}: f \in H\}$ in L^1 is uniformly integrable,
 - (b) for each $A \in \Sigma$ the set $\{\int_A f(\omega)d\mu : f \in H\}$ is relatively weakly compact in X,

is relatively sequentially $\sigma(L^1(X), L^{\infty}(X^*))$ -compact.

3. Sequential $\sigma(E(X), E'(X^*))$ -completeness of E(X)

We start by defining for $A \in \Sigma$ two linear mappings:

$$\Phi_{\scriptscriptstyle A}:\, X \longrightarrow E(X) \qquad \text{and} \qquad \Psi_{\scriptscriptstyle A}:\, E(X) \longrightarrow X$$

by

$$\Phi_{_{A}}(x) = \chi_{_{A}} x$$
 and $\Psi_{_{A}}(f) = \int_{A} f(\omega) d\mu$.

It is easy to observe that Φ_A is sequentially $(\sigma(X, X^*)), \sigma(E(X), E'(X^*))$ -continuous and Ψ_A is $(\sigma(E(X), E'(X^*)), \sigma(X, X^*))$ -continuous.

Now, given $x_{\circ} \in S_x$ choose $x_{\circ}^* \in S_{x*}$ such that $x_{\circ}^*(x_{\circ}) = 1$. Define two linear mappings:

$$P_{x_o^*}:\, E(X) \longrightarrow E \qquad \text{and} \qquad Q_{x_o}:\, E \longrightarrow E(X)$$

by

$$P_{x_*}(f) = x_o^* f$$
 and $Q_{x_o}(u) = u x_o$.

It is seen that $P_{x_o^*}$ is $(\sigma(E(X), E'(X^*)), \sigma(E, E'))$ -continuous and Q_{x_o} is $(\sigma(E, E'), \sigma(E(X), E'(X^*)))$ -continuous.

As a consequence we obtain:

Lemma 3.1 The sets $\Phi_{\Omega}(X) (= \{\chi_{\Omega}x : x \in X\})$ and $Q_{x_o}(E) (= \{ux_o : u \in E\})$ are sequentially $\sigma(E(X), E'(X^*))$ -closed in E(X).

Now we are ready to present a characterization of sequential completeness of the space $(E(X), \sigma(E(X), E'(X^*))).$

Theorem 3.2 Assume that (Ω, Σ, μ) is a finite measure space, and let $(E, \|\cdot\|_E)$ be a Banach function space. Then the following statements are equivalent:

(i) E(X) is sequentially $\sigma(E(X), E'(X^*))$ -complete.

(ii) a) E is sequentially $\sigma(E, E')$ -complete (i.e., E is perfect).

b) X has the RNP (with respect to μ) and X is sequentially weakly complete.

Proof. (i) \Longrightarrow (ii) By Lemma 3.1 $(X, \sigma(X, X^*))$ and $(E, \sigma(E, E'))$ embed as sequentially closed subspaces in $(E(X), \sigma(E(X), E'(X^*)))$. It follows that X is sequentially weakly complete, and E is sequentially $\sigma(E, E')$ -complete.

Moreover, assume that H is a subset of E(X) that satisfies conditions (a), (b) of (ii) in Theorem 2.2. By [N₂, Theorem 2.3] H is conditionally $\sigma(E(X), E'(X^*))$ -compact. Making use of (i) we conclude that H is relatively sequentially $\sigma(E(X), E'(X^*))$ -compact. Hence in view of Theorem 2.3 X has the RNP (with respect to μ).

(ii) \Longrightarrow (i) Let (f_n) be a $\sigma(E(X), E'(X^*))$ -Cauchy sequence in E(X). Then the set $\{f_n : n \in \mathbb{N}\}$ is conditionally $\sigma(E(X), E'(X^*))$ -compact. Hence is view of $[\mathbb{N}_2, \mathbb{N}]$. Theorem 2.3] the set $\widetilde{H} = \{\widetilde{f}_n : n \in \mathbb{N}\}$ is conditionally $\sigma(E, E')$ -compact and for each $A \in \Sigma$ the set $\{\int_A f_n(\omega)d\mu : n \in \mathbb{N}\}$ is conditionally weakly compact in X. By (a) the set $\{\widetilde{f}_n : n \in \mathbb{N}\}$ is relatively sequentially $\sigma(E, E')$ -compact. In view of [KA, Theorem 10.4.7] for $f \in E(X)$ we have

$$\|\widetilde{f}\|_{\scriptscriptstyle E} = \sup \left\{ |\int_{\alpha} \widetilde{f}(\omega) \upsilon(\omega) d\mu| : \ \upsilon \in E', \|\upsilon\|_{\scriptscriptstyle E'} \le 1 \right\}.$$

It easily follows (see [L, Lemma 1.3.1]) that $\sup_n \|f_n\|_{E(X)} < \infty$. Hence by (b) and Theorem 2.2 the set $\{f_n : n \in \mathbb{N}\}$ is relatively sequentially $\sigma(E(X), E'(X^*))$ -compact. Thus there is a subsequence (f_{k_n}) of (f_n) and $f_o \in E(X)$ such that $f_{k_n} \longrightarrow f_o$ for $\sigma(E(X), E'(X^*))$. It easily follows that $f_n \longrightarrow f_o$ for $\sigma(E(X), E'(X^*))$, and this means that E(X) is sequentially $\sigma(E(X), E'(X^*))$ -complete, as desired.

Remark An analogical characterization of sequential completeness of $(L^p(X), \sigma(L^p(X), L^q(X^*)))$ $(1 and <math>(L^{\varphi}(X), \sigma(L^{\varphi}(X), L^{\varphi*}(X^*)))$ was found by F. Bombal (see [B₁], [B₂]) and of $(L^1(X), \sigma(L^1(X), L^{\infty}(X^*)))$ by G. Schlüchtermann and R. Wheeler (see [SH], Lemma 3.3]).

References

- [AB] C. D. Aliprantis, O. Burkinshaw, Locally solid Riesz spaces, Academic Press, New York, San Francisco, London 1978.
- [B₁] F.G. Bombal, Sobre el espacio $L^p(\mu, X)$, Rev. Acad. Ciencias de Madrid, 74 (1980), 131–135.
- [B₂] F.G. Bombal, Sobre los espacios de Orlicz de functiones vectoriels, Collect. Math., 32 (1981), 1–12.
- [BD] J. Brooks, N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions and applications, Advances in Math., 24 (1977), 172–188.
- [BH] J. Batt, W. Hiermeyer, On compactness in $L_p(\mu, X)$ in the weak topology and in the topology $\sigma(L_p(X), L_q(X^*))$, Math. Z., 182 (1983), 409–423.
- [Bu] A.V. Bukhvalov, On an analytic representation of operators with abstract norm (in Russian), Izv. Vyss. Vceb. Zaved., 11 (1975), 21–32.
- [D] N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions, J. Math. Analysis Appl., 109 (1985), 372–387.
- [DU] J. Diestel, J.J. Uhl, Jr., Vector Measures, Math. Surveys, 15, Amer. Math. Soc., Providence, R.I., 1977.
- [KA] L.V. Kantorovitch, A.V. Akilov, Functional Analysis, (in Russian), Nauka, Moscow 1984 (3rd ed).
- [L] W.A. Luxemburg, Banach function spaces, Thesis, Assen, Netherland 1955.
- [N₁] M. Nowak, Weak sequential compactness and completeness in Köthe-Bochner spaces, Bull. Polish Acad. Sci. Math., 47, no. 3 (1999), 209–220.

- [N₂] M. Nowak, Conditional weak compactness in vector-valued function spaces, Proc. Amer. Math. Soc., 129, no. 10 (2001), 2947–2953.
- [N₃] M. Nowak, Sequential weak compactness and completeness in vector-valued function spaces (submitted).
- [SW] G. Schlüchtermann, R. Wheeler, On strongly WCG Banach spaces, Math. Z., 199 (1988), 387–398.

Institute of Mathematics, University of Zielona Gora ul. Podgorna 50, 65–246 Zielona Gora, Poland e-mail: M.Nowak@snse.uz.zgora.pl