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ABSTRACT. In this paper we study the a-separation of sets, a-semicontinuity prop-
erties between topological spaces, a-semiconnected sets and a-locally semiconnected
sets and prove some properties related to these topics. Also we study some forms of
continuity.

In [2], the concept of locally semi connected set is given. In this paper we introduce the
concept of o semi connected sets, a locally semi connected sets and show that it generalizes
the above concept when the operator « is the identity. Also we study some forms of
continuity. Throughout this paper, we use the following notations; CI(A) denotes the usual
closure and Int(A) denotes the interior of a set.

Definition 1 [7].Let (X,T") be a topological space and o be a map from P(X) to P(X) such
that the following property is satisfied:

for allU € T,U C o(U). Then « is said to be an operator associated with T'.

Definition 2 . Let (X,T) be a topological space and o be an operator associated with T.
We said that « is a monotone operator if for every pair of open sets U, V such that U C
V, we have that o(U) C a(V).

Example 1 We can observe that the closure operator is a monotone operator.

Definition 3 . Let (X,T') be a topological space and o be an operator associated with T'.
We say that a is an inversely additive operator if for every countable collection {U};c; of
open sets, we have that U;a(U; ) C a(U;U; ).

Example 2 As example of an inversely additive operator, we can take the closure operator.
The following theorem characterizes the monotone operator.
Theorem 1 An inversely additive operator is equivalent to a monotone operator.

Proof. Suppose that « is a monotone operator. Let {U},.; be a countable collection
of open sets. we have that for each ¢ € I,a(U;) C a(U;U;). And we obtain easily that o
is inversely additive. Now suppose that o is inversely additive, let U C V,then o(U) C
a(U)Ua(V) Ca(UUV)=a(V) and the result follows.

Definition 4 Let (X,T') be a topological space and o be an operator associated with T'.
A subset A of X 1s said to be a- semi open if there emists an open set U € T' such that
UCACaU). The complement of a a - semi open set is called o a - semi closed set.
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Remark 1 Observe that when « s the closure operator, the above definition agrees with
the definition of semi-open set given by Levine in [5]. Also when « is the identity operator,
the definition of a semi-open set agrees with the definition of open set.

Remark 2 Observe that for any operator o each open set is o semi-open.

Example 3 Let (X,T') be a topological space and o be an operator associated with I'. Con-
sider A a subset of X,where A is closed but not open and Int(A) # 0. Define an operator
B as follows: B(V) = a(V)U A. Observe that A is 3 semi-open, but is not open.

Definition 5 Let (X,T') be a topological space and « be an operator associated with T'. We
say that, the subset A of X is a - reqular open if A = Int(a(A)).

Example 4 Let X = {a,b,¢,d}, I ={0,X,{a},{a,b}}

0 if A=10
a(A)=4q {a,b} if A={a,b} and a(A)=Aif A¢T
X ifA={a} or A=X

The set {a,b} is a regular open,. {a, b, c}is a semi-open but is not o regular open.

Lemma 1 If a is a monotone operator. A subset A of X is said to be o semi-open if and
only if A C a(Int(A)). Observe that when « is the closure operator, this definition agrees
with the equivalence given in [5].

Proof. Suppose that A C a(Int(A)), then we can see easily by definition that A is o
semi-open. Conversely if A is o semi-open, then U C A C a(U) for some open set U. Now
since U C Int(A), we have that a(U) C a(Int(A)) and the result follows.

The following example shows that the condition of monotone can not be removed from
the above lemma.

Example 5 Let X = {a,b,¢,d}, I ={0,X,{a},{a,b}}

0 if A=10
a(d) =< {a,b} if A={a,b} and a(A)=AifA¢T
X ifA={a} or A=X
Observe that o is not a monotone operator, the set {a,b,c} is a semi open but {a,b, c}
is not contained in a(Int({a,b,c})) = a({a,b}) = {a,b}.

iFrom [3], we have the following equivalence when « is the closure operator

Lemma 2 If « is the closure operator, then a subset S of X is a- sems closed if and only
if there exists a closed subset F' of X such that Int(F)C S C F.

Proof: Suppose that Int(F) C S C F for some closed set F, then X — F C X — 5 C
X —Int(F). We claim that, X — Int(F) C CI(X —F). Let € X — Int(F), then ¢ Int(F),
this implies that for all neighborhood 6, of x, 8, N (X — F) # ¢, from this, + € CI(X — F)
and X — S is a semi open. Conversely, if S is o semi closed; then X — S is « semi open,
therefore there exists an open set U such that, U ¢ X — S C Cl(U). We claim that,
Int(X —U) C X —Cl(U). Let x € Int(X — U), then there exists a neighborhood 6, of x
such that, 8, C(X — U), this implies that, 8, N U = ¢, therefore @ ¢ CI(F). From this, we
obtain that x € X — CIl(U)and the result follows.

Lemma 3 If a 1s the closure operator. A subset S of X is « - sems closed if and only if

Int(a(S)) C S.
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Proof. Suppose that S is o semi closed. From the above lemma, there exists a closed
set F'in X such that Int(F) C S C F. (From this, we obtain that Int(a(S)) C Int(F) C S,
and the result follows. Conversely if Int(a(S)) C S,then Int(a(S)) C S C a(S), since o is
the closure operator the result follows.

At this point there is a natural question: Is it possible to characterize a semi closed set
for any operator a. The answer is not yet, because it is necessary to know which properties
have to have the operator a.

Definition 6 A subset S of (X,T') is said to be o - semi reqular if it is both o - semi open
and o -sems closed.

Denote by: o -SO(X) the family of all « semi open sets of X.

a - SR(X) the family of all & semi closed sets of X.

a -SO(z) the family of all o semi open sets of X containing «.
a - SR(x) the family of all « semi closed sets of X containing .

Lemma 4 If o 1s a monotone operator, then the union of all o - semi open sets contained
in the set S is a - semi open and it is denoted by a- sInt(S).

Proof. Let {U;},c; a collection of o - semi open sets contained in S, then for each
i € I, there exists an open set V; such that, V; C U; C a(V;). Therefore we obtain that
UV; CUl; C Ua(Vi) C a(UV;), and the result follows.

The following example shows that the condition of monotone can not be removed from
the above lemma.

Example 6 Let X be the real line with the usual topology and o be the operator defined as

Jollows:
A ifoe A
alA)y=<¢ Cl(A) if0o¢ A
{1} ifA=10

Observe that « is not a monotone operator, the sets (—1,1), {1} are o semi open but
(—1,1] is not o semi open

Corollary 1 If « 1s a monotone operator, the intersection of all a-semi closed sets of X
containing the set S is a - semi closed. It 1s called the o - sems closure of S and is denoted

by a-sCI(S).

Corollary 2 If A is a subspace of X and « 1s an operator associated with the topology of
X, then the a-sCl4(S) = AN (a-sCI(S)).

Proof. Let {Ui,}iej

that X\(ﬁieIU,') is an « - semi open set. Using the above lemma the result follows.

be a collection of « - semi closed sets containing S. We need to show

Remark 3 Observe that if a 1s a monotone operator associated with I' and A is a subset

of X, then A is a-semi closed if and only if a-sCI(A) = A.

Theorem 2 If A, B are two subsets of a topological space (X,T'), o is an operator associated
with T' and A C B, then o -sCI(A) C o -sCl(B).

Proof. By definition
Now we introduce the notion of a-semi-connected set.
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Definition 7 Two non-empty subsets A, B of a topological space (X,T') are said to be « -
semi-separated if and only if (a-sCI(A))N B = AN (a - sCl(B)) = 0.

Definition 8 In a topological space (X,T'), a set which can not be expressed as the union

of two « - semi-separated sets is said to be o - semi-connected set.

The topological space (X,T') is said to be a « - semi-connected if and only if X is « -
semi-connected.

Note: We can observe that when « is the identity operator, the definition of a—semi
separated set agrees with the definition of separated set in the usual sense and therefore
the definition of « - semi-connected set generalizes the definition of connected set.

Theorem 3 A space X is a - semi-connected if and only if the only subsets of X that are
both a-semi open and a-semi closed in X are the empty set and X itself.

Proof: If A is a nonempty proper subset of X which is both « - semi-open and a-semi-
closed in X, then the sets U = A and V = X \ A constitute an a-semi separation of X.
Conversely, if U and V form an a-semi separation of X and X = UUYV, then U is nonempty
and different from X, since UNV C U N (a -sCl(V)) = (a -sCU(U)) NV = ¢, we obtain
that both sets are a-semi open and a-semi closed.

Theorem 4 If A is a - semi-connected and A C C' U D where C and D are o - semi-
separated, then either AC C or AC D.

Proof. We write A = (AN C)U (AN D). Observe that, (AN C)N (a-sCI(A) N a-
sCl(D)) C C N (a-sCI(D)). Since C and D are a- semi-separated, C' N (a-sCIl(D)) = (.
Similarly (AN D) N (a-sCl(A)N a-sCl(C)) = 0. So if both ANC # 0 and AND # (), then
A is not a-semi-connected. This shows that either ANC = ) or AN D = (. This shows
that AC Cor AC.D

Theorem 5 The union E of any family (C;);.1 of a -semi-connected sets having a non-
empty intersection is an « - semi-connected set.

Proof. Suppose that E = AU B, where A and B form a a-semi-separation of E. By
hypothesis, we may choose a point = € N;[C;. Then x must belong either a subset A or a
subset B. Since A, B are disjoint, we must have C; C A for all i €I, and so E C A. From
this we obtain that B = (J,which is a contradiction.This proves the theorem.

Theorem 6 If C is a a - semi-connected set and C C a-sCl(E) C a-sCIl(C), then a-
sCI(E) is a - semi-connected set.

Proof. If a-sCI(E) is not a-semi-connected, we can write a-sCI(E) = A U B, where
A#£0,B#0, An(a-sCl(B)) = 0,and (a-sCI(A)) N B = . By theorem 4, we must have
C C Aor C C B. Without loss of generality, let us suppose C' C A, it follows by Theorem
2 that oz—sCl(C) - oz—sCl(A) therefore, (oz—sCZ(C)) NB C (oz—sCl(A)) N B = (. On the other
hand B C oz—sCl(E) - oz—sCl(C) and a—sCl(C) N B = B, we must have B = . And the

result follows.

Theorem 7 Let (X,I') be a topological space, o be a monotone operator associated with
I' and A be an open set. Then A is a-semi connected iof and only if (A,T,4) is a-sems
connected.
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Proof: Suppose that A is not a-semi connected. Let H and K be an « semi-separation of
A, then; H and K are « semi-separated sets in any X containing A, since (a-sCI(H)NK =
(a-sCI(H)NANK = ((asCUH))NA)NK = (a-sCla(H)) N K = ), and similarly (a-
sCI{K)N H = (a-sClo(K) N H = § Conversely, if H and K is an a-semi separation of A
and A = H U K, then we have a-sCls(H) = (a-sCI(H))N A= (HUK) N (a-sCI(H)) =
(H N (a-sCI(H))U (K N (a-sCIl(H))) = H. And hence H is a-semi closed in A. Similarly
K is a-semi closed in A. Since A is an open set, we obtain that K = A\ H and H = A\ K
are a-semi open in A. The result follows.

Definition 9 Let (X,T') be a topological space, o be a monotone operator associated with
I' and v € X. The a- semi component of x denoted by a-S.C(z), is the union of all
a-semi-connected subsets of X containing x.

We can see from Theorem 5 that the set a-S.C(z) is a-semi-connected.

Theorem 8 Let (X,T') be a topological space and o be a monotone operator associated with
T'. Then the following are satisfied:

a. Each a-semi-component o-S.C(z) is a maximal o- semi-connected set in X.

b. The set of all a- semi-components of a point of X form a partition of X.

c. Bach a-S.C(z) is a-semi-closed.

Proof: a. Follows from the definition.

b. Let a-S.C(z) and a-S.C(y) be two a- semi-components of distinct points = and y in
X. If (a-S.C(z)) N (a-S.C(y)) # 0, then by theorem 5 (a-S.C(z)) U (a-S.C(y)) is a- semi-
connected set, but (a-S.C(z)) C (a-S.C(z)) U (a-S.C(y)) , this contradicts the fact that
a-S.C(z) is maximal. Now for any point € X, z €(a-S.C(z)) and U, x {z} C U, x(a-
S.C(z)). This implies that X C U _.x(a-S.C(z)) C X. Therefore, U x(a-S.C(z)) = X.

c. For any point # € X, a-sCl(a-S.C(z)) is a- semi-connected, but a-S.C(z) is the
maximal a- semi-connected set containing =, therefore a-sCl(a-S.C(z)) C a-S.C(z). But
a-S.C(2)C a-sCl(a-S.C(x)), in consequence a-sCl(a-S.C(z)) = a-S.C(z). And the result

follows.

Definition 10 A topological space (X,T') is called locally o semi-connected at the point @ €
X of and only if for every o semi open set U containing x, there exist an « semi-connected
open set A such that x € A CU. (X,T) is locally o semi-connected if and only if it is locally
a semi-connected at every point of X.

We can see easily that every « locally semi-connected topological space is a locally
connected but the converse is not true as shown by the following example.

Example 7 Consider X = {a,b,c} and I' = {X,0,{a},{a,b}}. Define a as the closure

operator. Then we obtain the following:

a -SO(X) ={X,0,{a},{a,b} {a,c}}. a -SR(X) = {X,0,{b} {b, ¢}, {c}}. Observe that
{a, c} is a semi open, but there no « open subset of {a, ¢} exists containing ¢ and so X is
not a locally semi connected at ¢. Therefore X is not « locally semi connected. Note that
X is a locally connected.

Example 8 It is easy to see that « locally semi connectedness does not imply o semi
connectedness as we show as follows:
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Let X = {a,b,c} and I = {X,0,{a},{a,b},{a,c},{c}}. Define a as the closure oper-
ator. Then we obtain the following:

a -SO(X) ={X0,{a},{a,b},{a,c},{c}}.

The o semi open sets containing a are: {a},{a,b},{a,c},X. Observe that {a} is an
open set, and therefore, this implies that it is a - semi open, therefore X is a locally semi
connected at the point a. In the same way, we show that X is a locally semi connected at
the points b and ¢. But X is not « semi connected as we show: Let A = {a,b} and B = {c},
then a-sCIl(A) = {a,b} and a-sCI(B) = {c}, (a-sCI(A))N B = and AN (a-sCI(B)) = 0,

in this way A and B are two a semi separated sets and so X is not a semi connected .

Theorem 9 Let (X,T') be a topological space and o be a monotone operator associated with
I'. X s a-locally semi-connected if and only if each a- semi-component of o semi open set
are open sets.

Proof: Suppose that (X,T') is a-locally semi-connected. Let A C X be a o semi -open
set and B be a a- semi-component of A. If y € B, then y € A, therefore, there is a a-
semi-connected open set U such that y € U C A. Since B is a a- semi-component of y and
U is a- semi-connected, we have that y € U C B, therefore B is open. Reciprocally if x €
X, and A is an a semi -open set containing z, let B be a a- semi-component of A such that
x € B. Since B is a a- semi-connected open set, + € B C A. And the result follows.

Definition 11 A mapping f: (X,T) — (Y, ) is said to be (a,3) - semi-continuous if for
each 3-semi open set V in'Y, f~1(V) is a- semi-open in X.

Remark 4 We can see easily that, for any operators o, associated with ' and U respectively.
If f is a continuous map then [ is (a, ) - semi-continuous. Also, if f is a semi-continuous
map in the sense of Levine, then f 1s (Cl,id)-semi-continuous.

Remark 5 We can observe that the definition of (o, 3) - semi-continuous mappings gen-
eralize the definition of irresolute mappings given in [6].

Theorem 10 If f: (X,T') — (Y, ¥) is a (o, 8) - semi-continuous mapping from a a—semsi
connected space (X,T') onto (Y, ¥), then (Y, ¥) is a S—semi connected space.

Proof: Suppose that (¥, ¥) is not a f—semi connected space and let A, B be a 3 sepa-
ration of ¥ such that ¥ = AU B. Then using Definition 8, we have that (5 —sCIl(A))NB =
AN (B —sCl(B)) = 0. It follows that A and B are B-semi open and B-semi closed sets
in Y it follows from the hypothesis that f~'(A) U f~(B) = X, f '(A) and f'(B) are
a-semi open an a-semi closed in X. Therefore we obtain that X is not a-semi connected,
contradiction.

Theorem 11 Let f: (X, T) — (Y, V) be a (o, 3) - semi-continuous and open mapping and
A C X be an open set. If A is a a—semi connected set, then f(A) is a f—semi connected
set.

Proof: Since A is a-semi connected and open in X, then by Theorem 7, (4,T" 4) is also o
semi connected. But f/4 1 (4,T4) = (f(A4), ¥s(4)) is an onto and (a, 3) - semi-continuous
mapping. Now using Theorem 10, the result follows.

Definition 12 [7]Let (X.T') and (Y, ®) be two topological spaces and o, (3 be operators
associated with I, ® respectively. We say that a map f : X — Y is (a,) relatively
continuous at v € X if given an open set V € ® containing f(x) ,the set o f~1(V)) is an
open subset in the subspace f~'(B(V)).If this condition is satisfied for each x € X, then f
is said to be (a, ) relatively continuous.
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Remark 6 The above definition generalizes the definition of relatively continuous map
given by Levine in [5], when we choose the operator « to be the identity operator and (3
the closure operator.

Definition 13 [7]. Let (X,T) and (Y, ®) be two topological spaces and o, 3 be operators
associated with T, ® respectively. We say that a map f: X =Y is (o, 3) weakly continuous
at v € X if given any open set V. € ® containing f(x), o f~H(V)) C int(f~1(B(V))). If
this condition is satisfied at each v € X, then f is said to be (o, ) weakly continuous.

Remark 7 The above definition generalizes the definition of weakly continuous map given
by Levine in [5], when we choose the operator o to be the identity operator and (3 the closure
operator.

Remark 8 If f is a constant map, then f is (o, 3) weakly continuous for any operator «
and (3 that satisfies the condition () = B(0) = 0. In the case that the operator o satisfies
the condition o(0) # 0, then any constant map is not (o, ) weakly continuous for any
operator (3.

Theorem 12 If f : X — Y is (a,id) weakly continuwous. Then f is (o, ) relatively
continuous for any operator 3 associated with ®, where o 18 a monotone operator.

Proof: For any V € @, znt( Yv)) C (mf(f HVY)) Ca(f (V) C ant(f (V).
This implies that a(znt(f V) = int(f1(V)) so we obtain that a(int(f~'(V))) is
an open set in f~'(V).By definition f~'(V) C f~"(B(V)) for any operator 3, therefore

a(int(f~'(V))) is open in f~1(B(V)).

Definition 14 Let (X,T) be a topological space. A pair of operators o and (3 associated
with Tare mutually dual if «(VYNB(V) =V for every V €T.

Theorem 13 If f: X =Y is (o, 8) and (o, 5%) relatively continuous, where Band 5* are
mutually dual. Then f is (o, 1d) weakly continuous.

Proof: By hypothesis o f~1(V)) is an open subset in the subspace g (V)) and
FH(B*(V)), therefore a( f Ywv )) 1s an open subset in the subspace f 1 (B(V)Nf~1(3*(V)),
but f~HBV)) N fFHB*(V)) = F71(V) so f is (a,id) weakly continuous.

Example 9 Let X = R with the usual topology. Y = {a,b} with the discrete topology.
Define

f: X =Y asfollows
a if v € (—o0,0]

flz) = { b if z € (0,+00)

Taken a to be the closure operator on R and 3 the closure operator on Y. Then f is
not («, ) relatively continuous, since of f_l({a})) =(—00, 0] which is an open set in the
subspace FH(B({a})) =(=o00,0], but a(f~1({b})) = [0, +c0) Which is not an open set in

“L(B({b})) = (0,+00). .f is not (o, 3) weakly continuous, since o f~1({a})) =(—0o0,0]
is not contained in the set int(f~1(8({a})))= (—o0,0).

If, in the above example, we use the identity operator instead of the operator «, then we
obtain, that f is (id,5) relatively continuous but f is not (id,3) weakly continuous. If we

take V' = {a} , then there does not exist an open neighborhood U of 0 such f(:d(U)) C B(V).
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