α-SEMI CONNECTED AND LOCALLY α-SEMI CONNECTED PROPERTIES IN TOPOLOGICAL SPACES

Rosas E*, Vielma J.** and Carpintero C.***

Received January 21, 2000; revised April 6, 2001

ABSTRACT. In this paper we study the α -separation of sets, α -semicontinuity properties between topological spaces, α -semiconnected sets and α -locally semiconnected sets and prove some properties related to these topics. Also we study some forms of continuity.

In [2], the concept of locally semi connected set is given. In this paper we introduce the concept of α semi connected sets, α locally semi connected sets and show that it generalizes the above concept when the operator α is the identity. Also we study some forms of continuity. Throughout this paper, we use the following notations; Cl(A) denotes the usual closure and Int(A) denotes the interior of a set.

Definition 1 [7]. Let (X, Γ) be a topological space and α be a map from P(X) to P(X) such that the following property is satisfied:

for all $U \in \Gamma, U \subseteq \alpha(U)$. Then α is said to be an operator associated with Γ .

Definition 2. Let (X, Γ) be a topological space and α be an operator associated with Γ . We said that α is a monotone operator if for every pair of open sets U, V such that $U \subset V$, we have that $\alpha(U) \subset \alpha(V)$.

Example 1 We can observe that the closure operator is a monotone operator.

Definition 3. Let (X, Γ) be a topological space and α be an operator associated with Γ . We say that α is an inversely additive operator if for every countable collection $\{U\}_{i \in I}$ of open sets, we have that $\cup_i \alpha(U_i) \subset \alpha(\cup_i U_i)$.

Example 2 As example of an inversely additive operator, we can take the closure operator.

The following theorem characterizes the monotone operator.

Theorem 1 An inversely additive operator is equivalent to a monotone operator.

Proof. Suppose that α is a monotone operator. Let $\{U\}_{i\in I}$ be a countable collection of open sets. we have that for each $i \in I, \alpha(U_i) \subset \alpha(\cup_i U_i)$. And we obtain easily that α is inversely additive. Now suppose that α is inversely additive, let $U \subset V$, then $\alpha(U) \subset \alpha(U) \cup \alpha(V) \subset \alpha(U \cup V) = \alpha(V)$ and the result follows.

Definition 4 Let (X, Γ) be a topological space and α be an operator associated with Γ . A subset A of X is said to be α - semi open if there exists an open set $U \in \Gamma$ such that $U \subset A \subset \alpha(U)$. The complement of a α - semi open set is called a α - semi closed set.

²⁰⁰⁰ Mathematics Subject Classification. 54A10, 54G05.

Key words and phrases. α -Semi Connected, Locally α -Semi Connected.

Remark 1 Observe that when α is the closure operator, the above definition agrees with the definition of semi-open set given by Levine in [5]. Also when α is the identity operator, the definition of α semi-open set agrees with the definition of open set.

Remark 2 Observe that for any operator α each open set is α semi-open.

Example 3 Let (X, Γ) be a topological space and α be an operator associated with Γ . Consider A a subset of X, where A is closed but not open and $Int(A) \neq \emptyset$. Define an operator β as follows: $\beta(V) = \alpha(V) \cup A$. Observe that A is β semi-open, but is not open.

Definition 5 Let (X, Γ) be a topological space and α be an operator associated with Γ . We say that, the subset A of X is α - regular open if $A = Int(\alpha(A))$.

Example 4 Let $X = \{a, b, c, d\}, \Gamma = \{\emptyset, X, \{a\}, \{a, b\}\}$

 $\alpha(A) = \begin{cases} \emptyset & \text{if } A = \emptyset \\ \{a, b\} & \text{if } A = \{a, b\} \\ X & \text{if } A = \{a\} \text{ or } A = X \end{cases} \text{ and } \alpha(A) = A \text{ if } A \notin \Gamma$

The set $\{a, b\}$ is α regular open, $\{a, b, c\}$ is α semi-open but is not α regular open.

Lemma 1 If α is a monotone operator. A subset A of X is said to be α semi-open if and only if $A \subseteq \alpha(Int(A))$. Observe that when α is the closure operator, this definition agrees with the equivalence given in [5].

Proof. Suppose that $A \subseteq \alpha(Int(A))$, then we can see easily by definition that A is α semi-open. Conversely if A is α semi-open, then $U \subset A \subset \alpha(U)$ for some open set U. Now since $U \subset Int(A)$, we have that $\alpha(U) \subset \alpha(Int(A))$ and the result follows.

The following example shows that the condition of monotone can not be removed from the above lemma.

Example 5 Let $X = \{a, b, c, d\}, \Gamma = \{\emptyset, X, \{a\}, \{a, b\}\}$

 $\alpha(A) = \begin{cases} \emptyset & \text{if } A = \emptyset \\ \{a, b\} & \text{if } A = \{a, b\} \\ X & \text{if } A = \{a\} \text{ or } A = X \end{cases} \text{ and } \alpha(A) = A \text{ if } A \notin \Gamma$

Observe that α is not a monotone operator, the set $\{a, b, c\}$ is α semi open but $\{a, b, c\}$ is not contained in $\alpha(Int(\{a, b, c\})) = \alpha(\{a, b\}) = \{a, b\}$.

; From [3], we have the following equivalence when α is the closure operator

Lemma 2 If α is the closure operator, then a subset S of X is α - semiclosed if and only if there exists a closed subset F of X such that $Int(F) \subset S \subset F$.

Proof: Suppose that $Int(F) \subset S \subset F$ for some closed set F, then $X - F \subset X - S \subset X - Int(F)$. We claim that, $X - Int(F) \subseteq Cl(X - F)$. Let $x \in X - Int(F)$, then $x \notin Int(F)$, this implies that for all neighborhood θ_x of x, $\theta_x \cap (X - F) \neq \phi$, from this, $x \in Cl(X - F)$ and X - S is α semi open. Conversely, if S is α semi closed; then X - S is α semi open, therefore there exists an open set U such that, $U \subset X - S \subset Cl(U)$. We claim that, $Int(X - U) \subset X - Cl(U)$. Let $x \in Int(X - U)$, then there exists a neighborhood θ_x of x such that, $\theta_x \subset (X - U)$, this implies that, $\theta_x \cap U = \phi$, therefore $x \notin Cl(F)$. From this, we obtain that $x \in X - Cl(U)$ and the result follows.

Lemma 3 If α is the closure operator. A subset S of X is α - semiclosed if and only if $Int(\alpha(S)) \subseteq S$.

Proof. Suppose that S is α semi closed. From the above lemma, there exists a closed set F in X such that $Int(F) \subset S \subset F$. From this, we obtain that $Int(\alpha(S)) \subset Int(F) \subset S$, and the result follows. Conversely if $Int(\alpha(S)) \subseteq S$, then $Int(\alpha(S)) \subseteq S \subseteq \alpha(S)$, since α is the closure operator the result follows.

At this point there is a natural question: Is it possible to characterize α semi closed set for any operator α . The answer is not yet, because it is necessary to know which properties have to have the operator α .

Definition 6 A subset S of (X, Γ) is said to be α - semi regular if it is both α - semi open and α -semi closed.

Denote by: α -SO(X) the family of all α semi open sets of X.

 α - SR(X) the family of all α semi closed sets of X.

 α -SO(x) the family of all α semi open sets of X containing x.

 α - SR(x) the family of all α semi closed sets of X containing x.

Lemma 4 If α is a monotone operator, then the union of all α - semi open sets contained in the set S is α - semi open and it is denoted by α - sInt(S).

Proof. Let $\{U_i\}_{i \in I}$ a collection of α - semi open sets contained in S, then for each $i \in I$, there exists an open set V_i such that, $V_i \subseteq U_i \subseteq \alpha(V_i)$. Therefore we obtain that $\bigcup V_i \subseteq \bigcup U_i \subseteq \bigcup \alpha(V_i) \subset \alpha(\bigcup V_i)$, and the result follows.

The following example shows that the condition of monotone can not be removed from the above lemma.

Example 6 Let X be the real line with the usual topology and α be the operator defined as follows:

$$\alpha(A) = \begin{cases} A & \text{if } 0 \in A \\ Cl(A) & \text{if } 0 \notin A \\ \{1\} & \text{if } A = \emptyset \end{cases}$$

Observe that α is not a monotone operator, the sets (-1, 1), $\{1\}$ are α semi open but (-1, 1] is not α semi open

Corollary 1 If α is a monotone operator, the intersection of all α -semi closed sets of X containing the set S is α - semi closed. It is called the α - semi closure of S and is denoted by α -sCl(S).

Corollary 2 If A is a subspace of X and α is an operator associated with the topology of X, then the α -sCl_A(S) = A \cap (α -sCl(S)).

Proof. Let $\{U_i\}_{i \in I}$ be a collection of α - semi closed sets containing S. We need to show that $\dot{X} \setminus (\bigcap_{i \in I} U_i)$ is an α - semi open set. Using the above lemma the result follows.

Remark 3 Observe that if α is a monotone operator associated with Γ and A is a subset of X, then A is α -semi closed if and only if α -sCl(A) = A.

Theorem 2 If A, B are two subsets of a topological space (X, Γ) , α is an operator associated with Γ and $A \subset B$, then α -sCl $(A) \subset \alpha$ -sCl(B).

Proof. By definition

Now we introduce the notion of α -semi-connected set.

467

Definition 7 Two non-empty subsets A, B of a topological space (X, Γ) are said to be α -semi-separated if and only if $(\alpha - sCl(A)) \cap B = A \cap (\alpha - sCl(B)) = \emptyset$.

Definition 8 In a topological space (X, Γ) , a set which can not be expressed as the union of two α - semi-separated sets is said to be α - semi-connected set.

The topological space (X, Γ) is said to be a α - semi-connected if and only if X is α - semi-connected.

Note: We can observe that when α is the identity operator, the definition of α -semi separated set agrees with the definition of separated set in the usual sense and therefore the definition of α -semi-connected set generalizes the definition of connected set.

Theorem 3 A space X is α - semi-connected if and only if the only subsets of X that are both α -semi open and α -semi closed in X are the empty set and X itself.

Proof: If A is a nonempty proper subset of X which is both α - semi-open and α -semiclosed in X, then the sets U = A and $V = X \setminus A$ constitute an α -semi separation of X. Conversely, if U and V form an α -semi separation of X and $X = U \cup V$, then U is nonempty and different from X, since $U \cap V \subseteq U \cap (\alpha \operatorname{-s} Cl(V)) = (\alpha \operatorname{-s} Cl(U)) \cap V = \phi$, we obtain that both sets are α -semi open and α -semi closed.

Theorem 4 If A is α - semi-connected and $A \subset C \cup D$ where C and D are α - semi-separated, then either $A \subset C$ or $A \subset D$.

Proof. We write $A = (A \cap C) \cup (A \cap D)$. Observe that, $(A \cap C) \cap (\alpha \cdot sCl(A) \cap \alpha \cdot sCl(D)) \subseteq C \cap (\alpha \cdot sCl(D))$. Since C and D are $\alpha \cdot semi-separated$, $C \cap (\alpha \cdot sCl(D)) = \emptyset$. Similarly $(A \cap D) \cap (\alpha \cdot sCl(A) \cap \alpha \cdot sCl(C)) = \emptyset$. So if both $A \cap C \neq \emptyset$ and $A \cap D \neq \emptyset$, then A is not $\alpha \cdot semi-connected$. This shows that either $A \cap C = \emptyset$ or $A \cap D = \emptyset$. This shows that $A \subset C$ or $A \subset D$

Theorem 5 The union E of any family $(C_i)_{i \in I}$ of α -semi-connected sets having a nonempty intersection is an α - semi-connected set.

Proof. Suppose that $E = A \cup B$, where A and B form a α -semi-separation of E. By hypothesis, we may choose a point $x \in \bigcap_{i \in I} C_i$. Then x must belong either a subset A or a subset B. Since A, B are disjoint, we must have $C_i \subset A$ for all $i \in I$, and so $E \subset A$. From this we obtain that $B = \emptyset$, which is a contradiction. This proves the theorem.

Theorem 6 If C is a α - semi-connected set and $C \subset \alpha$ -sCl(E) $\subset \alpha$ -sCl(C), then α -sCl(E) is α - semi-connected set.

Proof. If $\alpha \operatorname{sc} Cl(E)$ is not α -semi-connected, we can write $\alpha \operatorname{sc} Cl(E) = A \cup B$, where $A \neq \emptyset, B \neq \emptyset, A \cap (\alpha \operatorname{sc} Cl(B)) = \emptyset$, and $(\alpha \operatorname{sc} Cl(A)) \cap B = \emptyset$. By theorem 4, we must have $C \subset A$ or $C \subset B$. Without loss of generality, let us suppose $C \subset A$, it follows by Theorem 2 that $\alpha \operatorname{sc} Cl(C) \subset \alpha \operatorname{sc} Cl(A)$ therefore, $(\alpha \operatorname{sc} Cl(C)) \cap B \subset (\alpha \operatorname{sc} Cl(A)) \cap B = \emptyset$. On the other hand $B \subset \alpha \operatorname{sc} Cl(E) \subset \alpha \operatorname{sc} Cl(C)$ and $\alpha \operatorname{sc} Cl(C) \cap B = B$, we must have $B = \emptyset$. And the result follows.

Theorem 7 Let (X, Γ) be a topological space, α be a monotone operator associated with Γ and A be an open set. Then A is α -semi connected if and only if $(A, \Gamma_{/A})$ is α -semi connected.

Proof: Suppose that A is not α -semi connected. Let H and K be an α semi-separation of A, then; H and K are α semi-separated sets in any X containing A, since $(\alpha \operatorname{-s}Cl(H) \cap K = (\alpha \operatorname{-s}Cl(H)) \cap A \cap K = ((\alpha \operatorname{-s}Cl(H)) \cap A) \cap K = (\alpha \operatorname{-s}Cl_A(H)) \cap K = \emptyset$, and similarly $(\alpha \operatorname{-s}Cl(K) \cap H = (\alpha \operatorname{-s}Cl_A(K) \cap H = \emptyset$ Conversely, if H and K is an α -semi separation of A and $A = H \cup K$, then we have $\alpha \operatorname{-s}Cl_A(H) = (\alpha \operatorname{-s}Cl(H)) \cap A = (H \cup K) \cap (\alpha \operatorname{-s}Cl(H)) = (H \cap (\alpha \operatorname{-s}Cl(H)) \cup (K \cap (\alpha \operatorname{-s}Cl(H))) = H$. And hence H is α -semi closed in A. Similarly K is α -semi closed in A. Since A is an open set, we obtain that $K = A \setminus H$ and $H = A \setminus K$ are α -semi open in A. The result follows.

Definition 9 Let (X, Γ) be a topological space, α be a monotone operator associated with Γ and $x \in X$. The α - semi component of x denoted by α -S.C(x), is the union of all α -semi-connected subsets of X containing x.

We can see from Theorem 5 that the set α -S.C(x) is α -semi-connected.

Theorem 8 Let (X, Γ) be a topological space and α be a monotone operator associated with Γ . Then the following are satisfied:

- a. Each α -semi-component α -S.C(x) is a maximal α semi-connected set in X.
- b. The set of all α semi-components of a point of X form a partition of X.
- c. Each α -S.C(x) is α -semi-closed.

Proof: a. Follows from the definition.

b. Let α -S.C(x) and α -S.C(y) be two α - semi-components of distinct points x and y in X. If $(\alpha$ -S.C(x)) $\cap (\alpha$ -S.C(y)) $\neq \emptyset$, then by theorem 5 $(\alpha$ -S.C(x)) $\cup (\alpha$ -S.C(y)) is α - semi-connected set, but $(\alpha$ -S.C(x)) $\subseteq (\alpha$ -S.C(x)) $\cup (\alpha$ -S.C(y)), this contradicts the fact that α -S.C(x) is maximal. Now for any point $x \in X, x \in (\alpha$ -S.C(x)) and $\cup_{x \in X} \{x\} \subset \cup_{x \in X} (\alpha$ -S.C(x)). This implies that $X \subseteq \cup_{x \in X} (\alpha$ -S.C(x)) \subseteq X. Therefore, $\cup_{x \in X} (\alpha$ -S.C(x)) = X.

c. For any point $x \in X$, α -s $Cl(\alpha$ -S.C(x)) is α - semi-connected, but α -S.C(x) is the maximal α - semi-connected set containing x, therefore α -s $Cl(\alpha$ -S.C $(x)) \subseteq \alpha$ -S.C(x). But α -S.C $(x)\subseteq \alpha$ -s $Cl(\alpha$ -S.C(x)), in consequence α -s $Cl(\alpha$ -S.C(x)) = α -S.C(x). And the result follows.

Definition 10 A topological space (X, Γ) is called locally α semi-connected at the point $x \in X$ if and only if for every α semi open set U containing x, there exist an α semi-connected open set A such that $x \in A \subseteq U$. (X, Γ) is locally α semi-connected if and only if it is locally α semi-connected at every point of X.

We can see easily that every α locally semi-connected topological space is α locally connected but the converse is not true as shown by the following example.

Example 7 Consider $X = \{a, b, c\}$ and $\Gamma = \{X, \emptyset, \{a\}, \{a, b\}\}$. Define α as the closure operator. Then we obtain the following:

 α -SO(X) = {X, \emptyset, {a}, {a, b} {a, c}}. α -SR(X) = {X, \emptyset, {b} {b, c}, {c}}. Observe that {a, c} is α semi open, but there no α open subset of {a, c} exists containing c and so X is not α locally semi connected at c. Therefore X is not α locally semi connected. Note that X is α locally connected.

Example 8 It is easy to see that α locally semi connectedness does not imply α semi connectedness as we show as follows:

Let $X = \{a, b, c\}$ and $\Gamma = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{c\}\}$. Define α as the closure operator. Then we obtain the following:

 $\alpha - SO(X) = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{c\}\}.$

The α semi open sets containing a are: $\{a\}, \{a, b\}, \{a, c\}, X$. Observe that $\{a\}$ is an open set, and therefore, this implies that it is α - semi open, therefore X is α locally semi connected at the point a. In the same way, we show that X is α locally semi connected at the points b and c. But X is not α semi connected as we show: Let $A = \{a, b\}$ and $B = \{c\}$, then α -s $Cl(A) = \{a, b\}$ and α -s $Cl(B) = \{c\}, (\alpha$ -s $Cl(A)) \cap B = \emptyset$ and $A \cap (\alpha$ -s $Cl(B)) = \emptyset$, in this way A and B are two α semi separated sets and so X is not α semi connected.

Theorem 9 Let (X, Γ) be a topological space and α be a monotone operator associated with Γ . X is α -locally semi-connected if and only if each α - semi-component of α semi open set are open sets.

Proof: Suppose that (X, Γ) is α -locally semi-connected. Let $A \subset X$ be a α semi-open set and B be a α - semi-component of A. If $y \in B$, then $y \in A$, therefore, there is a α semi-connected open set U such that $y \in U \subseteq A$. Since B is a α - semi-component of y and U is α - semi-connected, we have that $y \in U \subseteq B$, therefore B is open. Reciprocally if $x \in$ X, and A is an α semi-open set containing x, let B be a α - semi-component of A such that $x \in B$. Since B is a α - semi-connected open set, $x \in B \subseteq A$. And the result follows.

Definition 11 A mapping $f: (X, \Gamma) \mapsto (Y, \Psi)$ is said to be (α, β) - semi-continuous if for each β -semi open set V in Y, $f^{-1}(V)$ is α - semi-open in X.

Remark 4 We can see easily that, for any operators α, β associated with Γ and Ψ respectively. If f is a continuous map then f is (α, β) - semi-continuous. Also, if f is a semi-continuous map in the sense of Levine, then f is (Cl, id)-semi-continuous.

Remark 5 We can observe that the definition of (α, β) - semi-continuous mappings generalize the definition of irresolute mappings given in [6].

Theorem 10 If $f: (X, \Gamma) \mapsto (Y, \Psi)$ is a (α, β) - semi-continuous mapping from a α -semi connected space (X, Γ) onto (Y, Ψ) , then (Y, Ψ) is a β -semi connected space.

Proof: Suppose that (Y, Ψ) is not a β -semi connected space and let A, B be a β separation of Y such that $Y = A \cup B$. Then using Definition 8, we have that $(\beta - sCl(A)) \cap B = A \cap (\beta - sCl(B)) = \emptyset$. It follows that A and B are β -semi open and β -semi closed sets in Y; it follows from the hypothesis that $f^{-1}(A) \cup f^{-1}(B) = X$, $f^{-1}(A)$ and $f^{-1}(B)$ are α -semi open an α -semi closed in X. Therefore we obtain that X is not α -semi connected, contradiction.

Theorem 11 Let $f: (X, \Gamma) \mapsto (Y, \Psi)$ be a (α, β) - semi-continuous and open mapping and $A \subset X$ be an open set. If A is a α -semi connected set, then f(A) is a β -semi connected set.

Proof: Since A is α -semi connected and open in X, then by Theorem 7, (A, Γ_A) is also α semi connected. But $f_{/A} : (A, \Gamma_A) \to (f(A), \Psi_{f(A)})$ is an onto and (α, β) - semi-continuous mapping. Now using Theorem 10, the result follows.

Definition 12 [7]Let (X, Γ) and (Y, Φ) be two topological spaces and α , β be operators associated with Γ , Φ respectively. We say that a map $f : X \to Y$ is (α, β) relatively continuous at $x \in X$ if given an open set $V \in \Phi$ containing f(x), the set $\alpha(f^{-1}(V))$ is an open subset in the subspace $f^{-1}(\beta(V))$. If this condition is satisfied for each $x \in X$, then fis said to be (α, β) relatively continuous. **Remark 6** The above definition generalizes the definition of relatively continuous map given by Levine in [5], when we choose the operator α to be the identity operator and β the closure operator.

Definition 13 [7]. Let (X, Γ) and (Y, Φ) be two topological spaces and α , β be operators associated with Γ , Φ respectively. We say that a map $f: X \to Y$ is (α, β) weakly continuous at $x \in X$ if given any open set $V \in \Phi$ containing f(x), $\alpha(f^{-1}(V)) \subseteq int(f^{-1}(\beta(V)))$. If this condition is satisfied at each $x \in X$, then f is said to be (α, β) weakly continuous.

Remark 7 The above definition generalizes the definition of weakly continuous map given by Levine in [5], when we choose the operator α to be the identity operator and β the closure operator.

Remark 8 If f is a constant map, then f is (α, β) weakly continuous for any operator α and β that satisfies the condition $\alpha(\emptyset) = \beta(\emptyset) = \emptyset$. In the case that the operator α satisfies the condition $\alpha(\emptyset) \neq \emptyset$, then any constant map is not (α, β) weakly continuous for any operator β .

Theorem 12 If $f : X \to Y$ is (α, id) weakly continuous. Then f is (α, β) relatively continuous for any operator β associated with Φ , where α is a monotone operator.

Proof: For any $V \in \Phi$, $int(f^{-1}(V)) \subseteq \alpha(int(f^{-1}(V))) \subseteq \alpha(f^{-1}(V)) \subseteq .int(f^{-1}(V))$. This implies that $\alpha(int(f^{-1}(V))) = int(f^{-1}(V))$ so we obtain that $\alpha(int(f^{-1}(V)))$ is an open set in $f^{-1}(V)$.By definition $f^{-1}(V) \subseteq f^{-1}(\beta(V))$ for any operator β , therefore $\alpha(int(f^{-1}(V)))$ is open in $f^{-1}(\beta(V))$.

Definition 14 Let (X, Γ) be a topological space. A pair of operators α and β associated with Γ are mutually dual if $\alpha(V) \cap \beta(V) = V$ for every $V \in \Gamma$.

Theorem 13 If $f : X \to Y$ is (α, β) and (α, β^*) relatively continuous, where β and β^* are mutually dual. Then f is (α, id) weakly continuous.

Proof: By hypothesis $\alpha(f^{-1}(V))$ is an open subset in the subspace $f^{-1}(\beta(V))$ and $f^{-1}(\beta^*(V))$, therefore $\alpha(f^{-1}(V))$ is an open subset in the subspace $f^{-1}(\beta(V)) \cap f^{-1}(\beta^*(V))$, but $f^{-1}(\beta(V)) \cap f^{-1}(\beta^*(V)) = f^{-1}(V)$ so f is (α, id) weakly continuous.

Example 9 Let X = R with the usual topology. $Y = \{a, b\}$ with the discrete topology. Define

 $\begin{aligned} f: \ X \to Y \text{ as follows} \\ f(x) &= \left\{ \begin{array}{l} a \quad \text{if } x \in (-\infty, o] \\ b \quad \text{if } x \in (o, +\infty) \end{array} \right. \end{aligned}$

Taken α to be the closure operator on R and β the closure operator on Y. Then f is not (α, β) relatively continuous, since $\alpha(f^{-1}(\{a\})) = (-\infty, o]$ which is an open set in the subspace $f^{-1}(\beta(\{a\})) = (-\infty, o]$, but $\alpha(f^{-1}(\{b\})) = [0, +\infty)$ which is not an open set in $f^{-1}(\beta(\{b\})) = (0, +\infty)$. f is not (α, β) weakly continuous, since $\alpha(f^{-1}(\{a\})) = (-\infty, o]$ is not contained in the set $int(f^{-1}(\beta(\{a\}))) = (-\infty, 0)$.

If, in the above example, we use the identity operator instead of the operator α , then we obtain, that f is (id,β) relatively continuous but f is not (id,β) weakly continuous. If we take $V = \{a\}$, then there does not exist an open neighborhood U of 0 such $f(id(U)) \subseteq \beta(V)$.

References

- [1] T. Haitice Yalvac., Semi-Regular Sets, Semi- θ -Open Sets and Semi- θ -Connectedness, Demostratio Mathematica. Vol. 29. (2) (1996),
- [2] J.P. Sarker & H.Dasgupta., Locally Semi-Connectedness in Topological Spaces, Indian Journal Pure applied Mathematic. 16 (12): 1488--1494, December 1985.
- [3] G. Di Majo., On s-Closed Spaces, Indian Journal. Pure applied Mathematic. 18 (3): 226--233, March 1987.
- [4] Stephen Willard., General Topology. ADDISON-WESLEY PUBLISHING COMPANY.
- [5] Levine N., American Mathematical Monthly 70 (1963) 36--39.
- [6] Crossley S., & Hildebrand S. Fundamenta Mathematicae. LXXIV (1972) 233- -254.
- [7] Ennis Rosas y Jorge Vielma. Operator Decomposition of Continuous Mappings, Divulgaciones Matematicas Vol. 7 No. 1 (1999), pp.29-33.

* UNIVERSIDAD DE ORIENTE, DEPARTAMENTO DE MATEMA TICAS, CUMANA, VENEZUELA.

email:erosas&cumana.sucre.udo.edu.ve

** UNIVERSIDAD DE LOS ANDES, DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS, MERIDA, VENEZUELA. email:vielma&ciens.ula.ve

*** UNIVERSIDAD DE ORIENTE, DEPARTAMENTO DE MATEMA TICAS, CUMANA, VENEZUELA.