
Scientiae Mathematicae Japonicae Online, Vol. 6, (2002), 465{472 465

�-SEMI CONNECTED AND LOCALLY �-SEMI CONNECTED

PROPERTIES IN TOPOLOGICAL SPACES

Rosas E�, Vielma J.�� and Carpintero C.���

Received January 21, 2000; revised April 6, 2001

Abstract. In this paper we study the �-separation of sets, �-semicontinuity prop-

erties between topological spaces, �-semiconnected sets and �-locally semiconnected

sets and prove some properties related to these topics. Also we study some forms of

continuity:

In [2] ; the concept of locally semi connected set is given. In this paper we introduce the

concept of � semi connected sets, � locally semi connected sets and show that it generalizes

the above concept when the operator � is the identity. Also we study some forms of

continuity. Throughout this paper, we use the following notations; Cl(A) denotes the usual

closure and Int(A) denotes the interior of a set.

De�nition 1 [7].Let (X;�) be a topological space and � be a map from P (X) to P (X) such

that the following property is satis�ed:

for all U 2 �; U � �(U). Then � is said to be an operator associated with �.

De�nition 2 . Let (X;�) be a topological space and � be an operator associated with �.

We said that � is a monotone operator if for every pair of open sets U; V such that U �

V , we have that �(U) � �(V ):

Example 1 We can observe that the closure operator is a monotone operator.

De�nition 3 . Let (X;�) be a topological space and � be an operator associated with �.

We say that � is an inversely additive operator if for every countable collection fUgi2I of

open sets, we have that [i�(Ui ) � �([iUi ):

Example 2 As example of an inversely additive operator, we can take the closure operator.

The following theorem characterizes the monotone operator.

Theorem 1 An inversely additive operator is equivalent to a monotone operator.

Proof. Suppose that � is a monotone operator. Let fUgi2I be a countable collection

of open sets. we have that for each i 2 I; �(Ui) � �([iUi): And we obtain easily that �

is inversely additive. Now suppose that � is inversely additive, let U � V;then �(U) �

�(U) [ �(V ) � �(U [ V ) = �(V ) and the result follows.

De�nition 4 Let (X;�) be a topological space and � be an operator associated with �.

A subset A of X is said to be �- semi open if there exists an open set U 2 � such that

U � A � �(U). The complement of a � - semi open set is called a � - semi closed set.
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Remark 1 Observe that when � is the closure operator, the above de�nition agrees with

the de�nition of semi-open set given by Levine in [5] : Also when � is the identity operator,

the de�nition of � semi-open set agrees with the de�nition of open set.

Remark 2 Observe that for any operator � each open set is � semi-open.

Example 3 Let (X;�) be a topological space and � be an operator associated with �: Con-

sider A a subset of X;where A is closed but not open and Int(A) 6= ;. De�ne an operator

� as follows: �(V ) = �(V ) [A: Observe that A is � semi-open, but is not open.

De�nition 5 Let (X;�) be a topological space and � be an operator associated with �: We

say that, the subset A of X is � - regular open if A = Int(�(A)):

Example 4 Let X = fa; b; c; dg ;� = f;;X; fag ; fa; bgg

�(A) =

8<
:

; if A = ;

fa; bg if A = fa; bg

X if A = fag or A = X

and �(A) = A if A =2 �

The set fa; bg is � regular open,: fa; b; cgis � semi-open but is not � regular open.

Lemma 1 If � is a monotone operator. A subset A of X is said to be � semi-open if and

only if A � �(Int(A)). Observe that when � is the closure operator, this de�nition agrees

with the equivalence given in [5] :

Proof. Suppose that A � �(Int(A)); then we can see easily by de�nition that A is �

semi-open. Conversely if A is � semi-open, then U � A � �(U) for some open set U: Now

since U � Int(A), we have that �(U) � �(Int(A)) and the result follows.

The following example shows that the condition of monotone can not be removed from

the above lemma.

Example 5 Let X = fa; b; c; dg ;� = f;;X; fag ; fa; bgg

�(A) =

8<
:

; if A = ;

fa; bg if A = fa; bg

X if A = fag or A = X

and �(A) = A if A =2 �

Observe that � is not a monotone operator, the set fa; b; cg is � semi open but fa; b; cg

is not contained in �(Int(fa; b; cg)) = �(fa; bg) = fa; bg :

>From [3] ; we have the following equivalence when � is the closure operator

Lemma 2 If � is the closure operator, then a subset S of X is �- semi closed if and only

if there exists a closed subset F of X such that Int(F ) � S � F:

Proof: Suppose that Int(F ) � S � F for some closed set F; then X � F � X � S �

X�Int(F ): We claim that, X�Int(F ) � Cl(X�F ): Let x 2 X�Int(F ), then x =2 Int(F );

this implies that for all neighborhood �x of x; �x \ (X � F ) 6= �; from this, x 2 Cl(X � F )

and X � S is � semi open. Conversely, if S is � semi closed; then X � S is � semi open,

therefore there exists an open set U such that, U � X � S � Cl(U): We claim that,

Int(X � U) � X � Cl(U): Let x 2 Int(X � U); then there exists a neighborhood �x of x

such that, �x �(X �U); this implies that, �x \ U = �; therefore x =2 Cl(F ): From this, we

obtain that x 2 X � Cl(U)and the result follows.

Lemma 3 If � is the closure operator. A subset S of X is � - semi closed if and only if

Int(�(S)) � S.
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Proof. Suppose that S is � semi closed. From the above lemma, there exists a closed

set F in X such that Int(F ) � S � F: >From this, we obtain that Int(�(S)) � Int(F ) � S;

and the result follows: Conversely if Int(�(S)) � S;then Int(�(S)) � S � �(S); since � is

the closure operator the result follows.

At this point there is a natural question: Is it possible to characterize � semi closed set

for any operator �. The answer is not yet, because it is necessary to know which properties

have to have the operator �.

De�nition 6 A subset S of (X;�) is said to be � - semi regular if it is both � - semi open

and � -semi closed.

Denote by: � -SO(X) the family of all � semi open sets of X.

� - SR(X) the family of all � semi closed sets of X.

� -SO(x) the family of all � semi open sets of X containing x.

� - SR(x) the family of all � semi closed sets of X containing x.

Lemma 4 If � is a monotone operator, then the union of all � - semi open sets contained

in the set S is � - semi open and it is denoted by �- sInt(S).

Proof. Let fUigi2I a collection of � - semi open sets contained in S; then for each

i 2 I, there exists an open set Vi such that, Vi � Ui � �(Vi): Therefore we obtain that

[Vi � [Ui � [�(Vi) � �([Vi); and the result follows.

The following example shows that the condition of monotone can not be removed from

the above lemma.

Example 6 Let X be the real line with the usual topology and � be the operator de�ned as

follows:

�(A) =

8<
:

A if 0 2 A

Cl(A) if 0 =2 A

f1g if A = ;

Observe that � is not a monotone operator, the sets (�1; 1), f1g are � semi open but

(�1; 1] is not � semi open

Corollary 1 If � is a monotone operator, the intersection of all �-semi closed sets of X

containing the set S is � - semi closed. It is called the � - semi closure of S and is denoted

by �-sCl(S).

Corollary 2 If A is a subspace of X and � is an operator associated with the topology of

X, then the �-sClA(S) = A \ (�-sCl(S)):

Proof. Let fUigi2I be a collection of � - semi closed sets containing S. We need to show

that �Xn(\i2IUi) is an � - semi open set. Using the above lemma the result follows.

Remark 3 Observe that if � is a monotone operator associated with � and A is a subset

of X, then A is �-semi closed if and only if �-sCl(A) = A:

Theorem 2 If A;B are two subsets of a topological space (X;�), � is an operator associated

with � and A � B, then � -sCl(A) � � -sCl(B).

Proof. By de�nition

Now we introduce the notion of �-semi-connected set.
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De�nition 7 Two non-empty subsets A;B of a topological space (X;�) are said to be � -

semi-separated if and only if (�-sCl(A)) \ B = A\ (� - sCl(B)) = ;.

De�nition 8 In a topological space (X;�), a set which can not be expressed as the union

of two � - semi-separated sets is said to be � - semi-connected set.

The topological space (X;�) is said to be a � - semi-connected if and only if X is � -

semi-connected.

Note: We can observe that when � is the identity operator, the de�nition of ��semi

separated set agrees with the de�nition of separated set in the usual sense and therefore

the de�nition of � - semi-connected set generalizes the de�nition of connected set.

Theorem 3 A space X is � - semi-connected if and only if the only subsets of X that are

both �-semi open and �-semi closed in X are the empty set and X itself.

Proof: If A is a nonempty proper subset of X which is both � - semi-open and �-semi-

closed in X, then the sets U = A and V = X n A constitute an �-semi separation of X:

Conversely, if U and V form an �-semi separation of X and X = U [V; then U is nonempty

and di�erent from X, since U \ V � U \ (� -sCl(V )) = (� -sCl(U)) \ V = �, we obtain

that both sets are �-semi open and �-semi closed.

Theorem 4 If A is � - semi-connected and A � C [ D where C and D are � - semi-

separated, then either A � C or A � D.

Proof. We write A = (A \ C) [ (A \ D). Observe that, (A \ C) \ (�-sCl(A) \ �-

sCl(D)) � C \ (�-sCl(D)). Since C and D are �- semi-separated, C \ (�-sCl(D)) = ;.

Similarly (A \D) \ (�-sCl(A)\ �-sCl(C)) = ;: So if both A \C 6= ; and A \D 6= ;; then

A is not �-semi-connected. This shows that either A \ C = ; or A \ D = ;. This shows

that A � C or A � :D

Theorem 5 The union E of any family (C
i
)
i2I

of � -semi-connected sets having a non-

empty intersection is an � - semi-connected set.

Proof. Suppose that E = A [ B; where A and B form a �-semi-separation of E. By

hypothesis, we may choose a point x 2 \i2ICi: Then x must belong either a subset A or a

subset B. Since A;B are disjoint, we must have Ci � A for all i 2I, and so E � A. From

this we obtain that B = ;;which is a contradiction.This proves the theorem.

Theorem 6 If C is a � - semi-connected set and C � �-sCl(E) � �-sCl(C), then �-

sCl(E) is � - semi-connected set.

Proof. If �-sCl(E) is not �-semi-connected, we can write �-sCl(E) = A [ B, where

A 6= ;; B 6= ;, A \ (�-sCl(B)) = ;;and (�-sCl(A)) \ B = ;: By theorem 4, we must have

C � A or C � B. Without loss of generality, let us suppose C � A, it follows by Theorem

2 that �-sCl(C) � �-sCl(A) therefore, (�-sCl(C))\B � (�-sCl(A))\B = ;: On the other

hand B � �-sCl(E) � �-sCl(C) and �-sCl(C) \ B = B, we must have B = ;. And the

result follows.

Theorem 7 Let (X;�) be a topological space, � be a monotone operator associated with

� and A be an open set. Then A is �-semi connected if and only if (A;�=A) is �-semi

connected.
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Proof: Suppose that A is not �-semi connected. Let H andK be an � semi-separation of

A, then; H and K are � semi-separated sets in any X containing A; since (�-sCl(H)\K =

(�-sCl(H)) \ A \ K = ((�-sCl(H)) \ A) \ K = (�-sClA(H)) \ K = ;; and similarly (�-

sCl(K) \H = (�-sClA(K) \H = ; Conversely, if H and K is an �-semi separation of A

and A = H [ K; then we have �-sClA(H) = (�-sCl(H)) \ A = (H [K) \ (�-sCl(H)) =

(H \ (�-sCl(H)) [ (K \ (�-sCl(H))) = H: And hence H is �-semi closed in A. Similarly

K is �-semi closed in A. Since A is an open set, we obtain that K = A nH and H = A nK

are �-semi open in A: The result follows.

De�nition 9 Let (X;�) be a topological space, � be a monotone operator associated with

� and x 2 X. The �- semi component of x denoted by �-S.C(x), is the union of all

�-semi-connected subsets of X containing x.

We can see from Theorem 5 that the set �-S.C(x) is �-semi-connected.

Theorem 8 Let (X;�) be a topological space and � be a monotone operator associated with

�: Then the following are satis�ed:

a. Each �-semi-component �-S.C(x) is a maximal �- semi-connected set in X.

b. The set of all �- semi-components of a point of X form a partition of X.

c. Each �-S.C(x) is �-semi-closed.

Proof: a. Follows from the de�nition.

b. Let �-S.C(x) and �-S.C(y) be two �- semi-components of distinct points x and y in

X. If (�-S.C(x)) \ (�-S.C(y)) 6= ;, then by theorem 5 (�-S.C(x)) [ (�-S.C(y)) is �- semi-

connected set, but (�-S.C(x)) � (�-S.C(x)) [ (�-S.C(y)) , this contradicts the fact that

�-S.C(x) is maximal. Now for any point x 2 X, x 2(�-S.C(x)) and [
x2X fxg � [

x2X(�-

S.C(x)). This implies that X � [
x2X(�-S.C(x)) � X. Therefore, [

x2X(�-S.C(x)) = X.

c. For any point x 2 X; �-sCl(�-S.C(x)) is �- semi-connected, but �-S.C(x) is the

maximal �- semi-connected set containing x, therefore �-sCl(�-S.C(x)) � �-S.C(x). But

�-S.C(x)� �-sCl(�-S.C(x)), in consequence �-sCl(�-S.C(x)) = �-S.C(x). And the result

follows.

De�nition 10 A topological space (X;�) is called locally � semi-connected at the point x 2

X if and only if for every � semi open set U containing x, there exist an � semi-connected

open set A such that x 2 A � U: (X;�) is locally � semi-connected if and only if it is locally

� semi-connected at every point of X.

We can see easily that every � locally semi-connected topological space is � locally

connected but the converse is not true as shown by the following example.

Example 7 Consider X = fa; b; cg and � = fX,;; fag ; fa; bgg : De�ne � as the closure

operator. Then we obtain the following:

� -SO(X) = fX,;; fag ; fa; bg fa; cgg : � -SR(X) = fX,;; fbg fb; cg ; fcgg : Observe that

fa; cg is � semi open, but there no � open subset of fa; cg exists containing c and so X is

not � locally semi connected at c. Therefore X is not � locally semi connected. Note that

X is � locally connected.

Example 8 It is easy to see that � locally semi connectedness does not imply � semi

connectedness as we show as follows:
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Let X = fa; b; cg and � = fX; ;; fag ; fa; bg ; fa; cg ; fcgg : De�ne � as the closure oper-

ator. Then we obtain the following:

� -SO(X) = fX,;; fag ; fa; bg ; fa; cg ; fcgg :

The � semi open sets containing a are: fag ; fa; bg ; fa; cg ;X: Observe that fag is an

open set, and therefore, this implies that it is � - semi open, therefore X is � locally semi

connected at the point a. In the same way, we show that X is � locally semi connected at

the points b and c. But X is not � semi connected as we show: Let A = fa; bg and B = fcg ;

then �-sCl(A) = fa; bg and �-sCl(B) = fcg, (�-sCl(A)) \ B = ; and A \ (�-sCl(B)) = ;,

in this way A and B are two � semi separated sets and so X is not � semi connected .

Theorem 9 Let (X;�) be a topological space and � be a monotone operator associated with

�: X is �-locally semi-connected if and only if each �- semi-component of � semi open set

are open sets.

Proof: Suppose that (X;�) is �-locally semi-connected. Let A � X be a � semi -open

set and B be a �- semi-component of A. If y 2 B, then y 2 A, therefore, there is a �-

semi-connected open set U such that y 2 U � A. Since B is a �- semi-component of y and

U is �- semi-connected, we have that y 2 U � B, therefore B is open. Reciprocally if x 2

X, and A is an � semi -open set containing x; let B be a �- semi-component of A such that

x 2 B. Since B is a �- semi-connected open set, x 2 B � A. And the result follows.

De�nition 11 A mapping f : (X;�) 7�! (Y;	) is said to be (�; �) - semi-continuous if for

each �-semi open set V in Y , f
�1(V ) is �- semi-open in X.

Remark 4 We can see easily that, for any operators �,� associated with � and 	 respectively:

If f is a continuous map then f is (�; �) - semi-continuous. Also, if f is a semi-continuous

map in the sense of Levine, then f is (Cl; id)-semi-continuous.

Remark 5 We can observe that the de�nition of (�; �) - semi-continuous mappings gen-

eralize the de�nition of irresolute mappings given in [6] :

Theorem 10 If f : (X;�) 7�! (Y;	) is a (�; �) - semi-continuous mapping from a ��semi

connected space (X;�) onto (Y;	), then (Y;	) is a ��semi connected space.

Proof: Suppose that (Y;	) is not a ��semi connected space and let A;B be a � sepa-

ration of Y such that Y = A[B: Then using De�nition 8, we have that (�� sCl(A))\B =

A \ (� � sCl(B)) = ;: It follows that A and B are �-semi open and �-semi closed sets

in Y ; it follows from the hypothesis that f�1(A) [ f
�1(B) = X; f

�1(A) and f
�1(B) are

�-semi open an �-semi closed in X: Therefore we obtain that X is not �-semi connected,

contradiction.

Theorem 11 Let f : (X;�) 7�! (Y;	) be a (�; �) - semi-continuous and open mapping and

A � X be an open set. If A is a ��semi connected set, then f(A) is a ��semi connected

set.

Proof: Since A is �-semi connected and open in X, then by Theorem 7, (A;�A) is also �

semi connected. But f=A : (A;�A)! (f(A);	f(A)) is an onto and (�; �) - semi-continuous

mapping. Now using Theorem 10, the result follows.

De�nition 12 [7]Let (X;�) and (Y;�) be two topological spaces and �; � be operators

associated with �; � respectively. We say that a map f : X ! Y is (�; �) relatively

continuous at x 2 X if given an open set V 2 � containing f(x) ;the set �( f�1(V )) is an

open subset in the subspace f
�1(�(V )):If this condition is satis�ed for each x 2 X, then f

is said to be (�; �) relatively continuous.
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Remark 6 The above de�nition generalizes the de�nition of relatively continuous map

given by Levine in [5] ; when we choose the operator � to be the identity operator and �

the closure operator.

De�nition 13 [7] : Let (X;�) and (Y;�) be two topological spaces and �; � be operators

associated with �; � respectively. We say that a map f : X ! Y is (�; �) weakly continuous

at x 2 X if given any open set V 2 � containing f(x); �( f�1(V )) � int(f�1(�(V ))): If

this condition is satis�ed at each x 2 X, then f is said to be (�; �) weakly continuous.

Remark 7 The above de�nition generalizes the de�nition of weakly continuous map given

by Levine in [5] ; when we choose the operator � to be the identity operator and � the closure

operator.

Remark 8 If f is a constant map, then f is (�; �) weakly continuous for any operator �

and � that satis�es the condition �(;) = �(;) = ;: In the case that the operator � satis�es

the condition �(;) 6= ;, then any constant map is not (�; �) weakly continuous for any

operator �:

Theorem 12 If f : X ! Y is (�; id) weakly continuous. Then f is (�; �) relatively

continuous for any operator � associated with �, where � is a monotone operator.

Proof: For any V 2 �, int(f�1(V )) � �(int(f�1(V ))) � �(f�1(V )) � :int(f�1(V )):

This implies that �(int(f�1(V ))) = int(f�1(V )) so we obtain that �(int(f�1(V ))) is

an open set in f
�1(V ):By de�nition f

�1(V ) � f
�1(�(V )) for any operator �, therefore

�(int(f�1(V ))) is open in f
�1(�(V )):

De�nition 14 Let (X;�) be a topological space. A pair of operators � and � associated

with �are mutually dual if �(V ) \ �(V ) = V for every V 2 �:

Theorem 13 If f : X ! Y is (�; �) and (�; �
�) relatively continuous, where �and �

�
are

mutually dual. Then f is (�; id) weakly continuous.

Proof: By hypothesis �( f�1(V )) is an open subset in the subspace f
�1(�(V )) and

f
�1(��(V )); therefore �( f�1(V )) is an open subset in the subspace f�1(�(V ))\f�1(��(V ));

but f�1(�(V )) \ f
�1(��(V )) = f

�1(V ) so f is (�; id) weakly continuous.

Example 9 Let X = R with the usual topology. Y = fa; bg with the discrete topology.

De�ne

f : X ! Y as follows

f(x) =

�
a if x 2 (�1; o]

b if x 2 (o;+1)

Taken � to be the closure operator on R and � the closure operator on Y . Then f is

not (�; �) relatively continuous, since �( f�1(fag)) =(�1; o] which is an open set in the

subspace f�1(�(fag)) =(�1; o] ; but �(f�1(fbg)) = d0;+1) which is not an open set in

f
�1(�(fbg)) = (0;+1) : :f is not (�; �) weakly continuous, since �( f�1(fag)) =(�1; o]

is not contained in the set int(f�1(�(fag)))= (�1; 0) :

If, in the above example, we use the identity operator instead of the operator �, then we

obtain, that f is (id,�) relatively continuous but f is not (id,�) weakly continuous. If we

take V = fag ; then there does not exist an open neighborhood U of 0 such f(id(U)) � �(V ):
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