VARIETIES AND QUASIVARIETIES OF MONADIC TARSKI ALGEBRAS

Manuel ABAD, José P. DIAZ VARELA and Marta ZANDER

Received March 1, 2002

Abstract

In this paper we give a description of the lattice $\Lambda(\mathcal{M T})$ of subvarieties of monadic Tarski algebras introduced in [13], and prove that quasivarieties coincide with varieties. We also investigate some properties of the lattice $L(\mathcal{M B})$ of quasivarieties of monadic Boolean algebras determined in [3], showing the difference when a constant is added to the language of monadic Tarski algebras, and we give a quasiidentity for each member of $L(\mathcal{M B})$.

1 Introduction and Tarski algebras. Implicative structures are particularly common among algebras associated with logical systems, although they arise in many other areas of mathematics. In general, they consist of an ordered set in which the ordering is characterized by a binary operation of implication \rightarrow. If the partial order is a semilattice order we have the Brouwerian semilattices, that are the models of the $\{\wedge, \rightarrow\}$-fragment of the intuitionistic propositional calculus. If the semilattice satisfies the property that every filter [p) is a Boolean algebra, we obtain the Tarski algebras [2] - the variety of $\{V, \rightarrow\}$-subreducts of Boolean algebras.

In this work we study the varieties and quasivarieties of the variety of all monadic Tarski algebras. The notion of monadic Tarski algebra was introduced by A. Monteiro and L. Iturrioz [13] as a generalization of the concept of monadic Boolean algebra. In [9], A. Figallo and independently, in [21] L. Monteiro et al. determined the free monadic Tarski algebra with a finite set of n free generators and calculated its number of elements.

We start with the notion of Tarski algebras. These algebras have been introduced by J. C. Abbott in [2] and have been studied by several authors. Recently, Davey et al. [5] proved that no non-trivial Tarski algebra, termed also implication algebras, is dualisable. Endoprimality in the variety of Tarski algebras has been considered in [22].

Definition 1.1 An algebra $(A, \rightarrow, 1)$ of type $(2,0)$ is said to be a Tarski algebra if:
(T1) $x \rightarrow(y \rightarrow x) \approx 1$.
(T2) $(x \rightarrow(y \rightarrow z)) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$.
(T3) $x \rightarrow 1 \approx 1$.
(T4) If $x \rightarrow y \approx 1$ and $y \rightarrow x \approx 1$ then $x \approx y$.
(T5) $(x \rightarrow y) \rightarrow x \approx x$.

[^0]Boolean algebras are the simplest examples of Tarski algebras: if $(A, \wedge, \vee,-, 0,1)$ is a Boolean algebra and we define $x \rightarrow y=-x \vee y$ for $x, y \in A$, then $(A, \rightarrow, 1)$ is a Tarski algebra.

Recall that an algebra $(A, \rightarrow, 1)$ of type $(2,0)$ satisfying properties T 1 to T 4 is called a Hilbert algebra [1], [2], [6], [7], [16], [17], [19]. Axiom (T5) is the characteristic identity for semisimple Hilbert algebras, so that the class of Tarski algebras is the class of semisimple Hilbert algebras [19].

The following set of axioms can be found among the many handwritten results that A. Monteiro left without publishing (see [18]). Observe that (M1), (M2) and (M3) are the equations that characterize the variety of Hilbert algebras.

Theorem 1.2 An algebra $(A, \rightarrow, 1)$ of type $(2,0)$ is a Tarski algebra if:
(M1) $1 \rightarrow x \approx x$.
(M2) $x \rightarrow x \approx 1$.
$(\mathrm{M} 3) x \rightarrow(y \rightarrow z) \approx(x \rightarrow y) \rightarrow(x \rightarrow z)$.
(M4) $(x \rightarrow y) \rightarrow y \approx(y \rightarrow x) \rightarrow x$.
Throughout this paper, $\mathcal{B}, \mathcal{T}, \mathcal{M B}$ and $\mathcal{M} \mathcal{T}$ will denote the equational classes of all Boolean algebras, all Tarski algebras, all monadic Boolean algebras and all monadic Tarski algebras, respectively.

If \mathcal{K} is a class of similar algebras we will use the following notation: $H(\mathcal{K})$ for the class of algebras that are homomorphic images of algebras in $\mathcal{K} ; I(\mathcal{K})$ for the class of algebras that are isomorphic copies of algebras in \mathcal{K} and $S(\mathcal{K})$ for the class of algebras that are subalgebras of algebras in \mathcal{K}. The lattice of congruences of an algebra $A \in \mathcal{K}$ is denoted by $\operatorname{Con}(A)$.

Let $A \in \mathcal{T}$. Given $x, y \in A$ we denote $x \leq y$ whenever $x \rightarrow y=1$. It is well known that A is an ordered set with last element 1 , that A is a join-semilattice and that the supremum of two elements a and b is $a \vee b=(a \rightarrow b) \rightarrow b$ [2].

The following result can also be found in [2].
Lemma 1.3 If a Tarski algebra A has least element 0 , then A is a Boolean algebra, where the Boolean complement of $a \in A$ is $-a=a \rightarrow 0$ and the infimum of the elements a and $b \in A$ is $a \wedge b=-(b \rightarrow-a)$.

Lemma 1.4 If A is a Tarski algebra, then the set $[p)=\{x \in A: p \leq x\}$ is a Boolean algebra, for every $p \in A$.

Observe that if $x \in[p)$ then the complement of x in $[p)$ is $x \rightarrow p$, so the infimum of two elements $x, y \in[p)$ is $x \wedge y=(y \rightarrow(x \rightarrow p)) \rightarrow p$.

Now suppose that R is a join-semilattice with last element 1 , in which $[r)=\{y \in R$: $r \leq y\}$ is a Boolean algebra, for every $r \in R$. J. C. Abbott [1], [2] proved that R is a Tarski algebra. Hence, there is a bijective correspondence between the variety of Tarski algebras and the class of all upper-bounded join-semilattices for which every principal filter is a Boolean lattice.

Definition 1.5 A subset D of a Tarski algebra A is called a deductive system if:
$\left(D_{1}\right) 1 \in D$.
$\left(D_{2}\right)$ If $x, x \rightarrow y \in D$ then $y \in D$.
For $H \subseteq A$, the intersection of all deductive systems of A containing H is called the deductive system generated by H. If $H \neq \emptyset$, we say that an element $x \in A$ is a consequence of H if there exist $h_{1}, h_{2}, \ldots, h_{n} \in H$ such that $h_{1} \rightarrow\left(h_{2} \rightarrow\left(\ldots\left(h_{n} \rightarrow x\right) \ldots\right)\right)=1$. If $H=\emptyset$ we say that x is a consequence of H if $x=1$. The set of all consequences of H will be denoted $C(H)$.

Lemma 1.6 [19] Let A be a Tarski algebra and $H \subseteq A$. The deductive system generated by H is $C(H)$.

Corollary 1.7 Let A be a Tarski algebra and $a \in A$. Then the deductive system generated by a is $C(a)=\{x \in A: a \rightarrow x=1\}=\{x \in A: a \leq x\}=[a)$.

Define a filter in a Tarski algebra A as a non-empty increasing set D such that if $x, y \in D$ and there exists $x \wedge y$ in A, then $x \wedge y \in D$. Then D is a filter if and only if D is a deductive system. Indeed, if D is a filter, then clearly $1 \in D$, and if $x, x \rightarrow y \in D$, then, as $x \leq x \vee y$, $x \vee y \in D$. Since $(x \vee y) \wedge(x \rightarrow y)=[(x \rightarrow y) \rightarrow((x \vee y) \rightarrow y)] \rightarrow y=y$, it follows that $y \in D$. Conversely, suppose that D is a deductive system. Then D is clearly increasing. Let $x, y \in D$ be such that $x \wedge y$ exists. Then $[x \wedge y)$ is a deductive system that is also a Boolean algebra. If $E=D \cap[x \wedge y)$, then $E \subseteq[x \wedge y)$ and E is a filter of the Boolean algebra $[x \wedge y)$ and contains x and y. So E contains $x \wedge y$, and consequently $E=[x \wedge y) \subseteq D$.

It is known [2] that every congruence on a Tarski algebra A is determined by a deductive system D where the relation is $a \equiv b(\bmod D)$ if and only if $a \rightarrow b$ and $b \rightarrow a \in D$. Thus the lattice of deductive systems is isomorphic to the lattice of congruence relations. From this it is clear that the 2 -element Tarski algebra $2=\{0,1\}$ is the only simple algebra in \mathcal{T}.

On the other hand, the intersection of all maximal deductive systems of A is $\{1\}$ [13], so the mapping $A \rightarrow \prod_{i \in I} A / D_{i}$, where $\left\{D_{i}\right\}_{i \in I}$ is the family of all deductive systems of A, is a subdirect embedding. In addition, if D is a maximal deductive system of $A, A / D$ is simple. Hence, if A is subdirectly irreducible, A is simple.

Theorem 1.8 The only subdirectly irreducible algebra in \mathcal{T} is the simple algebra 2.
In the rest of this section, A will be a finite non-trival Tarski algebra. $A n t(A)$ will denote the set of all antiatoms (dual atoms) of A. Observe that if $z \in A$, since [z) is a Boolean algebra, $\operatorname{Ant}([z)) \subseteq \operatorname{Ant}(A)$ and $z=\bigwedge \operatorname{Ant}([z))$. Thus, in a finite Tarski algebra, every element different from 1 is an infimum of a non-empty set of antiatoms.

The next lemma gives a characterization of maximal deductive systems of a finite Tarski algebra A.

Lemma 1.9 Let A be a finite non-trivial Tarski algebra, and $n=|\operatorname{Ant}(A)|$. If $a \in \operatorname{Ant}(A)$ then $A \backslash(a]$ is a maximal deductive system of A, where $(a]=\{x \in A: x \leq a\}$. Moreover, every maximal deductive system in A is of the form $A \backslash(a]$, with $a \in \operatorname{Ant}(A)$, that is, A has exactly n maximal deductive systems.

Proof We first prove that $A \backslash(a]$ is a deductive system. Clearly, $1 \in A \backslash(a]$. Let $x, x \rightarrow y \in A \backslash(a]$ and let us prove that $y \in A \backslash(a]$. Suppose that $y \notin A \backslash(a]$, then $y \in(a]$.

So $y \leq a$. On the other hand, $a \leq x \rightarrow a$ and thus $x \rightarrow a=a$ as $x \not 又 a$ and a is a dual atom. Then

$$
1=x \rightarrow 1=x \rightarrow(y \rightarrow a)=(x \rightarrow y) \rightarrow(x \rightarrow a)=(x \rightarrow y) \rightarrow a
$$

and hence $x \rightarrow y \leq a$, a contradiction. Let us see that $A \backslash(a]$ is maximal. Let $y \in(a]$. Then $a \rightarrow y \in A \backslash(a]$, since otherwise $a \rightarrow y \leq a$ and $a=(a \rightarrow y) \rightarrow a=1$ which is a contradiction. So if D is a deductive system such that $A \backslash(a] \subset D$ and $A \backslash(a] \neq D$ then $a \in D$ and $a \rightarrow y \in A \backslash(a] \subset D$ for all $y \in(a]$, hence $A=D$.

Let D a maximal deductive system and suppose that $\operatorname{Ant}(A) \subseteq D$. By the remark preceding this lemma, $A=D$, a contradiction. So there exists $a \in \operatorname{Ant}(A)$ such that $a \notin D$ and consequently $D=A \backslash(a]$.

Suppose that $\operatorname{Ant}(A)=\left\{a_{1}, \ldots, a_{n}\right\}$. Let $D_{i}=A \backslash\left(a_{i}\right]$ and let $j: A \rightarrow \prod_{i=1}^{n} A / D_{i}$ be a subdirect embedding. For $x \in A,(j(x))_{i}=1$ if $x \notin\left(a_{i}\right]$ and $(j(x))_{i}=0$ if $x \in\left(a_{i}\right]$. Hence $j\left(a_{i}\right)$ is an antiatom of $\prod_{i=1}^{n} A / D_{i}$, for $i=1, \ldots, n$, and consequently, j induces a bijection between the set of antiatoms of A and the set of antiatoms of $\prod_{i=1}^{n} A / D_{i}$. Since every element of a finite Tarski algebra is a meet of antiatoms, it follows that $j: A \rightarrow[\operatorname{Min}(j(A)))$ is an isomorphism, where $\operatorname{Min}(j(A))$ denotes the set of minimal elements in $j(A)$.

2 Varieties of Monadic Tarski algebras. The aim of this section is to give an equational basis with a minimum number of variables for each subvariety of monadic Tarski algebras.

Definition 2.1 [13] An algebra $(A, \rightarrow, \forall, 1)$ of type $(2,1,0)$ is said to be a monadic Tarski algebra if $(A, \rightarrow, 1)$ is a Tarski algebra and:
$\left(Q_{1}\right) \forall 1 \approx 1$.
$\left(Q_{2}\right) \forall x \rightarrow x \approx 1$.
$\left(Q_{3}\right) \forall((x \rightarrow \forall y) \rightarrow \forall y) \approx(\forall x \rightarrow \forall y) \rightarrow \forall y$.
$\left(Q_{4}\right) \forall(x \rightarrow y) \rightarrow(\forall x \rightarrow \forall y) \approx 1$.
Taking into account that $x \vee y=(x \rightarrow y) \rightarrow y$, then Q_{3} can be written:
$\forall(x \vee \forall y) \approx \forall x \vee \forall y$.
In a monadic Tarski algebra A the following properties hold (see [21]):
$\left(Q_{5}\right) \forall \forall x \approx \forall x$.
$\left(Q_{6}\right)$ If $x \leq y$ then $\forall x \leq \forall y$.
$\left(Q_{7}\right)$ If $x \approx \forall x$ and $y \approx \forall y$, then $x \rightarrow y \approx \forall(x \rightarrow y)$.

Recall that the variety \mathcal{T} is congruence distributive. Since algebras in $\mathcal{M T}$ have Tarski algebra reducts and congruence distributivity is a Mal'cev condition, it follows that $\mathcal{M} \mathcal{T}$ is congruence distributive.

Let $\forall A=\{\forall x: x \in A\}$, then from Q_{1}, Q_{5} and Q_{7} it follows that $\forall A$ is a Tarski subalgebra of A. If A is a monadic Tarski algebra with least element 0 , we know that A is a Boolean algebra. In that case, if we put by definition $\exists x=-\forall-x$, then $(A, \wedge, \vee,-, \exists, 0,1)$ is a monadic Boolean algebra [11], [12]. On the other hand, if A is a monadic Boolean algebra and we put $x \rightarrow y=-x \vee y$ and $\forall x=-\exists-x$, then $(A, \rightarrow, \forall, 1)$ is a monadic Tarski algebra.

Definition 2.2 A subset D of a monadic Tarski algebra A is said to be a monadic deductive system if D is a deductive system satisfying: $\left(D_{3}\right)$ For $x \in D, \forall x \in D$.
The notion of monadic deductive system generated by $X \subseteq A$ is defined in the usual way.
Lemma 2.3 Let A be a monadic Tarski algebra and D a monadic deductive system of A, then the relation $x \equiv y$ if and only if $x \rightarrow y \in D$ and $y \rightarrow x \in D$, is a congruence.

Lemma 2.4 Let A be a monadic Tarski algebra. If \equiv is a congruence defined on A then $|1|=\{x \in A: x \equiv 1\}$ is a monadic deductive system, and $x \equiv y$ if and only if $x \rightarrow y \in|1|$ and $y \rightarrow x \in|1|$.

Lemma 2.5 ([8]) Let A be a monadic Tarski algebra and $H \subseteq A$. Then the monadic deductive system generated by H is $C(\forall H)$.

Let $\mathfrak{D}(A)$ be the lattice of monadic deductive systems of A. Observe that if $M \in \mathfrak{D}(A)$, $\forall M$ is a deductive system of $\forall A$, and if D^{\prime} is a deductive system of $\forall A$, then $C\left(D^{\prime}\right) \in \mathfrak{D}(A)$.
¿From the previous lemmas we obtain
Corollary 2.6 The lattices $\operatorname{Con}(A), \mathfrak{D}(A)$ and the lattice of deductive systems of $\forall A$ are all isomorphic.

A non-trivial monadic Tarski algebra A is simple if and only if the only monadic deductive systems in A are A and $\{1\}$.

Lemma 2.7 ([8], [21]) A is a subdirectly irreducible (simple) monadic Tarski algebra if and only if A is a simple monadic Boolean algebra.

If B_{n} denotes the n-atom simple monadic Boolean algebra, then $B_{k} \in I S\left(B_{l}\right)$ if and only if $k \leq l$. From this and the fact that $\mathcal{M} \mathcal{T}$ is congruence distributive and locally finite $[9,21]$ we have the following result.

Theorem 2.8 The lattice $\Lambda(\mathcal{M} \mathcal{T})$ of subvarieties of the variety $\mathcal{M T}$ is isomorphic to a chain of type $\omega+1$:

$$
T \subset T_{1} \subset T_{2} \subset T_{3} \subset \ldots \subset \mathcal{M} \mathcal{T}
$$

where T is the trivial variety and T_{p} is the variety generated in $\mathcal{M T}$ by the simple monadic Tarski algebra B_{p}.

Observe that the lattice of subvarieties of $\mathcal{M B}$ is

$$
T \subset M_{1} \subset M_{2} \subset M_{3} \subset \ldots \subset \mathcal{M B}
$$

where M_{p} is the variety generated in $\mathcal{M B}$ by the simple monadic Boolean algebra B_{p}.
Below we will determine a characteristic equation with a minimum number of variables for each subvariety of $\mathcal{M T}$.

Consider the following term:

$$
\gamma_{p}\left(x_{0}, \ldots, x_{p+1}\right)=\bigvee_{i=0}^{p} \forall\left(x_{i+1} \rightarrow \bigvee_{j=0}^{i} x_{j}\right)
$$

Let us see that the identity $\gamma_{p} \approx 1$ characterizes the variety T_{p} generated by B_{p}.
If $p=1, \gamma_{1}\left(x_{0}, x_{1}, x_{2}\right)=\forall\left(x_{1} \rightarrow x_{0}\right) \vee \forall\left(x_{2} \rightarrow\left(x_{0} \vee x_{1}\right)\right)$, and it is immediate that $\gamma_{1}\left(x_{0}, x_{1}, x_{2}\right) \approx 1$ holds in B_{1}.

Suppose that $p>1$ and let $a_{0}, \ldots, a_{p+1} \in B_{p}$. Consider the elements $b_{0}=a_{0}, b_{1}=$ $a_{0} \vee a_{1}, \ldots, b_{p}=\bigvee_{j=0}^{p} a_{j}$. It is clear that $b_{0} \leq b_{1} \leq \ldots \leq b_{p}$. If $b_{i}<b_{i+1}$ for $i=0, \ldots, p-1$, then $b_{p}=1$, as B_{p} is a p-atom Boolean algebra. So $\forall\left(a_{p+1} \rightarrow \bigvee_{j=0}^{p} a_{j}\right)=\forall\left(a_{p+1} \rightarrow b_{p}\right)=$ $\forall\left(a_{p+1} \rightarrow 1\right)=\forall 1=1$, and consequently, $\gamma_{p}\left(a_{0}, \ldots, a_{p+1}\right)=1$. If $b_{i}=b_{i+1}$, for some i, then $a_{i+1} \leq b_{i}=\bigvee_{j=0}^{i} a_{i}$. So $\forall\left(a_{i+1} \rightarrow \bigvee_{j=0}^{i} a_{j}\right)=\forall 1=1$. Thus $\gamma_{p}\left(a_{0}, \ldots, a_{p+1}\right)=1$. Therefore $\gamma_{p}\left(x_{0}, \ldots, x_{p+1}\right) \approx 1$ holds in B_{p}.

Let A be a finite (recall that $\mathcal{M} \mathcal{T}$ is locally finite) subdirectly irreducible algebra in $\mathcal{M} \mathcal{T}$ and suppose that the identity $\gamma_{p}\left(x_{0}, \ldots, x_{p+1}\right) \approx 1$ holds in A. Observe that $A \cong B_{q}$. Suppose that $q>p$ and let a_{1}, \ldots, a_{q} be the atoms of A. Consider the elements $b_{0}=0$, $b_{1}=a_{1}, b_{2}=a_{1} \vee a_{2}, \ldots, b_{p}=\bigvee_{i=1}^{p} a_{i}$ and $b_{p+1}=1$. We have that $b_{p} \neq 1$, as $p<q$. Since $b_{i+1} \rightarrow b_{i} \neq 1$, it follows that $\forall\left(b_{i+1} \rightarrow b_{i}\right)=0$. Thus $\gamma_{p}\left(b_{0}, \ldots, b_{p+1}\right)=\bigvee_{i=0}^{p} \forall\left(b_{i+1} \rightarrow\right.$ $\left.\bigvee_{j=0}^{2} b_{j}\right)=\bigvee_{i=0}^{p} \forall\left(b_{i+1} \rightarrow b_{i}\right)=0$, a contradiction. So $q \leq p$, and $A \in T_{p}$. Then we have the following theorem

Theorem $2.9 \gamma_{p} \approx 1$ is an equational basis for T_{p}.
Now, from the identity $\gamma_{p} \approx 1$ and the results of Cignoli and Petrovich [4], we will determine a characteristic equation for T_{p} with a minimum number of variables.

Observe that if B is a simple monadic Boolean algebra and G is a generating set of B, then B can be generated by G as a Boolean algebra. If $B_{2^{n}}$ is the free Boolean algebra over an n-element set G, then the atoms of $B_{2^{n}}$ can be obtained as $\bigwedge\left\{G \backslash G_{i}\right\} \cup\left\{-G_{i}\right\}$ where $G_{i} \subseteq G$ and $-G_{i}=\left\{-x: x \in G_{i}\right\}$. Finally, if $f: B_{2^{n}} \rightarrow B_{m}\left(m \leq 2^{n}\right)$ is an epimorphism, then $f(G)$ is a generating set for B_{m}. In addition, there exist sets $f\left(G_{i}\right)$ with $i=1, \ldots, m$ and $\left|f\left(G_{i}\right)\right| \leq n$ such that for every atom $a_{i} \in B_{m}, a_{i}=\bigwedge f\left(G_{i}\right)$.

Theorem 2.10 ([4]) If V is a congruence distributive variety and $\Lambda(V) \cong \omega+1$, then for every $n \in \omega$, the minimum number of variables needed in an identity to characterize the subvariety T_{n} is the same as the minimum number of generators of the algebra B_{n+1} (the algebra that generates T_{n+1}).

Lemma 2.11 ([4]) In the variety $\mathcal{M} \mathcal{T}$, the minimum number of generators for B_{m} is the smallest p such that $m \leq 2^{p}$.

Consequently, in the variety $\mathcal{M} \mathcal{T}$, the minimum number of variables needed to characterize T_{m} is the least p such that $m+1 \leq 2^{p}$.

Consider the terms

$$
x \wedge_{\forall z} y=(y \rightarrow(x \rightarrow \forall z)) \rightarrow \forall z \text { and } \exists x=\forall(x \rightarrow \forall x) \rightarrow \forall x .
$$

When evaluated in B_{m}, we obtain

$$
x \wedge \forall z y=\left\{\begin{array}{ll}
x \wedge y & \text { if } \forall z=0 \\
1 & \text { if } \forall z=z=1
\end{array} \quad \text { and } \exists x= \begin{cases}1 & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}\right.
$$

Consider now a set of variables $S=\left\{y_{1}, \ldots, y_{p}\right\}$, where p is the least positive integer such that $m+1 \leq 2^{p}$, and let $H_{i} \subset S \cup-S, 1 \leq i \leq m,\left|H_{i}\right|=p$ and such that $y_{j} \in H_{i}$ if and only if $-y_{j} \notin H_{i}$. Let $z_{i}=\bigwedge_{\forall y_{1}} H_{i}$. Consider the identity

Observe that $\gamma_{\min }^{m}\left(y_{1}, \ldots, y_{p}\right) \approx 1$ is a p-variable identity in the language of $\mathcal{M} \mathcal{T}$.
Since $\gamma_{m} \approx 1$ holds in B_{m}, it is clear that $\gamma_{\min }^{m}\left(y_{1}, \ldots, y_{p}\right) \approx 1$ holds in B_{m}.
Since $m+1 \leq 2^{p}$, there exists a generating set $G=\left\{g_{1}, \ldots, g_{p}\right\}$ of B_{m+1} and $G_{i} \subset$ $G \cup-G, i=1, \ldots, m+1$ such that if $\left\{a_{1}, \ldots a_{m+1}\right\}=\operatorname{At}\left(B_{m+1}\right)$ then $\bigwedge_{\forall g_{1}} G_{i}=\bigwedge G_{i}=a_{i}$. Then

$$
\gamma_{m i n}^{m}\left(g_{1}, \ldots, g_{p}\right)=\left[\begin{array}{l}
\bigwedge_{\forall g_{1}}^{m} \exists\left(a_{i}\right) \\
i=1
\end{array}\right] \rightarrow \gamma_{m}\left(\forall g_{1}, a_{1}, \ldots, a_{m}, 1\right)=1 \rightarrow 0=0
$$

So $\gamma_{m i n}^{m}\left(y_{1}, \ldots, y_{p}\right) \approx 1$ does not hold in B_{m+1}.
So we have proved
Theorem 2.12 The identity $\gamma_{m i n}^{m}\left(y_{1}, \ldots, y_{p}\right) \approx 1$ is an equational basis for the subvariety T_{m} of $\mathcal{M} \mathcal{T}$ with a minimum number of variables p, where p is the least positive integer such that $m+1 \leq 2^{p}$.

3 Quasivarieties. A class of algebras of similar type that is closed under isomorphisms, subalgebras, direct products, and ultraproducts is called a quasivariety. If V is a variety, $L(V)$ will denote the lattice of quasivarieties contained in V.

In this section we will prove that $L(\mathcal{M} \mathcal{T})=\Lambda(\mathcal{M} \mathcal{T})$.

Remark 3.1 Let A be a finite monadic Tarski algebra, a_{1}, \ldots, a_{n} the antiatoms of A and $b_{1}, \ldots b_{m}$ the antiatoms of $\forall A$. We know that for every $x \in A, x=\bigwedge\{a \in \operatorname{Ant}(A): x \leq a\}$. In particular, $b_{k}=\bigwedge_{j=1}^{t_{k}} a_{j}^{k}$, for $k=1, \ldots, m$. If $\operatorname{Ant}\left(b_{k}\right)=\left\{a \in \operatorname{Ant}(A): b_{k} \leq \bar{a}\right\}=$ $\left\{a_{1}^{k}, \ldots, a_{t_{k}}^{k}\right\}$, then $\left\{\operatorname{Ant}\left(b_{k}\right)\right\}_{k=1}^{m}$ is a partition of $\operatorname{Ant}(A)$. If $x=\Lambda S$, where $S \subseteq \operatorname{Ant}(A)$, then $\forall x=\bigwedge\left\{\operatorname{Ant}\left(b_{k}\right): S \cap \operatorname{Ant}\left(b_{k}\right) \neq \emptyset\right\}$.

We know that the lattice $\mathcal{D}(A)$ of all monadic deductive systems of A and the lattice of all deductive systems of $\forall A$ are isomorphic, and, for finite A, the maximal deductive systems of $\forall A$ are of the form $\forall A \backslash(b], b$ an antiatom of $\forall A$ (Lemma 1.9). Consequently, the maximal monadic deductive systems of A are of the form $C(\forall A \backslash(b])$, the deductive system generated in A by $\forall A \backslash(b], b$ an antiatom of $\forall A$. We now characterize the maximal monadic deductive systems of A.

Proposition 3.2 Let A be a finite monadic Tarski algebra and let be an antiatom of $\forall A$, $b=\bigwedge_{i=1}^{n} a_{i}, a_{i}$ antiatom of $A, 1 \leq i \leq n$. Then $C(\forall A \backslash(b])=\bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$.

Proof Let $x \in C(\forall A \backslash(b])$. If we suppose that $x \notin \bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$, then there exists i such that $x \notin A \backslash\left(a_{i}\right]$, that is, $x \leq a_{i}$, and then $a_{i} \in C(\forall A \backslash(b])$, for some i. Hence there exist $h_{1}, \ldots, h_{s} \in \forall A \backslash(b]$ such that

$$
h_{1} \rightarrow\left(h_{2} \rightarrow \ldots\left(h_{s} \rightarrow a_{i}\right) \ldots\right)=1 \in \forall A \backslash(b] .
$$

Since $h_{1} \in \forall A \backslash(b], h_{2} \rightarrow\left(\ldots\left(h_{s} \rightarrow a_{i}\right) \ldots\right) \in \forall A \backslash(b]$. Continuing with this procedure we obtain that $a_{i} \in \forall A \backslash(b]$, which is not possible.

For the converse, suppose that $x \in \bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$. Then $x \not \leq a_{i}$ for every i. From $b=\bigwedge_{i=1}^{n} a_{i}$, we have from Remark 3.1 that $\forall x \not \leq b$. So $\forall x \in \forall A \backslash(b]$. Since $\forall x \rightarrow x=1$, $x \in C(\forall A \backslash(b]))$.

The following lemma is the key to prove that the varieties and quasivarieties in $\mathcal{M} \mathcal{T}$ coincide.

Lemma 3.3 Let A be a finite monadic Tarski algebra and let b be an antiatom of $\forall A$, $b=\bigwedge_{i=1}^{n} a_{i}, a_{i}$ antiatom of $A, 1 \leq i \leq n$. Then $A / \bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right) \cong[b) \cong B_{n}$.

Proof If $x, y \in[b), x \neq y$, as $[b)$ is a Tarski subalgebra of $A, x \rightarrow y \in[b)$ and $y \rightarrow x \in[b)$. Since $x \neq y$, it follows that $x \rightarrow y \neq 1$ or $y \rightarrow x \neq 1$, so $x \rightarrow y \notin \bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$ or $y \rightarrow x \notin \bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$, being that $\bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right) \cap[b)=\{1\}$. Hence $|x| \neq|y|$, where $|z|$ stands for the equivalence class of an element z in the quotient.

Now, let $y \in A, y \notin[b)$, and let us prove that $|y|=|y \vee b|$. Since $y \rightarrow(y \vee b)=1 \in$ $\bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$, we just have to prove that $(y \vee b) \rightarrow y \in \bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$. Suppose on the contrary that $(y \vee b) \rightarrow y \notin \bigcap_{i=1}^{n}\left(A \backslash\left(a_{i}\right]\right)$. Then there exists $i, 1 \leq i \leq n$, such that $(y \vee b) \rightarrow y \in\left(a_{i}\right]$, that is, $(y \vee b) \rightarrow y \leq a_{i}$. In addition, $(y \vee b) \rightarrow y=(b \vee y) \rightarrow y=$ $((b \rightarrow y) \rightarrow y) \rightarrow y=b \rightarrow y$. So $b \rightarrow y \leq a_{i}$. Then $b \leq a_{i} \rightarrow b \leq(b \rightarrow y) \rightarrow b=b$, that is, $a_{i} \rightarrow b=b$. Since $b \rightarrow a_{i}=1$, it follows that $a_{i}=\left(a_{i} \rightarrow b\right) \rightarrow a_{i}=b \rightarrow a_{i}=1$, a contradiction.

The second isomorphism is clear.

Corollary 3.4 Every simple homomorphic image of a finite algebra A is a retract of A.

The quasivariety generated by a class K, which we denote by $Q(K)$, is the least quasivariety containing K. Every variety is a quasivariety.

A critical algebra is a finite algebra not belonging to the quasivariety generated by all its proper subalgebras.

Theorem 3.5 (See [10]) Every non-trivial locally finite quasivariety is generated by its critical algebras.

Since $\mathcal{M} \mathcal{T}$ is locally finite, if $W \in L(\mathcal{M} \mathcal{T})$ then W is the quasivariety generated by the critical algebras contained in W.

Theorem 3.6 The set of critical algebras of $\mathcal{M T}$ is the set of finite simple algebras of $\mathcal{M} \mathcal{T}$.

Proof Observe that every simple algebra is critical. Let A be a critical algebra. Then A is finite. Suposse that A is not simple. Then the set $\left\{D_{i}\right\}_{i=1}^{n}$ of maximal monadic deductive systems of A is non-empty. Let $i: A \rightarrow \prod_{i=1}^{n} A / D_{i} \cong \prod_{i=1}^{n} B_{k_{i}}$ the subdirect representation of A. Thus by Lemma 3.3, for each i there exists $b_{i} \in \operatorname{Ant}(\forall A)$ such that $\left[b_{i}\right) \cong B_{k_{i}}$. So $A \in \operatorname{ISP}\left(\left\{\left[b_{i}\right)\right\}_{i=1}^{n}\right)$ and the algebras $\left[b_{i}\right)$ are proper subalgebras of A. A contradiction, as A is critical.

Let $V(A)$ denote the variety generated by A.
Corollary 3.7 Let A be a finite algebra in $\mathcal{M} \mathcal{T}$. Then $Q(A)=V(A)=V\left(B_{j}\right)$, where B_{j} is the greatest simple homomorphic image of A.

Proof First observe that since $B_{k_{n}}$ is simple, $Q\left(B_{k_{n}}\right)=V\left(B_{k_{n}}\right)$. Let $A \hookrightarrow \prod_{i=1}^{n} A / D_{i} \cong$ $\prod_{i=1}^{n} B_{k_{i}}$. Then $A \in I S P\left(B_{k_{n}}\right)=Q\left(B_{k_{n}}\right)$. So $Q(A) \subseteq Q\left(B_{k_{n}}\right)$. On the other hand, by Proposition 3.2, $B_{k_{n}} \in I S(A)$, so $Q\left(B_{k_{n}}\right) \subseteq Q(A)$.
¿From this corollary and Theorem 3.6 we have the following result.

Theorem 3.8 The subvarieties and the subquasivarieties of $\mathcal{M T}$ coincide.

4 Monadic Boolean Quasivarietes. The aim of this section is to show that, in spite of $\Lambda(\mathcal{M B})$ is isomorphic to $\Lambda(\mathcal{M} \mathcal{T})$, there is a great difference between $L(\mathcal{M B})$ and $L(\mathcal{M} \mathcal{T})$. It is worth noting that the class of monadic Boolean algebras is the class of monadic Tarski algebras with a new constant " 0 " in the language, satisfying $0 \wedge x \approx 0$. In this section we will also give an effective axiomatization for each quasivariety in $L(\mathcal{M B})$.

As we have already pointed out, the class $\mathcal{M B}$ of monadic Boolean algebras is a variety the subvarieties of which form an $\omega+1$ chain under inclusion:

$$
T \subset M_{1} \subset M_{2} \subset M_{3} \subset \ldots \subset \mathcal{M B}
$$

such that, for each $p \in \omega, M_{p}$ is the variety generated by the simple monadic Boolean algebra B_{p}.

In [3], Adams and Dziobiak proved that the critical algebras in $\mathcal{M B}$ are the simple algebras B_{p}, and the algebras $B_{p} \times B_{q}, 1 \leq p<q<\omega$.

Let $P \subset \omega \times \omega$ denote the set consisting of all ordered pairs (i, j) such that $1 \leq i<j<\omega$. Let \sqsubseteq be defined on P by $(i, j) \sqsubseteq(k, l)$ if and only if $i \leq k$ and $j \leq l$. For $1 \leq i<\omega$, let P_{i} denote the principal order ideal of P determined by (i, i). Let $D(P)$ and $D\left(P_{i}\right)$ denote the distributive lattices of all decreasing subsets of $\left(P\right.$, \sqsubseteq) and P_{i}, respectively. Then, in [3], Adams and Dziobiak proved that

$$
L(\mathcal{M B}) \cong D(P), \text { and, for } 1 \leq i<\omega, L\left(M_{i}\right) \cong D\left(P_{i}\right)
$$

We may define a partial preorder on the set $C r(K)$ of critical algebras of a variety K : for $A, B \in C r(K), A \leq B$ if and only if $A \in Q(B)$, so that $Q(A) \leq Q(B)$ if and only if $A \leq B$.

For each n, consider the class $M_{n}=\bigvee_{i>n} Q\left(B_{n} \times B_{i}\right)$. The following figure, where $i j$ stands for $Q\left(B_{i} \times B_{j}\right)$ and i stands for $Q\left(B_{i}\right)$, shows the ordered set of subquasivarieties $Q\left(B_{i} \times B_{j}\right), i<j, Q\left(B_{i}\right)$ and M_{n}.

Now we will prove that the quasivarieties shown in the figure are exactly the joinirreducible elements of the lattice $L(\mathcal{M B})$. First we have the following easy lemma.

Lemma 4.1 If A is a critical monadic Boolean algebra, then $Q(A)$ is join-irreducible in $L(\mathcal{M B})$.

Proof Since $L(\mathcal{M B})$ is distributive, $\operatorname{Cr}\left(Q_{1} \vee Q_{2}\right)=\operatorname{Cr}\left(Q_{1}\right) \cup \operatorname{Cr}\left(Q_{2}\right)$.
Corollary 4.2 $Q\left(B_{i} \times B_{j}\right)$ and $Q\left(B_{r}\right)$ are join-irreducible.
Lemma $4.3 \mathcal{M B}$ and M_{n} are join-irreducible, for each n.
Proof If $\mathcal{M B}=Q_{1} \vee Q_{2}$, one of the sets $I_{1}=\left\{j: B_{j} \in Q_{1}\right\}$ and $I_{2}=\left\{j: B_{j} \in Q_{2}\right\}$ is infinite. Suppose that I_{1} is infinite. Then $B_{k} \times B_{l} \in Q_{1}$ for all $(k, l), k<l$. Then $\mathcal{M B}=Q_{1}$.

If $M_{n}=Q_{1} \vee Q_{2}$, one of the sets $I_{1}=\left\{j: B_{n} \times B_{j} \in Q_{1}\right\}$ and $I_{2}=\left\{j: B_{n} \times B_{j} \in Q_{2}\right\}$ is infinite, and so $M_{n}=Q_{1}$ or $M_{n}=Q_{2}$.

Lemma 4.4 $Q\left(B_{i} \times B_{j}\right), \quad Q\left(B_{i}\right), M_{i}$ and $\mathcal{M B}$ are the unique join-irreducible subquasivarieties of $\mathcal{M B}$.

Proof Let Q be a join-irreducible subquasivariety of $\mathcal{M B}$. Suppose that $Q \neq \mathcal{M B}$ and that Q is finitely generated (by finitely many critical algebras). Then $\operatorname{Cr}(Q)$ is finite, say $\operatorname{Cr}(Q)=\left\{A_{1}, \ldots, A_{n}\right\}$, where $A_{k}=B_{i} \times B_{j}$ or $A_{k}=B_{l}$. Then $Q=\bigvee_{k=1}^{n} Q\left(A_{k}\right)$. Since Q is join irreducible, $Q=Q\left(A_{k}\right)$, for some $k, 1 \leq k \leq n$.

Suppose that Q is not finitely generated. Then $\operatorname{Cr}(Q)$ is not finite. Since $Q \neq \mathcal{M B}$, the set $\left\{j: B_{j} \in Q\right\}$ is finite. So there exists j_{0} such that $B_{j_{0}} \in Q$ and $B_{j_{0}+1} \notin Q$. Again, since Q is not finitely generated, $\left\{k: B_{j_{0}} \times B_{k} \in Q\right\}$ is not finite, and consequently, $B_{j_{0}} \times B_{k} \in Q$ for every k. Hence, $Q=M_{j_{0}}$.

Lemma 4.5 Every quasivariety Q is a finite join of join-irreducible quasivarieties.

Proof If $Q=\mathcal{M B}$ or Q is finitely generated, the Lemma is clear. Suppose that $Q \neq \mathcal{M B}$ and Q is not finitely generated. Then the sets $\left\{i: M_{i} \subseteq Q\right\}$ and $\left\{j: B_{j} \in Q\right\}$ are bounded and non-empty. If i_{0} and j_{0} respectively denote the greatest elements of these sets, $P\left(i_{0}, j_{0}\right)=\left\{(k, l): B_{k} \times B_{l} \in Q\right.$ and $\left.i_{0}<k, j_{0}<l\right\}$ is finite. Then

$$
Q=M_{i_{0}} \vee Q\left(B_{j_{0}}\right) \vee \bigvee_{(k, l) \in P\left(i_{0}, j_{0}\right)} Q\left(B_{k} \times B_{l}\right)
$$

Observe that the set $P\left(i_{0}, j_{0}\right)$ can be empty.

Consider now the following subquasivarieties of $\mathcal{M B}$:

$$
\begin{gathered}
\left(\mathcal{M B}: B_{k} \times B_{l}\right)=Q\left(\left\{A \in C r(\mathcal{M B}): B_{k} \times B_{l} \not \leq A\right\}\right), \\
\left(\mathcal{M B}: B_{n}\right)=\left\{A \in \mathcal{M B}: B_{n} \notin I S(A)\right\}=M_{n-1} .
\end{gathered}
$$

Lemma 4.6 $Q\left(B_{n} \times B_{m}\right)=\left(\mathcal{M B}: B_{1} \times B_{m+1}\right) \cap\left(\mathcal{M B}: B_{n+1}\right)$.
Proof Since $B_{n+1} \notin I S\left(B_{n} \times B_{m}\right), Q\left(B_{n} \times B_{m}\right) \subseteq\left(\mathcal{M B}: B_{n+1}\right)$. Since $B_{1} \times B_{m+1} \not \leq$ $B_{n} \times B_{m}, Q\left(B_{n} \times B_{m}\right) \subseteq\left(\mathcal{M B}: B_{1} \times B_{m+1}\right)$. So $Q\left(B_{n} \times B_{m}\right) \subseteq\left(\mathcal{M B}: B_{1} \times B_{m+1}\right) \cap(\mathcal{M B}:$ $\left.B_{n+1}\right)$. For the converse, suppose that $A \in C r\left[\left(\mathcal{M B}: B_{1} \times B_{m+1}\right) \cap\left(\mathcal{M B}: B_{n+1}\right)\right]$. If $A \cong B_{r} \times B_{s}, r<s$, then $s<m+1$, that is, $s \leq m$, and $n+1>r$, that is, $r \leq n$. So $B_{r} \times B_{s} \in Q\left(B_{n} \times B_{m}\right)$. If $A \cong B_{p}$, then $p<n+1$, that is, $p \leq n$, and consequently, $B_{p} \in I S\left(B_{n} \times B_{m}\right)$. So $B_{p} \in Q\left(B_{n} \times B_{m}\right)$.
Remark. With the notation of Lemma 4.5, if $Q=M_{i_{0}} \vee Q\left(B_{j_{0}}\right) \vee \bigvee_{(k, l) \in P\left(i_{0}, j_{0}\right)} Q\left(B_{k} \times B_{l}\right)$, then

$$
Q=\left(\mathcal{M B}: B_{j_{0}+1}\right) \cap\left(\bigcap_{(k, l) \in P\left(i_{0}, j_{0}\right)}\left(\mathcal{M B}: B_{k} \times B_{l}\right)\right) \cap\left(\bigcap_{m_{0}<n \leq j_{0}}\left(\mathcal{M B}: B_{k} \times B_{j_{0}+1}\right)\right)
$$

where $m_{0}=\max \left\{k:(k, l) \in P\left(i_{0}, j_{0}\right)\right\}$.
Lemma 4.7 The quasivarieties $\left(\mathcal{M B}: B_{i} \times B_{j}\right), i<j$, and $\left(\mathcal{M B}: B_{i}\right)$ are meet-irreducible.
Proof Suppose that $\left(\mathcal{M B}: B_{i} \times B_{j}\right)=K_{1} \wedge K_{2}, K_{1}, K_{2}$ quasivarieties, and suppose that $K_{1} \wedge K_{2} \neq K_{1}$ and $K_{1} \wedge K_{2} \neq K_{2}$. Then there exist critical algebras $A_{1} \in K_{1} \backslash K_{2}$ and $A_{2} \in K_{2} \backslash K_{1}$. Then $A_{1}, A_{2} \notin\left(\mathcal{M B}: B_{i} \times B_{j}\right)$. So A_{1} and A_{2} are of the form $B_{p} \times B_{q}$, $p<q$ or B_{p}. Suppose, for instance, that $A_{1}=B_{k} \times B_{l}, i \leq k, j \leq l$, and $A_{2}=B_{r} \times B_{s}$, $i \leq r, j \leq s$, the other cases being similar. Then $B_{i} \times B_{j}$ is a subalgebra of A_{1} and $B_{i} \times B_{j}$ is a subalgebra of A_{2}. Since A_{1} is not a subalgebra of A_{2} and A_{2} is not a subalgebra of A_{1}, it follows that $k \neq r$ and $l \neq s$. In addition, if $k<r$, then $l>s$, and if $k>r$, then $l<s$. Suppose, for instance, that $k<r$ and $l>s$, and consider the algebra $B_{k} \times B_{s}$. Then $B_{k} \times B_{s}$ is a subalgebra of A_{1} and of A_{2}. Hence $B_{k} \times B_{s} \in K_{1} \wedge K_{2}$. On the other hand, $B_{k} \times B_{s}$ contains $B_{i} \times B_{j}$ as a subalgebra, that is, $B_{k} \times B_{s} \notin\left(\mathcal{M B}: B_{i} \times B_{j}\right)$, a contradiction.

Lemma 4.8 The quasivarieties $\left(\mathcal{M B}: B_{i} \times B_{j}\right), i<j$, and $\left(\mathcal{M B}: B_{i}\right)$ are the unique meet-irreducible subquasivarieties of $\mathcal{M B}$.

Corollary 4.9 Every subquasivariety of $\mathcal{M B}$ is a finite meet of subquasivarieties of the form $\left(\mathcal{M B}: B_{i} \times B_{j}\right)$ and $\left(\mathcal{M B}: B_{i}\right)$.

So, in order to obtain an axiomatization for each subquasivariety of $\mathcal{M B}$, it suffices to give an axiomatization for the quasivarieties $\left(\mathcal{M B}: B_{i} \times B_{j}\right)$ and $\left(\mathcal{M B}: B_{i}\right)$.

We now turn our attention to quasi-identities characterizing meet-irreducibles in $L(\mathcal{M B})$. A quasi-identity in an algebraic language \mathcal{L} is an expression of the form

$$
\varphi_{1} \approx \psi_{1} \& \ldots \& \varphi_{n-1} \approx \psi_{n-1} \Rightarrow \varphi_{n} \approx \psi_{n}
$$

where $n>0$ and $\varphi_{1} \approx \psi_{1}, \ldots, \varphi_{n-1} \approx \psi_{n-1}, \varphi_{n} \approx \psi_{n}$ are identities in \mathcal{L}.
An algebra A satisfies a quasi-identity $\varphi_{1} \approx \psi_{1} \& \ldots \& \varphi_{n-1} \approx \psi_{n-1} \Rightarrow \varphi_{n} \approx \psi_{n}$, denoted by $A \models \varphi_{1} \approx \psi_{1} \& \ldots \& \varphi_{n-1} \approx \psi_{n-1} \Rightarrow \varphi_{n} \approx \psi_{n}$ if and only if for every $\vec{a} \in A^{m}, \quad\left[\varphi_{1}^{A}(\vec{a})=\psi_{1}^{A}(\vec{a}), \ldots, \varphi_{n-1}^{A}(\vec{a})=\psi_{n-1}^{A}(\vec{a})\right] \quad \operatorname{implies} \quad \varphi_{n}^{A}(\vec{a})=\psi_{n}^{A}(\vec{a})$.

A class K of algebras is a quasivariety if and only if there exists a set Δ of quasi-identities such that K is the class of all algebras which satisfy all quasi-identities in Δ.

The following simple lemmas are the basis for constructing the quasi-identities characterizing the quasivarieties of $\mathcal{M B}$.

Lemma 4.10 A monadic Boolean algebra A contains a subalgebra isomorphic to B_{n} if and only if there exist $a_{1}, \ldots, a_{n} \in A$ such that $\exists a_{i}=1$ for all $i, a_{i} \wedge a_{j}=0$ for all $i<j$, and $\bigvee_{i=1}^{n} a_{i}=1$.

Lemma 4.11 A monadic Boolean algebra A contains a subalgebra isomorphic to $B_{k} \times B_{l}$ if and only if there exist $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l} \in A$ different from zero such that if $a=\bigvee_{i=1}^{k} a_{i}$ and $b=\bigvee_{j=1}^{l} b_{j}$, then $b=-a, a_{i} \wedge a_{j}=b_{i} \wedge b_{j}=0$, for all $i<j, \quad \exists a_{i}=a$, $1 \leq i \leq k, \quad$ and $\exists b_{j}=\breve{b}, \quad 1 \leq j \leq l$.

Proof Let $f: B_{k} \times B_{l} \rightarrow A$ be an embedding. Let x_{1}, \ldots, x_{k} be the atoms of B_{k}, and y_{1}, \ldots, y_{l} be the atoms of B_{l}. Then the elements $a_{i}=f\left(x_{i}, 0\right), 1 \leq i \leq k$, and $b_{j}=f\left(0, y_{j}\right)$, $1 \leq j \leq l$, satisfy the required conditions. For the converse, it is enoughto consider the subalgebra generated by $a_{1}, \ldots a_{k}, b_{1}, \ldots b_{k}$.

By Lemma 4.10, the quasi-identity

$$
\begin{equation*}
\left[\left(\bigwedge_{i=1}^{n} \exists x_{i} \approx 1\right) \&\left(\bigvee_{i<j, i, j=1}^{n} x_{i} \wedge x_{j} \approx 0\right) \&\left(\bigvee_{i=1}^{n} x_{i} \approx 1\right)\right] \Longrightarrow 0 \approx 1 \tag{*}
\end{equation*}
$$

holds in a monadic Boolean algebra A if and only if $A \in\left(\mathcal{M B}: B_{n}\right)$. Therefore $\left(\mathcal{M B}: B_{n}\right)$ is axiomatized by the axioms of $\mathcal{M B}$ and $(*)$.

By lemma 4.11, it is easy to see that the quasi-identity

$$
\begin{gather*}
{\left[\left(\exists\left(\bigvee_{i=1}^{k} x_{i}\right) \approx \bigvee_{i=1}^{k} x_{i}\right) \&\left(\exists\left(\bigvee_{j=1}^{l} y_{j}\right) \approx \bigvee_{j=1}^{l} y_{i}\right) \&\left(\bigvee_{i<j, i, j=1}^{k}\left(x_{i} \wedge x_{j}\right) \approx 0\right)\right.} \\
\&\left(\bigvee_{i<j, i, j=1}^{l}\left(y_{i} \wedge y_{j}\right) \approx 0\right) \&\left(\bigvee_{i=1}^{k} x_{i} \approx-\bigvee_{j=1}^{l} y_{j}\right) \&\left(\&_{s=1}^{k}\left(\exists x_{s} \approx \bigvee_{i=1}^{k} x_{i}\right)\right) \\
\left.\&\left(\& \&_{t=1}^{l}\left(\exists y_{t} \approx \bigvee_{j=1}^{l} y_{j}\right)\right)\right] \Longrightarrow \bigvee_{j=1}^{l} y_{j} \approx 0 \quad(* *) \tag{**}
\end{gather*}
$$

holds in a monadic Boolean algebra A if and only if $A \in\left(\mathcal{M B}: B_{k} \times B_{l}\right)$.
Therefore $\left(\mathcal{M B}: B_{k} \times B_{l}\right)$ is axiomatized by the axioms of $\mathcal{M B}$ and $(* *)$.
Let γ_{n} denote the set of axioms of $\mathcal{M B}+(*)$, and let $\beta_{k, l}$ denote the set of axioms of $\mathcal{M B}+(* *)$.

Corollary 4.12 An axiomatization for $Q\left(B_{n} \times B_{m}\right)$ is given by $\gamma_{n+1} \& \beta_{1, m+1}$.
Corollary $4.13 M_{n}$ is axiomatized by the axioms of $\mathcal{M B}$ and γ_{n+1}.
Then we have given an axiomatization for all meet-irreducible quasivarieties in $L(\mathcal{M B})$. An axiomatization for an arbitrary quasivariety in $L(\mathcal{M B})$ follows from Corollary 4.9.

References

[1] Abbott, J. C., Semi-boolean algebras. Mat. Vesnik 19 (4) (1967), 177-198.
[2] Abbotт, J. C., Implicational algebras. Bull. Math. R. S. Roumaine, 11 (1967), 3-23.
[3] Adams, M. and Dziobiak, W., Quasivarieties of distributive lattices with a quantifier. Discrete Math. 135 (1994), 12-28.
[4] Cignoli, R. and Petrovich, A., On the minimum number of variables needed to characterize some subvarieties of a congruence distributive variety. Notas de la Sociedad de Matemáticas de Chile 15 (1996), 1-6.
[5] Davey, B. A., Idziak, P. M., Lampe, W. A. and McNulty, G. F., Dualisability and graph algebras. Discrete Math. 214 (2000), 145-172.
[6] Diego, A., Sobre álgebras de Hilbert. Notas de Lógica Matemática, 12 , Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina 1965.
[7] Diego, A., Sur les algèbres de Hilbert. Collection de Logique Mathematique, serie A, 21, Gauthier-Villars, Paris 1966.
[8] Figallo, A., Algebras de Tarski monádicas. Facultad de Filosofía, Univ. Nac. de San Juan, San Juan, Argentina 1983.
[9] Figallo, A., Free monadic Tarski algebras. Algebra Universalis 35 (1996), 141-150.
[10] Gispert, J. and Torrens, A., Locally finite quasivarieties of MV-algebras. Preprint.
[11] Halmos, P. R., Finite monadic algebras. Proc. Amer. Math. Soc. 10 (1959), 219-227.
[12] Halmos, P. R., Algebraic Logic. Chelsea Pub. Co., New York 1962.
[13] Iturrioz, L. and Monteiro, A., Représentation des algèbres de Tarski monadiques. Preprint.
[14] Iturrioz, L. and Monteiro, A., Cálculo proposicional implicativo clásico con n variables proposicionales. Revista de la Unión Matemática Argentina 22 (3) (1965), 146.
[15] Iturrioz, L. and Monteiro, A., Les algèbres de Tarski avec un nombre fini de générateurs libres. Informe Técnico N ${ }^{\circ}$ 37, INMABB-CONICET-UNS, Bahía Blanca, Argentina 1994.
[16] Kalman, J. A., Equational completeness and families of sets closed under substraction. Ind. Math. 22 (1966), 402-405.
[17] Lyndon, R. C., Identities in two-valued calculi. Trans. Amer. Math. Soc. 71 (1951), 457-465.
[18] Monteiro, A., Algebra de la Lógica II. Lectures held at the Universidad Nacional del Sur, Bahía Blanca, Argentina, 1960.
[19] Monteiro, A., Sur les algèbres de Heyting symétriques. Portugaliae Mathematica 39 (1980), 1-237.
[20] Monteiro, L., Construction des algèbres de Tarski libres sur un ensemble ordonné. Math. Japonica 23 (4) (1978), 433-437.
[21] Monteiro, L., Abad, M., Savini, S. and Sewald, J., Free monadic Tarski algebras. Algebra Universalis 37 (1997), 106-118.
[22] Pitkethly, J. G., Endoprimal implication algebras. Algebra Universalis, 41 (1999), 201-211.
Departamento de Matemática, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
e-mail: \{imabad, usdiavar, mzander\}@criba.edu.ar

[^0]: 2000 Mathematics Subject Classification. 08B15, 08C15, 03G25, 03C05, 96D99.
 Key words and phrases. Varieties, Quasivarieties, Tarski algebras, monadic algebras.

