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ABSTRACT. In this paper we give a description of the lattice A(MT) of subvarieties of
monadic Tarski algebras introduced in [13], and prove that quasivarieties coincide with
varieties. We also investigate some properties of the lattice L(MUB) of quasivarieties of
monadic Boolean algebras determined in [3], showing the difference when a constant
is added to the language of monadic Tarski algebras, and we give a quasiidentity for

each member of L(MB).

1 Introduction and Tarski algebras. Implicative structures are particularly common
among algebras associated with logical systems, although they arise in many other areas of
mathematics. In general, they consist of an ordered set in which the ordering is characterized
by a binary operation of implication —. If the partial order is a semilattice order we have the
Brouwerian semilattices, that are the models of the {A, —}—fragment of the intuitionistic
propositional calculus. If the semilattice satisfies the property that every filter [p) is a
Boolean algebra, we obtain the Tarski algebras [2] - the variety of {V,—}—subreducts of
Boolean algebras.

In this work we study the varieties and quasivarieties of the variety of all monadic Tarski
algebras. The notion of monadic Tarski algebra was introduced by A. Monteiro and L. Itur-
rioz [13] as a generalization of the concept of monadic Boolean algebra. In [9], A. Figallo
and independently, in [21] L. Monteiro et al. determined the free monadic Tarski algebra
with a finite set of n free generators and calculated its number of elements.

We start with the notion of Tarski algebras. These algebras have been introduced by
J. C. Abbott in [2] and have been studied by several authors. Recently, Davey et al. [5]
proved that no non-trivial Tarski algebra, termed also implication algebras, is dualisable.
Endoprimality in the variety of Tarski algebras has been considered in [22].
Definition 1.1 An algebra (A, —,1) of type (2,0) is said to be a Tarski algebra if:
(Tl) 2 > (y = =) = L.
(T3) 2 = 1= 1.
(T4) If e s y=1 and y > =1 thenx~y.

(T5) (¢ = y) = o ~ .
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Boolean algebras are the simplest examples of Tarski algebras: if (4, A,V,—,0,1) is a
Boolean algebra and we define ¢ — y = —z Vy for z,y € A, then (A,—,1) is a Tarski
algebra.

Recall that an algebra (A, —, 1) of type (2,0) satisfying properties T1 to T4 is called a
Hilbert algebra [1], [2], [6], [7], [16], [17], [19]. Axiom (T5) is the characteristic identity for
semisimple Hilbert algebras, so that the class of Tarski algebras is the class of semisimple

Hilbert algebras [19].

The following set of axioms can be found among the many handwritten results that
A. Monteiro left without publishing (see [18]). Observe that (M1), (M2) and (M3) are the

equations that characterize the variety of Hilbert algebras.
Theorem 1.2 An algebra (A,—,1) of type (2,0) is a Tarski algebra if:
M1

)1l oo~z
M2) 2 - 2~ 1
)

M3) 2= (y—z2)= (v = y)— (z — 2).

(
(
(
(Md) (2 = y) my=(y—a)—a.

Throughout this paper, B, 7, MB and MT will denote the equational classes of all
Boolean algebras, all Tarski algebras, all monadic Boolean algebras and all monadic Tarski
algebras, respectively.

If K is a class of similar algebras we will use the following notation: H(K) for the class
of algebras that are homomorphic images of algebras in K; I(K) for the class of algebras
that are isomorphic copies of algebras in K and S(K) for the class of algebras that are
subalgebras of algebras in K. The lattice of congruences of an algebra A € K is denoted by
Con(A).

Let A€ 7T. Given z,y € A we denote @ < y whenever  — y = 1. It is well known that
A is an ordered set with last element 1, that A is a join-semilattice and that the supremum
of two elements ¢ and bis a Vb = (a — b) — b [2].

The following result can also be found in [2].

Lemma 1.3 If a Tarske algebra A has least element 0, then A 1s a Boolean algebra, where
the Boolean complement of a € A is —a = a — 0 and the infimum of the elements a and
beA is aNb= —(b— —a).

Lemma 1.4 If A is a Tarski algebra, then the set [p) = {x € A:p < a} is a Boolean
algebra, for every p € A.

Observe that if « € [p) then the complement of z in [p) is @ — p, so the infimum of
two elements z,y €[p) is Ay = (y = (x = p)) = p.

Now suppose that R is a join-semilattice with last element 1, in which [r) ={y € R:
r < y} is a Boolean algebra, for every r € R. J. C. Abbott [1], [2] proved that R is a
Tarski algebra. Hence, there is a bijective correspondence between the variety of Tarski
algebras and the class of all upper-bounded join-semilattices for which every principal filter
is a Boolean lattice.

Definition 1.5 A subset D of a Tarski algebra A is called a deductive system if:
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(Dy) 1€ D.
(D3) If 2, x >y €D then y € D.

For H C A, the intersection of all deductive systems of A containing H is called the
deductive system generated by H. It H # (), we say that an element « € A is a consequence
of H if there exist hy,ha,...  hy € H such that hy = (hy = (... (hy = 2)...)) = 1. If
H = () we say that z is a consequence of H if x = 1. The set of all consequences of H will

be denoted C(H).

Lemma 1.6 [19] Let A be a Tarski algebra and H C A. The deductive system generated
by H is C(H).

Corollary 1.7 Let A be a Tarski algebra and a € A. Then the deductive system generated
byaisCla)={e€eAdia—a=1}={red:a<z}=]a)

Define a filter in a Tarski algebra A as a non-empty increasing set D such that if x,y € D
and there exists t Ay in A, then x Ay € D. Then D is a filter if and only if D is a deductive
system. Indeed, if D is a filter, then clearly 1 € D, and if z, « — y € D, then, as ¢ < z V y,
xVy €D Since (xVy)A(z =y)=[(z—=y) = (zVy) = y)] =y =y, it follows that
y € D. Conversely, suppose that D is a deductive system. Then D is clearly increasing. Let
z,y € D be such that x Ay exists. Then [z Ay) is a deductive system that is also a Boolean
algebra. If E = DN[z Ay), then E C [z Ay) and E is a filter of the Boolean algebra [z A y)
and contains © and y. So E contains = A y, and consequently E = [z A y) C D.

It is known [2] that every congruence on a Tarski algebra A is determined by a deductive
system D where the relation is ¢ = b (mod D) if and only if ¢ — b and b — a € D. Thus
the lattice of deductive systems is isomorphic to the lattice of congruence relations. From
this it is clear that the 2-element Tarski algebra 2 = {0, 1} is the only simple algebra in 7.

On the other hand, the infersection of all maximal deductive systems of A is {1} [13],
so the mapping A — [[,c; A/D;, where {D;}icr is the family of all deductive systems of
A, is a subdirect embedding. In addition, if D is a maximal deductive system of A, A/D is
simple. Hence, if A is subdirectly irreducible, A is simple.

Theorem 1.8 The only subdirectly irreducible algebra in T is the simple algebra 2.

In the rest of this section, A will be a finite non-trival Tarski algebra. Ant(A) will denote
the set of all antiatoms (dual atoms) of A. Observe that if z € A, since [z) is a Boolean

algebra, Ant([z)) C Ant(A) and z = A Ant([z)). Thus, in a finite Tarski algebra, every

element different from 1 is an infimum of a non-empty set of antiatoms.

The next lemma gives a characterization of maximal deductive systems of a finite Tarski
algebra A.

Lemma 1.9 Let A be a finite non-trivial Tarski algebra, and n = |Ant(A)|. If a € Ant(A)
then A\ (a] is @ mazimal deductive system of A, where (a] = {z € A : z < a}. Moreover,
every mazimal deductive system in A is of the form A\ (a], with a € Ant(A), that is, A has
exactly n mazimal deductive systems.

Proof We first prove that A\ (a] is a deductive system. Clearly, 1 € A\ (a]. Let
z,v =y € A\ (a] and let us prove that y € A\ (a]. Suppose that y ¢ A\ (a], then y € (a].
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So y < a. On the other hand, ¢ < v — « and thus © -+ ¢ = ¢ as ¢ € @ and «a is a dual
atom. Then

l=z—=l=z—=(y—oa)=(r—=y) —(zr—a)=(z =y —a,

and hence ¢ — y < a, a contradiction. Let us see that A\ (¢] is maximal. Let y € (a].
Then a = y € A\ (a], since otherwise ¢ = y < a and a = (a = y) — a = 1 which is a
contradiction. So if D is a deductive system such that A\ (a] C D and A\ (a] # D then
a€Danda—ye€ A\ (a] CDforall y € (a], hence A = D.

Let D a maximal deductive system and suppose that Ant(A) C D. By the remark
preceding this lemma, A = D, a contradiction. So there exists a € Ant(A) such that a ¢ D
and consequently D = A\ (a]. ]

Suppose that Ant(A) = {ai,... ,a,}. Let D; = A\ (a;] and let j : A — [[[_, A/D; be
a subdirect embedding. For « € A, (j(2)); = 1if 2 ¢ (a;] and (j(x)); = 0if = € (a;]. Hence
j(a;) is an antiatom of [[I_, A/D;, fori = 1,... ,n, and consequently, j induces a bijection
between the set of antiatoms of A and the set of antiatoms of [[;_, A/D;. Since every
element of a finite Tarski algebra is a meet of antiatoms, it follows that j : A — [Min(j(A)))
is an isomorphism, where Min(j(A)) denotes the set of minimal elements in j(A).

2 Varieties of Monadic Tarski algebras. The aim of this section is to give an equa-
tional basis with a minimum number of variables for each subvariety of monadic Tarski
algebras.

Definition 2.1 [13] An algebra (A, —,V.,1) of type (2,1,0) is said to be a monadic Tarski
algebra if (A, —,1) is a Tarski algebra and:

(Q1) V1= 1.

(Q2) Yo — x ~ L

(Qs) Y((x = Vy) = Vy) = (Yo = Vy) = V.

(Q1) Y(z = y) = (Vo — Vy) ~ 1.

Taking into account that = Vy = (v — y) — y, then Q3 can be written:
Y(z V Vy) = Yz VVy.

In a monadic Tarski algebra A the following properties hold (see [21]):
(Qs) VVa = Va.
(Qe) If <y then Vo <Vy.
(Q7) If x~Vrandy=Vy, then 2 =y~ V(r—y).

Recall that the variety T is congruence distributive. Since algebras in M7 have Tarski
algebra reducts and congruence distributivity is a Mal’cev condition, it follows that M7 is
congruence distributive.

Let VA = {Vx : « € A}, then from @4, @5 and @7 it follows that VA is a Tarski
subalgebra of A. If A is a monadic Tarski algebra with least element 0, we know that A is a
Boolean algebra. In that case, if we put by definition 32 = —V —z, then (A4,A,V,—,3,0,1)
is a monadic Boolean algebra [11], [12]. On the other hand, if A is a monadic Boolean
algebra and we put ¢+ = y = —a Vy and Vo = —3 — z, then (A4, —,V, 1) is a monadic Tarski
algebra.
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Definition 2.2 A subset D of a monadic Tarsk: algebra A is said to be a monadic deductive
system if D 1s a deductive system satisfying: (Ds) For x € D, Yz € D.
The notion of monadic deductive system generated by X C A s defined wn the usual way.

Lemma 2.3 Let A be a monadic Tarski algebra and D a monadic deductive system of A,
then the relatton x =y if and only if v -y € D and y — x € D, 15 a congruence.

Lemma 2.4 Let A be a monadic Tarski algebra. If = 1is a congruence defined on A
then |1| = {z € A: 2 =1} is a monadic deductive system, and z =y if and only if
r—=y €|l andy — 2z €]1].

Lemma 2.5 ([8]) Let A be a monadic Tarski algebra and H C A. Then the monadic
deductive system generated by H is C(VH).

Let D(A) be the lattice of monadic deductive systems of A. Observe that if M € D(A),
VM is a deductive system of VA, and if D’ is a deductive system of VA, then C(D') € D(A).

i From the previous lemmas we obtain

Corollary 2.6 The lattices Con(A), D(A) and the lattice of deductive systems of VA are
all 1somorphic.

A non-trivial monadic Tarski algebra A is simple if and only if the only monadic deduc-
tive systems in A are A and {1}.

Lemma 2.7 ([8], [21]) A is a subdirectly irreducible (simple) monadic Tarski algebra if
and only if A is a simple monadic Boolean algebra.

If B,, denotes the n-atom simple monadic Boolean algebra, then By € IS(B) if and
only if £ <. From this and the fact that MT is congruence distributive and locally finite
[9, 21] we have the following result.

Theorem 2.8 The lattice A(MT) of subvarieties of the variety MT is isomorphic to a
chamn of type w + 1:
TchchcT:C...Cc MT,

where T 1s the trivial variety and T, is the variety generated in MT by the simple monadic
Tarski algebra B,.

Observe that the lattice of subvarieties of MB is
TCM CMy,CM;C...CMB,

where M), is the variety generated in MB by the simple monadic Boolean algebra B,.

Below we will determine a characteristic equation with a minimum number of variables
for each subvariety of MT.

Consider the following term:

;
Yoo,y oo s Tpt1) = \/V Tipr — \/ T
‘ o
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Let us see that the identity +, ~ 1 characterizes the variety T}, generated by B,.
Ifp =1, v(zg,21,22) = Y(xr1 = 20) VV(r2 = (20 V 1)), and it is immediate that
~1(zo,x1,72) & 1 holds in By.

Suppose that p > 1 and let ag,... ,ap41 € Bp. Consider the elements by = ag, by =
agVay, ... ,by, = \/‘;:0 a;. Itis clear that bg < by < ... <b,. Ifb; < bjyqfori=0,...,p—1,
then b, = 1, as B, is a p-atom Boolean algebra. So Y(ap4+1 — \/]JD-:0 a;) = V(aps1 — by) =
V(ap41 — 1) = V1 = 1, and consequently, v,(ao, ... ,ap41) = 1. If b; = biyq, for some ¢,
then a;+1 < b; = \/;:0 a;. So Y(aj41 — \/;-:0 a;) = V1 = 1. Thus v,(ag,... ,ap41) = L.
Therefore vp(zo,... ,p+1) ~ 1 holds in B,.

Let A be a finite (recall that MT is locally finite) subdirectly irreducible algebra in
MT and suppose that the identity v,(2o,... ,2p41) = 1 holds in A. Observe that A = B,.
Suppose that ¢ > p and let ay,... ,a, be the atoms of A. Consider the elements by = 0,
by =a1,bs =a1 Vay,..., b, = \/f:1 a; and b,4q = 1. We have that b, # 1, as p < ¢. Since
bi+1 — b; 75 1, it follows that V(bi+1 — bl) = 0. Thus ’)’p(bo,. .. 7bp+1) = \/fzo V(bi+1 —
\/;:O bj) = Vi_yV(bix1 — b;) = 0, a contradiction. So ¢ < p, and A € T,. Then we have
the following theorem

Theorem 2.9 v, =~ 1 is an equational basis for T,.

Now, from the identity v, &~ 1 and the results of Cignoli and Petrovich [4], we will
determine a characteristic equation for T, with a minimum number of variables.

Observe that if B is a simple monadic Boolean algebra and G is a generating set of B,
then B can be generated by G as a Boolean algebra. If Ban is the free Boolean algebra over
an n—element set G, then the atoms of Byn can be obtained as A{G \ G;} U {—G;} where
G; CGand —G; = {—z:z € G;}. Finally, if f: Byn — By, (m < 2") is an epimorphism,
then f(G) is a generating set for B,,. In addition, there exist sets f(G;) with:=1,... ,m
and |f(G;)| < n such that for every atom a; € By, a; = A f(G:).

Theorem 2.10 ([4]) IfV is a congruence distributive variety and A(V) =2 w + 1, then
for every n € w, the minimum number of variables needed in an identity to characterize the
subvariety T, is the same as the minimum number of generators of the algebra B,y (the
algebra that generates T4 ).

Lemma 2.11 ([4]) In the variety MT, the minimum number of generators for By, is the
smallest p such that m < 2P,

Consequently, in the variety MT, the minimum number of variables needed to charac-
terize T}, is the least p such that m + 1 < 2P,

Consider the terms
Ay y =(y = (x = Vz)) = Vz and 3oz =V(z = Vo) = Va.

When evaluated in B,,, we obtain

JzAy HVz=0 1 ifa#0
“sz_{l fyro o1 ond 1"”‘{0 o =0
Counsider now a set of variables S = {y1,... ,y,}, where p is the least positive integer

such that m 4+ 1 <27 and let H; C SU =S,1 <i <m, |H;| = p and such that y; € H; if
and only if —y; & H;. Let z; = /\vy1 H;. Consider the identity
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m
7/$in(y17' R 7yp) = /\Vyl H(Zi) — 'ym(vylszlv' s Rmy 1) ~ L
1=1

Observe that v/, (y1,...,yp) & 1 is a p—variable identity in the language of MT.
Since ¥y & 1 holds in By, it is clear that 7. (y1,... ,¥p) = 1 holds in By,.
Since m + 1 < 2P, there exists a generating set G = {g1,... ,9p} of Bp41 and G; C

GU—-G,i=1,... ,m+1suchthat if {a1,...amt1} = At(Bp+1) then /\vg1 Gi=A\G; =a,.
Then

m
i, - .- ,gp) = /\Vglﬂ(ai) = vm(Vg1,01,... yam,1)=1—=0=
i=1
SoAl..(y1,... ,y,) = 1 does not hold in B, 41.
So we have proved
Theorem 2.12 The identity v, (v1,- .. ,yp) = 1 is an equational basis for the subvariety

Ty of MT with a minimum number of variables p, where p is the least positive integer such
that m +1 < 2P,

3 Quasivarieties. A class of algebras of similar type that is closed under isomorphisms,
subalgebras, direct products, and ultraproducts is called a quasivariety. If V is a variety,
L(V') will denote the lattice of quasivarieties contained in V.

In this section we will prove that L(MT) = A(MT).

Remark 3.1 Let A be a finite monadic Tarski algebra, aq, ... ,a, the antiatoms of A and
b1,...by, the antiatoms of VA. We know that for every € A, v = A\{a € Ant(4) : v < a}.
In particular, by = /\;;1 af, for k =1,...,m. If Ant(by) = {a € Ant(4) : by < a} =
{af,... ,af }, then {Ant(br)}7, is a partition of Ant(A4). If z = A\ S, where S C Ant(4),
then Vo = A{Ant(by) : SN Ant(bg) # 0}.

We know that the lattice D(A) of all monadic deductive systems of A and the lattice
of all deductive systems of VA are isomorphic, and, for finite A, the maximal deductive
systems of VA are of the form VA\ (0], b an antiatom of YA (Lemma 1.9). Consequently,
the maximal monadic deductive systems of A are of the form C(VA\ (b]), the deductive
system generated in A by VA\ (], b an antiatom of VA. We now characterize the maximal
monadic deductive systems of A.

Proposition 3.2 Let A be a finite monadic Tarski algebra and let b be an antiatom of VA,
b= A, ai, a; antiatom of A, 1 <i<n. Then C(VA\ (b]) = i, (A\ (ai]).

Proof Let x € C(VA\ (b]). If we suppose that ¢ [)i_,(A\ (a;]), then there exists ¢ such
that = ¢ A\ (a;], that is, 2 < a;, and then a; € C(VA\ (b]), for some i. Hence there exist
hi,... ,hs € VA\ (b] such that

hi = (ha = ... (hs > a;)...) =1 VAN (]

Since hy € VAN (b], hy = (... (hs = a;)...) € VA\ (b]. Continuing with this procedure we
obtain that a; € YA\ (b], which is not possible.
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For the converse, suppose that € (), (A \ (a;]). Then z £ a; for every i. From
b= AL, ai, we have from Remark 3.1 that Vo £ b. So Va € YA\ (b]. Since Vo — =z =1,
z € C(VA\ (). [

The following lemma is the key to prove that the varieties and quasivarieties in M7T
coincide.

Lemma 3.3 Let A be a finite monadic Tarski algebra and let b be an antiatom of VA,

b= A, ai, a; antiatom of A, 1 <i <mn. Then A/ (i, (A\ (a;]) = [b) = B,,.

Proof If z,y € [b), v # y, as [b) is a Tarski subalgebra of A, v — y € [b) and y — = € [b).
Since @ # y, it follows that + = y # lory = oz # 1,s0x = y ¢ [_ (4 \ (a;]) or
y = a ¢ (e (A\ (a]), being that (7, (A \ (a;]) N [b) = {1}. Hence |z| # |y|. where |z|
stands for the equivalence class of an element z in the quotient.

Now, let y € A, y ¢ [b), and let us prove that |y| = |y V b|. Since y — (yVb) =1¢€
Nz (A\ (a;]), we just have to prove that (y Vb) — y € [—,(4 \ (a;]). Suppose on the
contrary that (y Vb) — y & ()im; (A \ (a;]). Then there exists i, 1 < ¢ < n, such that
(y Vb) = y € (a;], that is, (y Vb) = y < a;. In addition, (y Vb)) -y =(0bVy) =y =
(b—=y) =y 2y=b—=y. Sob—y<a. Thenb<a; - b<(b—y)— b=2>b, that
is, a; = b =0b. Since b — a; = 1, it follows that a; = (¢; = b) - a;, =b = a; =1, a
contradiction.

The second isomorphism is clear. [

Corollary 3.4 Every simple homomorphic tmage of a finite algebra A is a retract of A.

The quasivariety generated by a class K, which we denote by Q(K), is the least quasi-
variety containing K. Every variety is a quasivariety.

A ecritical algebra is a finite algebra not belonging to the quasivariety generated by all
its proper subalgebras.

Theorem 3.5 (See [10]) Every non-trivial locally finite quasivariety is generated by its
critical algebras.

Since MT is locally finite, if W € L(MT) then W is the quasivariety generated by the
critical algebras contained in W.

Theorem 3.6 The set of critical algebras of MT s the set of finite simple algebras of
MT.

Proof Observe that every simple algebra is critical. Let A be a critical algebra. Then A is

finite. Suposse that A is not simple. Then the set {D;}"_ ; of maximal monadic deductive

systems of A is non-empty. Leti: A — [[I_, A/D; =[]\, By, the subdirect representation

of A. Thus by Lemma 3.3, for each i there exists b; € Ant(VA) such that [b;) = By,. So

A € ISP({[b;)}~;) and the algebras [b;) are proper subalgebras of A. A contradiction, as

A is critical. [
Let V(A) denote the variety generated by A.

Corollary 3.7 Let A be a finite algebra in MT. Then Q(A) = V(A) = V(Bj), where B,

s the greatest symple homomorphic image of A.
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Proof First observe that since By, is simple, Q(By, ) = V(By,). Let A =[], A/D; &
[I;_, Bk;- Then A € ISP(By,) = Q(By,). So Q(A) C Q(By,). On the other hand, by
Proposition 3.2, By, € IS(A), so Q(Bs,) C Q(A). ]

i From this corollary and Theorem 3.6 we have the following result.

Theorem 3.8 The subvarieties and the subquasivarieties of MT coincide.

4 Monadic Boolean Quasivarietes. The aim of this section is to show that, in spite of
A(MB) is isomorphic to A(MT), there is a great difference between L(MB) and L(MT).
It is worth noting that the class of monadic Boolean algebras is the class of monadic Tarski
algebras with a new constant “0” in the language, satisfying 0 A 2 &~ 0. In this section we
will also give an effective axiomatization for each quasivariety in L(MB).

As we have already pointed out, the class MB of monadic Boolean algebras is a variety
the subvarieties of which form an w + 1 chain under inclusion:

TCMy CMyCcMyC...Cc MB

such that, for each p € w, M, is the variety generated by the simple monadic Boolean
algebra B).

In [3], Adams and Dziobiak proved that the critical algebras in MB are the simple
algebras B), and the algebras B, x By, l <p < ¢ <w.

Let P C w xw denote the set consisting of all ordered pairs (7, 7) such that 1 <7 < j < w.
Let C be defined on P by (4,7) C (k,]) if and only if i < k and j <. For 1 < < w, let
P; denote the principal order ideal of P determined by (¢,7). Let D(P) and D(FP;) denote
the distributive lattices of all decreasing subsets of (P, C ) and P;, respectively. Then, in

[3], Adams and Dziobiak proved that

L(MB) = D(P), and, for 1<i<w, L(M;) = D(P,).

We may define a partial preorder on the set Cr(K) of critical algebras of a variety K:
for A,B € Cr(K), A < B if and only if A € Q(B), so that Q(4) < Q(B) if and only if
A < B.

For each n, consider the class M, = \/,5, Q(B, x B;). The following figure, where ij
stands for Q(B; x Bj) and ¢ stands for Q(B;), shows the ordered set of subquasivarieties
Q(Bi X Bj), 1< 7, Q(Bz) and M,,.
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Now we will prove that the quasivarieties shown in the figure are exactly the join-
irreducible elements of the lattice L(MB). First we have the following easy lemma.

Lemma 4.1 If A is a critical monadic Boolean algebra, then Q(A) is join-irreducible in

L(MB).

Proof Since L(MB) is distributive, Cr(Q; V @2) = Cr(Q1) U Cr(Q2). |
Corollary 4.2 Q(B; x B;) and Q(B,) are join-irreducible.

Lemma 4.3 MB and M, are join-irreducible, for each n.

Proof If MB = 1V @2, one of the sets [y = {j : Bj € Q1} and I, = {j : B; € @2}
is infinite. Suppose that I is infinite. Then Bj x By € @ for all (k,1), k < . Then
/MB = Q1~

M, =Q1VQs oneof thesets [ ={j: B, xBj € @1} and I = {j : B, x Bj; € @2}
is infinite, and so M,, = @1 or M,, = Q5. u

Lemma 4.4 Q(B; x B;), Q(B:), M; and MDB are the unique join-irreducible subquasi-
varieties of MB.

Proof Let @ be a join-irreducible subquasivariety of MB. Suppose that ) # MB and
that @ is finitely generated (by finitely many critical algebras). Then Cr(Q) is finite, say
Cr(Q) ={A1,...,An}, where Ay = B; x Bj or Ay = B;. Then Q =\/;_, Q(Ax). Since Q
is join irreducible, @ = Q(Ay), for some k, 1 < k < n.

Suppose that @ is not finitely generated. Then Cr(Q)) is not finite. Since @ # MB, the
set {j : B; € Q} is finite. So there exists jg such that B, € ) and Bj,41 ¢ Q. Again, since
() is not finitely generated, {k : Bj, x By € Q} is not finite, and consequently, B;, x By € Q)
for every k. Hence, Q@ = Mj,. [

Lemma 4.5 FEvery quasivariety Q) is a finite join of join-irreducible quasivarieties.
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Proof If @ = MB or @ is finitely generated, the Lemma is clear. Suppose that @@ # MB
and @ is not finitely generated. Then the sets {i : M; C Q} and {j : B; € Q} are
bounded and non-empty. If iy and jy respectively denote the greatest elements of these

sets, P(ig,70) = {(k,1) : Bx x B; € Q and iy < k, jo <!} is finite. Then

Q= M,V Q(B,,)V \/ QB xB).

(k,l)EP(io,jo)

Observe that the set P(ig,jo) can be empty.

Consider now the following subquasivarieties of MB:
(MB: B x B)=Q({A € Cr(MB): B, x By £ A}),
(MB:B,)={Ae MB:B, ¢IS(A)} = M,_1.
Lemma 4.6 Q(B, x B,,) = (MB : By X Bypy1) N (MB : Bpy1).

Proof Since Bnt1 ¢ IS(B, X Bp), Q(By X Bp) C (MB : Bpy1). Since By X Bpy1 £
Bn XBm, Q(Bn ><Bm> g (./MB : Bl XBm+1>. So Q(Bn ><Bm> Q (/MB : B1 XBm+1)m(4MB :
Bpny1). For the converse, suppose that A € Cr[(MB: By X Bpg1) N (MB: Byiq)]. If
A= B, x B, r < s, then s < m+ 1, that is, s < m, and n +1 > r, that is, »r < n. So
B, Xx By € Q(Bn X Bp). I A 2 By, then p < n + 1, that is, p < n, and consequently,
B, € IS(B,, x Bp,). So B, € Q(B, X By,). [

Remark. With the notation of Lemma 4.5, if Q@ = M;, VQ(Bj[,)V\/(k e P(io.jo) Q(Br x By),
then i

Q=(MB:Bjy)n( [ (MB:BexB))n( (] (MB:Bjgx Bj1)),

(kvl)ep(iOv,jO) mo<n§j0
where mo = max{k : (k,1) € P(ig,jo)}-
Lemma 4.7 The quasivarieties (MB : B;xB;), i < j, and (MB : B;) are meet-irreducible.

Proof Suppose that (MB : B; x Bj) = K1 A K,, K1, K quasivarieties, and suppose that
Ki AN Ky # Ky and K1 A Ky # K,. Then there exist critical algebras A; € K \ K and
Ay € Ky \ Ky. Then Ay, Ay ¢ (MB : B; x Bj). So Ay and A, are of the form B, x By,
p < q or B,. Suppose, for instance, that Ay = By x By, 1 <k, j <, and Ay = B, x B,
1 <r, 7 <s, the other cases being similar. Then B; x B; is a subalgebra of Ay and B; x B;
is a subalgebra of As. Since Ay is not a subalgebra of Ay and Ay is not a subalgebra of
Ay, it follows that k # r and [ # s. In addition, if k¥ < r, then [ > s, and if & > r, then
[ < s. Suppose, for instance, that & < r and [ > s, and consider the algebra By x Bs;.
Then By x Bj is a subalgebra of Ay and of As. Hence By x Bs; € Ky A K3. On the other
hand, By x Bs contains B; x B; as a subalgebra, that is, By x B, ¢ (MB : B; x B;), a

contradiction. u

Lemma 4.8 The quasivarieties (MB : B; x B;), i < j, and (MB : B;) are the unique
meet-irreducible subquasivarieties of MB.

Corollary 4.9 FEvery subquasivariety of MB is a finite meet of subquasivarieties of the
form (MB : B; x Bj) and (MB : B;).
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So, in order to obtain an axiomatization for each subquasivariety of MB, it suffices to
give an axiomatization for the quasivarieties (MB: B; x B;) and (MB : B;).

We now turn our attention to quasi-identities characterizing meet-irreducibles in L{MB).
A quasi-identity in an algebraic language £ is an expression of the form

591%@/)1& &S‘on—lxd)n—ljipnzlbn

where n > 0 and ¢1 &1, ..., Y1 X Vp_1, @n N, are identities in L.

An algebra A satisfies a quasi-identity ¢1 & 1 & ... & Qno1 & Yno1 = 00 = U,
denoted by A E o1 &~ ¥1 & ... & on1 & Yn_1 = ¢n & P, if and only if for every
i€ A", |oi(d) = via@), ... pn_i(d@) = iy (@)] implies (@) = ;) (d).

A class K of algebras is a quasivariety if and only if there exists a set A of quasi-identities
such that K is the class of all algebras which satisfy all quasi-identities in A.

The following simple lemmas are the basis for constructing the quasi-identities charac-
terizing the quasivarieties of M.

Lemma 4.10 A monadic Boolean algebra A contains a subalgebra isomorphic to By, if and
only if there exist a1, ..., an € A such that Ja; =1 for all v, a; Na; =0 for all i < 7,
and \/i_, a; = 1.

Lemma 4.11 A monadic Boolean algebra A contains a subalgebra isomorphic to By X By

if and only if there emst ay, ..., ar, by, ..., by € A different from zero such that if
a = \/f:1 a; and b= \/17-:1 bj, then b= —a, a;Na;j =b; Nb; =0, for allt <3, Ja; =a,

1<i<k, and 3b;=b 1<j<L

Proof Let f : By x By — A be an embedding. Let zy, ..., x; be the atoms of By, and yy,
..., 1 be the atoms of B;. Then the elements a; = f(2;,0), 1 <i <k, and b; = f(0,y;),
1 <5 <1, satisfy the required conditions. For the converse, it is enoughto consider the
subalgebra generated by ay,...ax,b1,...bg. ]

By Lemma 4.10, the quasi-identity

(/H\El;viz1>& \n/ i Nz; =0 &(\n/x1%1> = 0= (*)
=1 !

i< =1
holds in a monadic Boolean algebra A if and only if A € (MB : B,,). Therefore (MB : B,,)
is axiomatized by the axioms of MB and ().

By lemma 4.11, it is easy to see that the quasi-identity

e e I k
<EI(\/ :z:,;)%\/w) & 3(\/ yj) = \/yi & \/ (i Naj) =0
i=1 i=1 j=1 j=1 i<jij=1

Q
I
-
&
&

[
& \/ (yi/\yj)mo & \/:Ci

1<7,1,7=1 =1 7=1

(&izl(ﬂxg =~ \/ xl)>

=1

1
[
& (&G V|| = V=0 (=)
=1
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holds in a monadic Boolean algebra A if and only if A € (MB : By x By).
Therefore (MB : By x By) is axiomatized by the axioms of MB and (##).

Let v, denote the set of axioms of MB + (x), and let 8, denote the set of axioms of
MB + ().

Corollary 4.12 An aziomatization for Q(B, X By,) is giwven by Ynt1 & 1 m+1-

/

Corollary 4.13 M, 1s aziomatized by the azioms of MB and ~v,41.

Then we have given an axiomatization for all meet-irreducible quasivarieties in L(MB).
An axiomatization for an arbitrary quasivariety in L(MB) follows from Corollary 4.9.
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