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Abstract. A version of the secretary problem is considered. Items ranked from 1 to N

are randomly selected without replacement, one at a time, and to win is to stop at any

item whose overall (absolute) rank belongs to a given set of ranks. Only the relative

ranks of the items drawn so far are observed. The analysis is based on the existence

of an embedded Markov chain and uses the technique of backward induction. The

requirement of choosing an item with a prescribed value of the absolute rank can lead

to more complicated strategies than threshold strategies. This approach can be used to

give exact results for any set of absolute ranks. Exact results for the optimal strategy

and the probability of success are given for a few sets. These examples are chosen to

illustrate the variety of character of optimal stopping sets. Asymptotic behaviour is also

investigated.

1. Introduction and summary

Although a version of the secretary problem (the beauty contest problem, the dowry

problem or the marriage problem) was �rst solved by Cayley [1] in 1875, it was not until

four decades ago there was a sudden resurgence of interest in this problem. Since the

articles by Gardner [6, 7] the secretary problem has been extended and generalized in many

di�erent directions. Excellent reviews of the development of this colourful problem and

its extensions have been given by Rose [13], Freeman [5], Samuels [14] and Ferguson [3].

The formulation of the classical secretary problem in its simplest form can be formulated

following Ferguson [3]. He de�ned the secretary problem in its standard form to have the

following features:

1. There is only one secretarial position available.

2. The number of applicants, N , is known in advance.

3. The applicants are interviewed sequentially in a random order.

4. All the applicants can be ranked from the best to the worst without any ties. Further,

the decision to accept or to reject an applicant must be based solely on the relative

ranks of the interviewed applicants.

5. An applicant once rejected cannot be recalled later.

6. The employer is satis�ed with nothing but the very best. The payo� is 1 if the best

of the N applicants is chosen and 0 otherwise.

In our consideration we change Assumption 6 and we will be happy to accept a candidate,

who has rank belonging to a �xed set A. In the literature on the original `secretary problem',

i.e. when A = f1g, and its extension (see e.g. [3] for a comprehensive bibliography), the

exact optimal strategy for the more general secretary problem is not given. In this paper

the derivation of the exact optimal strategy for a more general secretary problem is based

on the backward induction and using the existence of an embedded Markov chain. These

techniques have been used by several authors (see e.g. [5] for a review of papers with such
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an approach), diÆculties appear in trying to extend existing approaches to derive exact

results for more sophisticated sets A. In special cases, when A = f1; 2; : : : ; sg, the optimal

strategy for s = 2 was given by Gilbert and Mosteller [8]. Dynkin and Yushkevich [2] outline

a proof. The paper by Quine and Law [11] was devoted to the case s = 3. Authors such

as Gusein{Zade [9] and Frank and Samuels [4] provide asymptotic results for the optimal

strategy for s � 3. In all these papers character of set A is such that it contains all ranks

from 1 to some s. More complicated cases, where the sequence of ranks has `holes', have

been considered by Rose [12], Mori [10] and Szajowski [15]. In these papers the set A

contains some non-extremal ranks. The set A in [15] consists of only one element s (one

relative rank). Exact results have been given for s = 1; 2 and the asymptotic solution has

been obtained for s = 3; 4; 5. In this paper the results of [15] are extended to some subsets

of f1; 2; : : : ; sg.
In Section 2 Markov chain related to the secretary problem is formulated. This section

is based mainly on the suggestion from [2] and the results of [15]. In the next sections

the solution of the secretary problem with A being a subset of f1; 2; : : : ; sg for s = 3; 4

are given. We provide exact and asymptotic solutions for all the cases. In Section 5 we

present the optimal strategy for A = f6; 7g. In this special case the optimal strategy is not

a threshold strategy.

In the last section we give a comparison of the results obtained.

2. The embedded Markovian model of the secretary problem

Let S= f1; 2; : : : ;Ng be the set of ranks of items and fx1; x2; : : : ; xNg a permutation

of these ranks. We assume that all of these permutations are equally likely. Let Xk be the

rank of the k-th candidate. We de�ne

Yk = #f1 � i � k : Xi � Xkg:

The random variable Yk is called the relative rank of the k-th candidate with respect to the

items investigated up to the moment k.

We observe sequentially a permutation of items from the set S. The mathematical model

of such an experiment is the probability space (
;F ;P). The elementary events are permu-

tations of the elements from Sand the probability measure P is the uniform distribution

on 
. The observation of the random variables Yk, k = 1; 2; : : : ;N , generate a sequence of

�-�elds, Fk = �fY1; Y2; : : : ; Ykg, k = 1; 2; : : : ;N . The random variables Yk are independent

and PfYk = ig = 1
k
, i = 1; 2; : : : ; k.

Denote by MN the set of all Markov moments � with respect to �-�elds fFkg
N
k=1. Let

q : S! <+ be the gain function. De�ne

vN = sup
�2MN

Eq(X� ):(1)

We are looking for � � 2MN , such that Eq(X�� ) = vN . Since M
N is �nite, then such a ��

exists and vN is �nite. In this paper we consider a gain function of the form

q(x) =

�
1; if x 2 A,

0; otherwise,
(2)

where A � S. From (1) we have vN = PfX�� 2 Ag = sup�2MN PfX� 2 Ag:
Such problems have been investigated, as stated in Section 1, by Gilbert and Mosteler [8]

and others. They constructed the optimal strategy for A = f1g, A = f1; 2g. Frank and

Samuels [4] and Gusein{Zade [9] have consideredA = f1; 2; : : : ; sg. In these papers the gain
functions are monotone. We consider problems with gain functions which are not monotone.
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2.1. The probability of success. Let q(�) be de�ned by (2). We have

PfX� 2 Ag = Eq(X� ) =

NX
r=1

Z
f�=rg

q(X� )dP =

NX
r=1

Z
f�=rg

X
a2A

PfXr = ajYrgdP

= E
X
a2A

ga(�; Y� ) = EgA(�; Y� );

where

ga(r; l) = PfXr = ajYr = lg =

�
a�1

l�1

��
N�a

r�l

�
�
N

r

�(3)

and

gA(r; l) =
X
a2A

ga(r; l)

for a = 1; 2; : : : ;N , l = 1; 2; : : : ;min(a; r), r = 1; 2; : : : ;N (see [8]).

2.2. Solution by recursive algorithm. Let MN
r = f� 2MN : r � � � Ng and ~vN (r) =

sup�2MN
r
Eq(X� ). The following algorithm permits the construction of the value of the

problem vN .

~vN (N) = Eq(XN ) =
card(A)

N
:(4)

Let

wN(N; l) = q(l) =

�
1; if l 2 A;

0; otherwise,
(5)

wN (r; l) = maxfgA(r; l);EwN (r + 1; Yr+1)g;(6)

~vN (r) = EwN(r; Yr) =
1

r

rX
l=1

wN(r; l):(7)

We thus have vN = ~vN (1). The optimal stopping time �� is de�ned as follows: one has to

stop at the �rst moment r at which Yr = l, unless wN (r; l) > gA(r; l). We can de�ne the

stopping set � = f(r; l) : gA(r; l) � wN (r + 1)g.

2.3. The embedded Markov chain. Let a = max(A). The function ga(r; l) de�ned in

(3) is equal to 0 for l > min(a; r) and is non-negative for l � min(a; r). This means that we

should only choose the required item at moments r with state (r; l) such that l � min(a; r).

De�ne W0 = (1; Y1) = (1; 1), t = inffr > t�1 : Yr � min(a; r)g (inf ; = 1) and

Wt = (t; Yt). If t =1, then Wt is de�ned to be (1;1). Wt is a Markov chain with the

following one step transition probabilities (see [15])

p(r; s) = PfWt+1 = (s; ls)jWt = (r; lr)g =

8><
>:

1
s
; if r < a, s = r + 1;
(r)a

(s)a+1
; if a � r < s;

0; if r � s or r < a, s 6= r + 1,

(8)

with p(1;1) = 1, p(r;1) = 1�a
PN

s=r+1 p(r; s), where (s)a = s(s�1)(s�2) : : : (s�a+1),

(s)0 = 1. Let Gt = �fW1;W2; : : : ;Wtg and ~MN be the set of stopping times with respect

to fGtg
N
t=1. Since t is increasing, then we can de�ne ~MN

r+1 = f� 2 ~MN : � > rg.
Let P(r;l)(�) be the probability measure related to the Markov chain Wt, with trajectory

starting in state (r; l) and E(r;l)(�) the expected value with respect to P(r;l)(�). From (8)

we can see that the transition probabilities do not depend on relative ranks, but only on

moments r where items with relative rank l � min(a; r) appear. Based on the following
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lemma we can solve problem (1) with gain function (2) using the embedded Markov chain

fWtg and the gain function given by (3).

Lemma 2.1. (see [15])

EwN(s + 1; Ys+1) = E(s;l)wN (W1) for every l � min(a; r):(9)

2.4. Distribution of stopped Markov process. Let �r = f(s; l) : s > r; gA(s; l) �

E(s;l)wN(W1)g and �r = infft : Wt 2 �rg. For �r 2 ~MN
r+1 we have ��r+1 = inffs > r :

(s; Ys) 2 �rg. The moment � �r+1 is optimal Markov time inMN
r+1 from the de�nition of �r .

From (7) and (9) we have ~vN(r+1) = E(r;l)wN(W1); and by (6) and the optimality of ��r+1 in

M
N
r+1 we get ~vN (r + 1) = E(r;l)gA(�

�
r+1; Y��r+1) = E(r;l)gA(W�r ): We have E(r;l)wN(W1) =

E(r;l)gA(W�r ): We need the distribution of the random variables W� , where � = infft :
Wt 2 �g and � is a subset of E = f(r; l) : 1 � r � N; l = 1; 2; : : : ; ag.

Let A = fm1;m2; : : : ;mkg. Denote �r;s(A) = f(u; l) : r < u � s; l 2 Ag for k � a,

mi � a, i = 1; 2; : : : ; k, 1 � r < s � N , � =
SN

i=1 �ri�1 ;ri(Ai) and �i =
SN

j=i �rj�1;rj (Aj);

where Ai is some set of relative ranks. Let �r;s(A) = infft : Wt 2 �r;s(A)g and �i = infft :
Wt 2 �ig. For r

0 � r, 1 � l0 � a we have

P(r0;l0)fW�r;s(A) = (u;mi);mi 2 Ag(10)

=
(r)k

(u)k+1

for r < u � s, i = 1; 2; : : : ; k, k = card(A),

P(r0;l0)fW�i = (u; l)g(11)

=

8<
:

(ri�1)ki
(ri)ki

P(r0;l0)fW�i+1 = (u; l)g for (u; l) 2 �i+1,
(ri�1)ki
(u)ki+1

for (u; l) 2 �ri�1;ri (Ai), ki = card(Ai).

Using the formulae (10) and (11) we can calculate the distribution of W� , � = infft :
Wt 2 �g recursively.

2.5. Construction of the optimal stopping set. We derive the recursive algorithm for

determining the optimal strategy and the value of the problem for the optimal choice of an

item with absolute rank in A. This is justi�ed by backward induction.

(i) For each l we assume (N; l) 2 �. Let S0 = fl : gA(N � 1; l) � E(N�1;l)gA(W1)g. The
set f(N � 1; l) : l 2 S0g � �.

(ii) Let (s; l) 2 � for l 2 S0 and s > r. Denote �r = f(s; l) : l 2 S0; s > rg and

�r = infft :Wt 2 �rg. It follows that

gA(s; l) � E(s;l)gA(W�r ) for s > r, l 2 S0(12)

and

gA(s; l) < E(s;l)gA(W�r ) for s > r, l 62 S0.(13)

(iii) Let r1 be the greatest r such that condition (12) or (13) is not valid.

(a) Let (12) be invalid at r = r1 and l 2 S
0

= fm
0

1; : : : ;m
0

kg. The subset of the

stopping set �, for the induction assumption, will be �r1�1 = �r1�1;r1(S1) [

�r1;N (S0), where S1 = S0 n S
0

.

(b) Let (13) be invalid at r = r1 and l 2 S
0

= fm
0

1; : : : ;m
0

kg. The subset of the

stopping set �, for the induction assumption, will be �r1�1 = �r1�1;r1(S1) [

�r1;N (S0), where S1 = S0 [ S
0

.



NON STANDARD SECRETARY PROBLEMS 427

(c) If both conditions are broken at r1, (12) for l 2 S
0

1 = fm
0

1; : : : ;m
0

k
0g and (13) for

l 2 S
0

2 = fm
00

1 ; : : : ;m
00

k
00 g, then the subset of the stopping set �, for the induction

assumption, will be �r1�1 = �r1�1;r1 (S1) [ �r1;N (S0), where S1 = (S0 nS
0

1) [ S
0

2.

2.6. Asymptotic solution. Let the number of candidates go to in�nity. In this case we

can �nd the optimal solution from the following argument. As N !1 such that r
N
! x 2

(0; 1], the embedded Markov chain (Wt;Ft;P(1;1)) with state space E = f1; 2; : : : ;Ng �

f1; 2; : : : ;max(A)g can be treated as a Markov chain (W
0

t ;Ft;P( 1
N
;1)) on f

1
N
; 2
N
; : : : ; 1g �

f1; 2; : : : ;max(A)g. The gain function gA([Nx]; l) has limit

gA(x; l) =
X
a2A

�
a� 1

l � 1

�
xl(1 � x)a�l; l = 1; 2; : : : ;max(A).

We get limN!1E( r
N
;l)gA(W1) = E(x;l)gA(W

00

1 ); where (W
00

t ;Ft;P(x;1)) is a Markov chain

with state space (0; 1] � f1; 2; : : : ;max(A)g and transition density function

p(x; y) =

�
xa

ya+1
; 0 < x < y � 1,

0; x � y.
(14)

The expected value with respect to the conditional distribution given in (14) is as follows

E(x;l0)gA(W
00

1 ) =

max(A)X
l=1

Z 1

x

p(x; y)gA(y; l)dy:(15)

In this asymptotic case the recursive formulae (4){(7) are of the form

v(1) = 0(16)

w(x; l) = maxfgA(x; l);E(x;l)w(W
00

1 )g;(17)

v(x) = E(x;l)w(W
00

1 ):(18)

Where w(x; l) is the limit of wN (r; l), when
r
N
! x 2 (0; 1], i.e. limN!1wN ([Nx]; l) =

w(x; l). The asymptotic solution is obtained by a recursive method based on (16){(18).

The distribution of stopped Markov process, given by (10){(11) in the �nite case, in the

asymptotic case is of the form

f(x
0

;l
0

)((y;mi)) =
xk

yk+1
; x

0

� x < y � 1(19)

f(x
0

;l
0

)((y;mi)) =

8><
>:

x
ki
i�1

x
ki
i

f(x
0

;l
0

)((y; l)); (y; l) 2 �
0

(i + 1)

x
ki
i�1

yki+1
; (y; l) 2 �xi�1;xi(ki),

(20)

where �x;z(k) = f(y; l) : x < y � z; l = m1;m2; : : : ;mkg, �
0

(i+ 1) =
Sn

j=i �xj�1;xj(kj).

The algorithm for constructing the optimal stopping set (analogous to the one introduced

in Section 2.5) will be presented using examples in Section 3.1.

3. The optimal strategy for choosing items with one of two ranks � 3

We construct the optimal strategy for choosing an item with absolute rank belonging to

a two element subset of ranks less than or equal to 3.
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3.1. Optimal stopping at the best or the third absolute ranked item. Based on

the results from Section 2, we construct the optimal strategy for choosing an item with

absolute rank 1 or 3. For �nite horizon N we can give the numerical solution. The results

of the calculation for various N are given in Table 1.

Let the goal of the decision maker be to choose the �rst or the third ranked applicant.

Taking into account the arguments in Section 2, we solve the optimal stopping problem for

a Markov chain with transition probability function given by (8), with a = max(A), where

A = f1; 3g, and the gain function

gA(r; l) =

8<
:

g1(r; 1) + g3(r; 1); l = 1,

g3(r; 2); l = 2,

g3(r; 3); l = 3.

Based on the algorithm given in Section 2.5, we get the results given in Table 1. For N = 10

we show how to get the strategy from Table 1. The stopping set for this horizon is

� = f(r; l) : 4 � r � 10; l = 1g [ f(r; l) : 9 � r � 10; l = 2g [ f(r; l) : 8 � r � 10; l = 3g;

and the maximal probability of the realization of the goal is v �= 0:5379.

Table 1. Optimal choice of an item from A = f1; 3g.

N Strategies - relative ranks Probability

1 2 3

4 2 4 3 4 4 4 0.6250

5 2 5 5 5 5 5 0.5833

6 3 6 5 6 5 6 0.5722

7 3 7 6 7 6 7 0.5619

8 3 8 7 8 7 8 0.5464

9 4 9 8 9 7 9 0.5421

10 4 10 9 10 8 10 0.5379

20 8 20 19 20 15 20 0.5107

100 35 100 99 100 72 100 0.4917

200 69 200 199 200 143 200 0.4894

1 [0.339N] N N N [0.710N] N 0.4870

For the asymptotic solution we use the gain function

gA(x; l) =

8<
:

x+ x(1 � x)2; l = 1,

2x2(1� x); l = 2,

x3; l = 3.

(21)

We get the asymptotically optimal stopping time by constructing the asymptotic stopping

set. Let us assume that �x(1) = �x;1(f1; 2; 3g) = f(x; l) : x 2 (1� �; 1]; l = 1; 2; 3g � � for

small enough � > 0, where � is the asymptotically optimal stopping set. From (21), (14)

and (15) we get

w0(x) =

3X
l=1

Z 1

x

p(x; y)gA(y; l)dy = x(1� x2):

Solving inequality w0(x)� gA(x; l) � 0 for l = 1; 2; 3 and x 2 (1� �; 1] we get that there are

no � > 0 for which this inequality holds when l = 2. Thus our assumption is false. Suppose

now, that we change the de�nition of the stopping set in the neighbourhood of 1 and set
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�x(1) = �x;1(f1; 3g) = f(x; l) : x 2 (1 � �; 1]; l = 1; 3g and �1 = infft : W
00

t 2 �2
x;1; x 2

(1� �; 1]g. We have

w1(x) = E(x;l)gA(W
00

�1
) =

Z 1

x

x2

y3
(x + x(1 � x)2 + x3)dy = 2x(1 + x log(x) � x2):

For x 2 (1� �; 1] and � > 0 small enough, the inequality

w1(x) � gA(x; l) � 0(22)

holds for l = 1; 3 and w0(x) � w1(x). The nearest point on the left hand side of 1, at which

(22) does not hold is � �= 0:7105. This point satis�es the equation w1(x) = gA(x; 3). De�ne

v(x) = w1(x) for x 2 (�; 1].

Let �x(2) = �x;�(f1g) [ ��;1(f1; 3g) and �2 = infft : W
00

t 2 �x(2)g. We have from (19)

and (20)

w2(x) = E(x;l)gA(W
00

�2
) =

Z �

x

x

y2
(x + x(1 � x)2)dy +

x

�
w1(�)

= x(2 log(
�

x
)� 2(� � x) +

1

2
(�2 � x2)) +

x

�
w1(�):

The recursive procedure gives w2(x) � gA(x; 1) and the next change in the stopping set is

at the point � �= 0:3389 which is the solution of the equation w2(x) = gA(x; 1) in (0; �].

De�ne v(x) = w2(x) for x 2 (�; �] and v(x) = w2(�) for x 2 (0; �].

We have derived an optimal stopping set of the form

� = ��;�(f1g) [ ��;1(f1; 3g)

and

v(x) = w2(�)Ifx��g+w2(x)If�<x��g+w1(x)If�<x�1g:

The value of the problem is thus v = v(�) �= 0:4870.

The last row of Table 1 contains the form of the asymptotically optimal strategy when there

are a large number of candidates N .

This method of determining the asymptotically optimal stopping set is a consequence of

dynamic programming.

3.2. Optimal stopping at the second or the third best. Analogous to the solution

presented in detail in Section 3.1, we present the solution of the problem when A = f2; 3g,
with a = max(A). We have the gain function

gA(r; l) =

8<
:

g2(r; 1) + g3(r; 1); l = 1,

g2(r; 2) + g3(r; 2); l = 2,

g3(r; 3); l = 3.

For the asymptotic solution we use the gain function

gA(x; l) =

8<
:

x(1 � x) + x(1 � x)2; l = 1,

x2 + 2x2(1� x); l = 2,

x3; l = 3.

(23)

By arguing as in Section 3.1, we get the form of the value function and the optimal

stopping set. We have

v(x) = w2(�)Ifx��g+ w2(x)If�<x��g+ w1(x)If�<x�1g;
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Table 2. Optimal choice of an item from A = f2; 3g.

N Strategies - relative ranks Probability

1 2 3

4 4 4 3 4 4 4 0.6667

5 5 5 3 5 5 5 0.6000

6 6 6 4 6 5 6 0.5750

7 7 7 4 7 6 7 0.5571

8 8 8 5 8 7 8 0.5357

9 9 9 5 9 7 9 0.5278

10 10 10 6 10 8 10 0.5179

20 20 20 10 20 15 20 0.4830

100 100 100 48 100 73 100 0.4575

200 200 200 94 200 144 200 0.4544

1 N N [0.468N] N [0.716N] N 0.4514

where

w1(x) = x2(x � 3 log(x) � 1)

w2(x) = x3 � 3x2 + 3xe�
1
3 +

x

�
w1(�);

and the constants � and � are determined as in Section 3.1. The constant � = e�
1
3 �= 0:7165

is the nearest to 1 on the left hand side solution of the equation w1(x)� gA(x; 3) = 0. The

constant � = 1 �
p
1� e�

1
3 �= 0:4676 is the nearest to � on the left hand side solution of

the equation w2(x) � gA(x; 2) = 0.

The optimal stopping set is of the form

� = ��;�(f2g) [ ��;1(f2; 3g)

The value of the problem is v = v(�) �= 0:4514.

4. Optimal strategy for choosing items with one of two ranks � 4

We construct the optimal strategy for choosing an item with absolute rank belonging to

a two element subset of the ranks less than or equal to 4.

4.1. Optimal stopping at the best or the fourth best. Analogous to the solution

presented in detail in Section 3.1, we present the solution of the problem when A = f1; 4g,
with a = max(A). We have the gain function

gA(r; l) =

8>><
>>:

g1(r; 1) + g4(r; 1); l = 1,

g4(r; 2); l = 2,

g4(r; 3); l = 3,

g4(r; 4); l = 4.

For the asymptotic solution we use the gain function

gA(x; l) =

8>><
>>:

x+ x(1 � x)3; l = 1,

3x2(1� x)2; l = 2,

3x3(1� x); l = 3,

x4; l = 4.

(24)
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Table 3. The solution for A = f1; 4g.

N Strategies - relative ranks Probability

1 2 3 4

4 3 4 4 4 3 4 4 4 0.5667

5 3 5 5 5 4 5 5 5 0.5278

6 3 6 6 6 5 6 5 6 0.5278

7 4 7 7 7 5 7 6 7 0.5147

8 4 8 8 8 6 8 7 8 0.5107

9 4 9 9 9 7 9 8 9 0.5024

10 4 10 10 10 8 10 8 10 0.4926

20 8 20 20 20 15 20 16 20 0.4716

100 36 100 100 100 75 100 76 100 0.4531

200 71 200 200 200 151 200 151 200 0.4509

1 [0.353N] N N N [0.751N] N [0.753N] N 0.4487

By arguing as in Section 3.1, we get the form of the value function and the optimal stopping

set. We have

v(x) = w3()Ifx�g+ w3(x)If<x��g+ w2(x)If�<x��g+ w1(x)If�<x�1g;

where

w1(x) = 3x4 � x3 � 3x2 + x� 6x3 log(x)

w2(x) = �3x3 + x2(3�� 3 log(�) �
2

�
) + 2x+ 3x2 log(x) +

x2

�2
w1(�)

w3(x) =
1

3
x4 �

3

2
x3 + 3x2 + x(�

1

3
�3 +

3

2
�2 � 3� + 2 log(�)) � 2x log(x) +

x

�
w2(�);

and the constants � and � are determined as in Section 3.1. Then � �= 0:7528 satis�es

w1(�) � gA(�; 3) = 0, � �= 0:7507 satis�es w2(�) � gA(�; 4) = 0 and  �= 0:3531 satis�es

w3()� gA(; 1) = 0.

The optimal stopping set is of the form

� = �;�(f1g) [ ��;�(f1; 4g) [ ��;1(f1; 3; 4g)

The value of the problem is v = v() �= 0:4487.

4.2. Optimal stopping at the second or the fourth best. Analogous to the solution

presented in detail in Section 3.1, we present the solution of the problem when A = f2; 4g,
with a = max(A). We have the gain function

gA(r; l) =

8>><
>>:

g2(r; 1) + g4(r; 1); l = 1,

g2(r; 2) + g4(r; 2); l = 2,

g4(r; 3); l = 3,

g4(r; 4); l = 4.

For the asymptotic solution we use the gain function

gA(x; l) =

8>><
>>:

x(1 � x) + x(1 � x)3; l = 1,

x2 + 3x2(1� x)2; l = 2,

3x3(1� x); l = 3,

x4; l = 4.
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Table 4. The solution for A = f2; 4g.

N Strategies - relative ranks Probability

1 2 3 4

4 4 4 2 4 3 4 4 4 0.6250

5 5 5 3 5 4 5 5 5 0.5333

6 6 6 3 6 5 6 5 6 0.4833

7 7 7 4 7 5 7 6 7 0.4750

8 8 8 4 8 6 8 7 8 0.4607

9 9 9 5 9 7 9 8 9 0.4511

10 10 10 5 10 8 10 8 10 0.4405

20 20 20 10 20 15 20 16 20 0.4123

100 100 100 46 100 73 100 75 100 0.3904

200 200 200 91 200 146 200 150 200 0.3878

1 N N [0.449N] N [0.727N] N [0.744N] N 0.3853

By arguing as in Section 3.1, we get the form of the value function and the optimal

stopping set. We have

v(x) = w3()Ifx�g+ w3(x)If<x��g+ w2(x)If�<x��g+ w1(x)If�<x�1g;

where

w1(x) = �x4 � 3x3 + 4x2 + 3x2 log(x)

w2(x) = 3x3 + x2(4 log(�) � 3�)� 4x2 log(x) +
x2

�2
w1(�)

w3(x) = �x4 + 3x3 � 4x2 + x(�3 � 3�2 + 4�) +
x

�
w2(�);

and � �= 0:7442 satis�es w1(�) � gA(�; 4) = 0, � �= 0:7274 satis�es w2(�) � gA(�; 3) = 0

and  �= 0:4491 satis�es w3() � gA(; 2) = 0. For details of the method see Sections 3.1

and 3.2.

The optimal stopping set is of the form

� = �;�(f2g) [ ��;�(f2; 3g) [ ��;1(f2; 3; 4g)

The value of the problem is v = v() �= 0:3853.

4.3. Optimal stopping at the third or the fourth best. Analogous to the solution

presented in detail in Section 3.1, we present the solution of the problem when A = f3; 4g,
with a = max(A). We have the gain function

gA(r; l) =

8>><
>>:

g3(r; 1) + g4(r; 1); l = 1,

g3(r; 2) + g4(r; 2); l = 2,

g3(r; 3) + g4(r; 3); l = 3,

g4(r; 4); l = 4.

For the asymptotic solution we use the gain function

gA(x; l) =

8>><
>>:

x(1 � x)2 + x(1 � x)3; l = 1,

2x2(1� x) + 3x2(1 � x)2; l = 2,

x3 + 3x3(1� x); l = 3,

x4; l = 4.
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Table 5. The solution for A = f3; 4g.

N Strategies - relative ranks Probability

1 2 3 4

4 4 4 2 4 3 4 4 4 0.7500

5 5 5 3 5 4 5 5 5 0.6000

6 6 6 3 6 4 6 5 6 0.5556

7 7 7 4 7 5 7 6 7 0.5286

8 8 8 4 8 5 8 7 8 0.5086

9 9 9 5 9 6 9 8 9 0.4947

10 10 10 5 10 7 10 8 10 0.4804

20 20 20 10 20 12 20 16 20 0.4421

100 100 100 46 100 57 100 76 100 0.4134

200 200 200 91 200 112 200 152 200 0.4101

1 N N [0.450N] N [0.556N] N [0.753N] N 0.4069

By arguing as in Section 3.1, we get the form of the value function and the optimal

stopping set. We have

v(x) = w3()Ifx�g+ w3(x)If<x��g+ w2(x)If�<x��g+ w1(x)If�<x�1g;

where

w1(x) = �x4 � 4x3 + 5x2 + 4x3 log(x)

w2(x) = 4x3 + x2(�4�+ 5 log(�)) � 5x2 log(x) +
x2

�2
w1(�)

w3(x) = �x4 + 4x3 � 5x2 + x(�3 � 4�2 + 5�) +
x

�
w2(�);

and � �= 0:7529 satis�es w1(�) � gA(�; 4) = 0, � �= 0:5557 satis�es w2(�) � gA(�; 3) = 0

and  �= 0:4505 satis�es w3() � gA(; 2) = 0. For details of the method see Sections 3.1

and 3.2.

The optimal stopping set is of the form

� = �;�(f2g) [ ��;�(f2; 3g) [ ��;1(f2; 3; 4g)

The value of the problem is v = v() �= 0:4069.

5. Choosing an item with rank 6 or 7

Analogous to the solution presented in detail in Section 3.1, we present the solution of

the problem when A = f6; 7g, with a = max(A). We have the gain function

gA(r; l) =

8>>>>>>>><
>>>>>>>>:

g6(r; 1) + g7(r; 1); l = 1,

g6(r; 2) + g7(r; 2); l = 2,

g6(r; 3) + g7(r; 3); l = 3,

g6(r; 4) + g7(r; 4); l = 4,

g6(r; 5) + g7(r; 5); l = 5,

g6(r; 6) + g7(r; 6); l = 6,

g7(r; 1); l = 7.

The results in Table 6 are presented in a slightly di�erent form because of the occurrence

of an 'island' strategy. We show for N = 20 how to �nd the optimal strategy. The stopping
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set for this horizon is

� = f(r; l) : r = 20; l = 1; 2; 3g [ f(r; l) : 11 � r � 15; r = 20; l = 4g

[f(r; l) : 13 � r � 20; l = 5g [ f(r; l) : 15 � r � 20; l = 6g

[f(r; l) : 17 � r � 20; l = 7g;

and the maximal probability of the realization of the goal is v �= 0:3904. Because in all cases

we stop at ranks � 3 only at the last moment (the only exception is in the case N = 7, in

which we stop at the relatively third best item at moment r = 3), we have omitted these

ranks in Table 6 to simplify the notation.

Table 6. The solution for A = f6; 7g.

N Strategies - relative ranks Probability

4 4 5 6 7

7 4 5 7 7 5 7 6 7 7 7 0.6667

8 5 5 8 8 6 8 7 8 8 8 0.5357

9 5 6 9 9 6 9 7 9 8 9 0.4947

10 6 7 10 10 7 10 8 10 9 10 0.4755

20 11 15 20 20 13 20 15 20 17 20 0.3904

100 54 74 100 100 61 100 71 100 83 100 0.3478

200 107 149 200 200 120 200 140 200 165 200 0.3433

1 [0.531N] [0.748N] N N [0.596N] N [0.695N] N [0.821N] N 0.3389

For the asymptotic solution we use the gain function

gA(x; l) =

8>>>>>>>><
>>>>>>>>:

x(1 � x)5 + x(1 � x)6; l = 1,

5x2(1� x)4 + 6x2(1� x)5; l = 2,

10x3(1� x)3 + 15x3(1� x)4; l = 3,

10x4(1� x)2 + 20x4(1� x)3; l = 4,

5x5(1� x) + 15x5(1 � x)2; l = 5,

x6 + 6x6(1 � x); l = 6,

x7; l = 7.

By arguing as in Section 3.1, we get the form of the value function and the optimal

stopping set. We have

v(x) = w5(�)Ifx��g+ w5(x)If�<x�Æg+ w4(x)IfÆ<x�g + w3(x)If<x��g+ w2(x)If�<x��g+ w1(x)If�<x�1g;

where

w1(x) =

Z 1

x

x3

y4
(gA(y; 5) + gA(y; 6) + gA(y; 7))dy

w2(x) =

Z �

x

x2

y3
(gA(y; 5) + gA(y; 6))dy +

x2

�2
w1(�)

w3(x) =

Z �

x

x3

y4
(gA(y; 4) + gA(y; 5) + gA(y; 6))dy +

x3

�3
w2(�)

w4(x) =

Z 

x

x2

y3
(gA(y; 4) + gA(y; 5))dy +

x2

2
w3()

w5(x) =

Z Æ

x

x

y2
gA(y; 4)dy +

x

Æ
w4(Æ);
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and � �= 0:8212 satis�es w1(�) � gA(�; 7) = 0, � �= 0:7483 satis�es w2(�) � gA(�; 4) = 0,

 �= 0:6950 satis�es w3() � gA(; 6) = 0, Æ �= 0:5963 satis�es w4(Æ) � gA(Æ; 5) = 0 and

� �= 0:5310 satis�es w5(�) � gA(�; 4) = 0. For the details of the method see Sections 3.1

and 3.2.

The optimal stopping set is of the form

� = ��;Æ(f4g) [ �Æ;(f4; 5g) [ �;�(f4; 5; 6g) [ ��;�(f5; 6g) [ ��;1(f5; 6; 7g)

The value of the problem is v = v(�) �= 0:3389.

6. Conclusion.

We have investigated optimal strategies for problems with non-monotone gain functions.

The recursive algorithm introduced for determining the optimal strategy (equivalent to

de�ning the optimal stopping set), is based on the distribution of the stopped process (see

Section 2.4).

We have given examples of a wide variety of optimal stopping sets. We have presented

the complete analysis for some of the simplest sets A (see Sections 3 and 4). We have got

interesting results. For example in the problem with A = f1; 3g we never stop at the second

relative rank. Similarly, if we consider the problem with A = f2; 3g, there is no stop at

the relative �rst rank. In the problem with A = f1; 4g we can observe that stopping at the

second rank is not optimal. Moreover, the optimal thresholds for stopping at the third and

at the fourth relative ranks are almost equal.

Let us compare the values of the problems. Unexpectedly, it is easier to choose a candi-

date with absolute rank from A = f1; 3g than from A = f2; 3g. Similar situation occurs in

the cases A = f1; 4g and A = f3; 4g. Moreover, the probability of winning according to the

optimal strategy does not decrease with 1 � a � 3 for sets A = fa; 4g. The strategy can be

given in closed form only in case A = f2; 3g.
In the problem with A = f5g we have an island asymptotic optimal strategy (for details

see [15]). If we add one more absolute rank < 5, the optimal strategy is threshold. We have

tried to get an answer to the question `what sets A generate island optimal strategies?'.

Island strategies can arise in two simple cases: if we try to choose from small group of big

absolute ranks or if the ranks in A are very di�erent. The problems from the second class

(remote groups of ranks) were inspired by result from [15]. We had to study, how distant

must the ranks be, to get an island strategy. Thus, we investigated sets of the form f1; ag.
The �rst class consists of sets of the type fa; a + 1g (big ranks, but close each other). We

provided an numerical analysis of the optimal strategies for the sets A belonging to each

of the classes with a = f2; 3; : : : g and with a large number (N = 300) of candidates. If we

found the island strategy, we proved the related asymptotic result. Island strategies appear

in the cases A = f6; 7g and A = f1; 10g. To get these results in the manner introduced

is arduous, but using algorithm presented we can obtain the results numerically for any

number of applicants. In Section 5 we presented results for A = f6; 7g, but the result for
A = f1; 10g can be obtained in such a way too.

Let us consider the asymptotic results when A = f6; 7g. We can see, that if we didn't en-

counter a relatively fourth best item between the moments [0:531N ] and [0:748N ], stopping

later at the relatively fourth best is no longer optimal.
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