APPROXIMATION OF COMMON FIXED POINTS OF A FAMILY OF FINITE NONEXPANSIVE MAPPINGS IN BANACH SPACES

WATARU TAKAHASHI, TAKAYUKI TAMURA, AND MASASHI TOYODA

Abstract

In this paper, we deal with an iterative scheme for finding common fixed points of a family of finite nonexpansive mappings in a Banach space. We extend a result of Bauschke in a Hilbert space to a Banach space and a result of Shioji and Takahashi for a single nonexpansive mapping to a family of finite mappings.

1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping $T: C \rightarrow C$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. We denote by $F(T)$ the set of fixed points of T. We deal with the iterative process: $x_{0} \in C$ and

$$
x_{n+1}=\alpha_{n+1} x_{0}+\left(1-\alpha_{n+1}\right) T_{n+1} x_{n}, \quad n=0,1,2, \ldots,
$$

where $T_{1}, T_{2}, \ldots, T_{r}$ are nonexpansive mappings of C into itself, $T_{n+r}=T_{n}$ and $0<\alpha_{n+1}<$ 1. In 1992, Wittmann [11] dealt with the iterative process for $r=1$ in a Hilbert space and obtained a strong convergence theorem for finding a fixed point of the mapping; see originally Halpern [3]. Shioji and Takahashi [7] extended the result of Wittmann to a Banach space. On the other hand, in 1996, Bauschke [1] dealt with the iterative process for finding a common fixed point of finite nonexpansive mappings in a Hilbert space; see also Lions [5].

The objective of this paper is to obtain a strong convergence theorem which unifies the results by Bauschke [1] and Shioji and Takahashi [7]. Then, using this result, we consider the problem of image recovery in a Banach space setting.

2. Preliminaries

Throughout this paper, all vector spaces are real. Let E be a Banach space and let E^{*} be its dual. The value of $f \in E^{*}$ at $x \in E$ will be denote by $\langle x, f\rangle$. We denote by I the identity mapping on E and by J the duality mapping of E into $2^{E^{*}}$, i.e., $J x=\left\{f \in E^{*} \mid\right.$ $\left.\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}, x \in E$. Let $U=\{x \in E \mid\|x\|=1\}$. A Banach space E is said to be strictly convex if $\|x+y\| / 2<1$ for $x, y \in U$. In a strictly convex Banach space, we have that if $\|x\|=\|y\|=\|(1-\lambda) x+\lambda y\|$ for $x, y \in E$ and $0<\lambda<1$, then $x=y$. For every ϵ with $0 \leq \epsilon \leq 2$, we define the modulus $\delta(\epsilon)$ of convexity of E by

$$
\delta(\epsilon)=\inf \left\{\left.1-\frac{\|x+y\|}{2} \right\rvert\,\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \epsilon\right\}
$$

A Banach space E is said to be uniformly convex if $\delta(\epsilon)>0$ for every $\epsilon>0$. A Banach space E is said to be smooth provided

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

[^0]exists for each $x, y \in U$. The norm of E is said to be uniformly Gâteaux differentiable if, for each $y \in U$, the above limit exists uniformly for $x \in U$. It is known that if E is smooth then the duality mapping J is single-valued. Moreover it is known that if the norm of E is uniformly Gâteaux differentiable then the duality mapping is norm to weakstar, uniformly continuous on each bounded subset of E.

Let C be a closed convex subset of E and let F be a subset of C. A mapping P of C onto F is said to be sunny if $P(P x+t(x-P x))=P x$ for each $x \in C$ and $t \geq 0$ with $P x+t(x-P x) \in C$. A subset F of C is said to be a nonexpansive retract of C if there exists a nonexpansive retraction of C onto F. We know the following [6] (see also [9]):
Theorem 2.1. Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable, let C be a closed convex subset of E and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Let $x_{0} \in C$ and let z_{t} be a unique element of C which satisfies $z_{t}=t x_{0}+(1-t) T z_{t}$ and $0<t<1$. Then $\left\{z_{t}\right\}$ converges strongly to a fixed point of T as $t \rightarrow 0$. Moreover $\left\langle x_{0}-y, J(y-z)\right\rangle \geq 0$ for all $z \in F(T)$. Further if $P x_{0}=\lim _{t \rightarrow 0} z_{t}$ for each $x_{0} \in C$, then P is a sunny nonexpansive retraction of C onto $F(T)$.

We use this result in the proof of Theorem 3.2.
Let μ be a continuous linear functional on l^{∞} and let $\left(a_{0}, a_{1}, \ldots\right) \in l^{\infty}$. We write $\mu_{n}\left(a_{n}\right)$ instead of $\mu\left(\left(a_{0}, a_{1}, \ldots\right)\right)$. We call μ a Banach limit when μ satisfies $\|\mu\|=\mu_{n}(1)=$ 1 and $\mu_{n}\left(a_{n+1}\right)=\mu_{n}\left(a_{n}\right)$ for all $\left(a_{0}, a_{1}, \ldots\right) \in l^{\infty}$. Let μ be a Banach limit. Then $\liminf _{n \rightarrow \infty} a_{n} \leq \mu(a) \leq \limsup \sin _{n \rightarrow \infty} a_{n}$ for each $\left(a_{0}, a_{1}, \ldots\right) \in l^{\infty}$. Specially, if $a_{n} \rightarrow p$, then $\mu(a)=p$; see [8] for more details.

3. Strong Convergence Theorem

In this section, we give our main theorem. Before giving it, we prove the following:
Proposition 3.1. Let E be a strictly convex Banach space and let C be a closed convex subset of E. Let $S_{1}, S_{2}, \ldots, S_{r}$ be nonexpansive mappings of C into itself such that the set of common fixed points of $S_{1}, S_{2}, \ldots, S_{r}$ is nonempty. Let $T_{1}, T_{2}, \ldots, T_{r}$ be mappings of C into itself given by $T_{i}=\left(1-\lambda_{i}\right) I+\lambda_{i} S_{i}, 0<\lambda_{i}<1$ for each $i=1,2, \ldots, r$. Then $\left\{T_{1}, T_{2}, \ldots, T_{r}\right\}$ satisfies $\bigcap_{i=1}^{r} F\left(T_{i}\right)=\bigcap_{i=1}^{r} F\left(S_{i}\right)$ and

$$
\bigcap_{i=1}^{r} F\left(T_{i}\right)=F\left(T_{r} T_{r-1} \cdots T_{1}\right)=F\left(T_{1} T_{r} \cdots T_{2}\right)=\cdots=F\left(T_{r-1} \cdots T_{1} T_{r}\right)
$$

Proof. For simplicity, we give the proof of Proposition for $r=2$. It is clear that $F\left(S_{1}\right) \cap$ $F\left(S_{2}\right)=F\left(T_{1}\right) \cap F\left(T_{2}\right)$ and $F\left(T_{1}\right) \cap F\left(T_{2}\right) \subset F\left(T_{2} T_{1}\right)$. We prove that $F\left(S_{1}\right) \cap F\left(S_{2}\right) \supset$ $F\left(T_{2} T_{1}\right)$. Let z be in $F\left(T_{2} T_{1}\right)$ and let w be a common fixed point of S_{1} and S_{2}. Since

$$
\begin{aligned}
\|z-w\| & =\left\|\lambda_{2} S_{2}\left[\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z\right]+\left(1-\lambda_{2}\right)\left[\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z\right]-w\right\| \\
& \leq \lambda_{2}\left\|S_{2}\left[\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z\right]-w\right\|+\left(1-\lambda_{2}\right)\left\|\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z-w\right\| \\
& \leq\left\|\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z-w\right\| \\
& \leq\left(1-\lambda_{1}\right)\|z-w\|+\lambda_{1}\left\|S_{1} z-w\right\| \\
& \leq\|z-w\|
\end{aligned}
$$

we have

$$
\begin{aligned}
\|z-w\| & =\left\|\lambda_{2} S_{2}\left[\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z\right]+\left(1-\lambda_{2}\right)\left[\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z\right]-w\right\| \\
& =\left\|S_{2}\left[\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z\right]-w\right\| \\
& =\left\|\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z-w\right\| \\
& =\left\|S_{1} z-w\right\| .
\end{aligned}
$$

By the strict convexity of E, we have $S_{2}\left[\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z\right]-w=\left(1-\lambda_{1}\right) z+\lambda_{1} S_{1} z-w$ and $z-w=S_{1} z-w$. Therefore we obtain that $z=S_{1} z=S_{2} z$. This completes the proof.

Now we state our main result.
Theorem 3.2. Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let C be a closed convex subset of E. Let $T_{1}, T_{2}, \ldots, T_{r}$ be nonexpansive mappings of C into itself such that the set $F=\bigcap_{i=1}^{r} F\left(T_{i}\right)$ of common fixed points of $T_{1}, T_{2}, \ldots, T_{r}$ is nonempty and

$$
\bigcap_{i=1}^{r} F\left(T_{i}\right)=F\left(T_{r} T_{r-1} \cdots T_{1}\right)=F\left(T_{1} T_{r} \cdots T_{2}\right)=\cdots=F\left(T_{r-1} \cdots T_{1} T_{r}\right)
$$

Let $\left\{\alpha_{n}\right\} \subset(0,1)$ be a sequence which satisfies $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}\left|\alpha_{n+r}-\alpha_{n}\right|<\infty$. Define a sequence $\left\{x_{n}\right\}$ by $x_{0} \in C$ and

$$
x_{n+1}=\alpha_{n+1} x_{0}+\left(1-\alpha_{n+1}\right) T_{n+1} x_{n}, n=0,1,2, \ldots,
$$

where $T_{n+r}=T_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to a point z in F. Further, if $P x_{0}=$ $\lim _{n \rightarrow \infty} x_{n}$ for each $x_{0} \in C$, then P is a sunny nonexpansive retraction of C onto F.

Proof. We first show that $\lim _{n \rightarrow \infty}\left\|x_{n+r}-x_{n}\right\|=0$. Since $F \neq \emptyset,\left\{x_{n}\right\}$ and $\left\{T_{n+1} x_{n}\right\}$ are bounded. Then there exists $L>0$ such that $\left\|x_{n+r}-x_{n}\right\| \leq L\left|\alpha_{n+r}-\alpha_{n}\right|+(1-$ $\left.\alpha_{n+r}\right)\left\|x_{n+r-1}-x_{n-1}\right\|$ for each $n=1,2, \ldots$. Therefore we have

$$
\begin{aligned}
\left\|x_{n+r}-x_{n}\right\| & \leq L \sum_{k=m+1}^{n}\left|\alpha_{k+r}-\alpha_{k}\right|+\left\|x_{m+r}-x_{m}\right\| \prod_{k=m+1}^{n}\left(1-\alpha_{k+r}\right) \\
& \leq L \sum_{k=m+1}^{n}\left|\alpha_{k+r}-\alpha_{k}\right|+\left\|x_{m+r}-x_{m}\right\| \exp \left(-\sum_{k=m+1}^{n} \alpha_{k+r}\right)
\end{aligned}
$$

for all $n \geq m$. This yields $\limsup _{n \rightarrow \infty}\left\|x_{n+r}-x_{n}\right\| \leq L \sum_{k=m+1}^{\infty}\left|\alpha_{k+r}-\alpha_{k}\right|$ by $\sum_{k=1}^{\infty} \alpha_{k}=$ ∞. Hence by $\sum_{k=1}^{\infty}\left|\alpha_{k+r}-\alpha_{k}\right|<\infty$, we obtain $\lim _{n \rightarrow \infty}\left\|x_{n+r}-x_{n}\right\|=0$. Next we prove $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n+r} \cdots T_{n+1} x_{n}\right\|=0$. It suffices to show that $\lim _{n \rightarrow \infty} \| x_{n+r}-$ $T_{n+r} \cdots T_{n+1} x_{n} \|=0$. Since $x_{n+r}-T_{n+r} x_{n+r}=\alpha_{n+r}\left(x_{0}-T_{n+r} x_{n+r-1}\right)$ and $\lim _{n \rightarrow \infty} \alpha_{n}=$ 0 , we have $x_{n+r}-T_{n+r} x_{n+r-1} \rightarrow 0$. From

$$
\begin{aligned}
\left\|x_{n+r}-T_{n+r} T_{n+r-1} x_{n+r-2}\right\| \leq & \left\|x_{n+r}-T_{n+r} x_{n+r-1}\right\| \\
& +\left\|T_{n+r} x_{n+r-1}-T_{n+r} T_{n+r-1} x_{n+r-2}\right\| \\
\leq & \left\|x_{n+r}-T_{n+r} x_{n+r-1}\right\| \\
& \quad+\left\|x_{n+r-1}-T_{n+r-1} x_{n+r-2}\right\| \\
= & \left\|x_{n+r}-T_{n+r} x_{n+r-1}\right\| \\
& \quad+\alpha_{n+r-1}\left\|x_{0}-T_{n+r-1} x_{n+r-2}\right\|,
\end{aligned}
$$

we also have $x_{n+r}-T_{n+r} T_{n+r-1} x_{n+r-2} \rightarrow 0$. Similarly, we obtain the conclusion.
Let z_{t}^{n} be a unique element of C which satisfies $0<t<1$ and $z_{t}^{n}=t x_{0}+(1-$ $t) T_{n+r} T_{n+r-1} \cdots T_{n+1} z_{t}^{n}$. From $F\left(T_{n+r} T_{n+r-1} \cdots T_{n+1}\right)=F$ and Theorem 2.1, $\left\{z_{t}^{n}\right\}$ converges strongly to $P x_{0}$ of as $t \downarrow 0$, where P is a sunny nonexpansive retraction of C onto F. We show $\lim \sup _{n \rightarrow \infty}\left\langle x_{0}-P x_{0}, J\left(x_{n}-P x_{0}\right)\right\rangle \leq 0$. Let $A=\lim \sup _{n \rightarrow \infty}\left\langle x_{0}-\right.$ $\left.P x_{0}, J\left(x_{n}-P x_{0}\right)\right\rangle$. Then there exists a subsequence $\left\{x_{i}\right\}$ of $\left\{x_{n}\right\}$ such that $A=\lim _{i \rightarrow \infty}\left\langle x_{0}-\right.$ $\left.P x_{0}, J\left(x_{n_{i}}-P x_{0}\right)\right\rangle$. We assume that $n_{i} \equiv k(\bmod r)$ for some $k \in\{1,2, \ldots, r\}$. Since

$$
\begin{aligned}
\left\|x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} z_{t}^{k}\right\|^{2} \leq & {\left[\left\|x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} x_{n_{i}}\right\|\right.} \\
& \left.\quad+\left\|T_{n_{i}+r} \cdots T_{n_{i}+1} x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} z_{t}^{k}\right\|\right]^{2} \\
\leq & {\left[\left\|x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} x_{n_{i}}\right\|+\left\|x_{n_{i}}-z_{t}^{k}\right\|\right]^{2} }
\end{aligned}
$$

and $\left\|x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} x_{n_{i}}\right\| \rightarrow 0$, we have

$$
\mu_{i}\left\|x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} z_{t}^{k}\right\|^{2} \leq \mu_{i}\left\|x_{n_{i}}-z_{t}^{k}\right\|^{2}
$$

From $(1-t)\left(x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} z_{t}^{k}\right)=\left(x_{n_{i}}-z_{t}^{k}\right)-t\left(x_{n_{i}}-x_{0}\right)$, we have

$$
\begin{aligned}
(1-t)^{2}\left\|x_{n_{i}}-T_{n_{i}+r} \cdots T_{n_{i}+1} z_{t}^{k}\right\|^{2} \geq & \left\|x_{n_{i}}-z_{t}^{k}\right\|^{2}-2 t\left\langle x_{n_{i}}-x_{0}, J\left(x_{n_{i}}-z_{t}^{k}\right)\right\rangle \\
= & (1-2 t)\left\|x_{n_{i}}-z_{t}^{k}\right\|^{2} \\
& \quad+2 t\left\langle x_{0}-z_{t}^{k}, J\left(x_{n_{i}}-z_{t}^{k}\right)\right\rangle
\end{aligned}
$$

for each i. These inequalities yield

$$
\mu_{i}\left\langle x_{0}-z_{t}^{k}, J\left(x_{n_{i}}-z_{t}^{k}\right)\right\rangle \leq \frac{t}{2} \mu_{i}\left\|x_{n_{i}}-z_{t}^{k}\right\|^{2}
$$

As t tends to 0 , we obtain

$$
\mu_{i}\left\langle x_{0}-P x_{0}, J\left(x_{n_{i}}-P x_{0}\right)\right\rangle \leq 0
$$

because E has a uniformly Gâteaux differentiable norm. Hence we have

$$
\begin{aligned}
A & =\lim _{i \rightarrow \infty}\left\langle x_{0}-P x_{0}, J\left(x_{n_{i}}-P x_{0}\right)\right\rangle \\
& =\mu_{i}\left\langle x_{0}-P x_{0}, J\left(x_{n_{i}}-P x_{0}\right)\right\rangle \leq 0 .
\end{aligned}
$$

Now we can prove $\left\{x_{n}\right\}$ converges strongly to $P x_{0}$. Let $\epsilon>0$. By $\lim \sup _{n \rightarrow \infty}\left\langle x_{0}-\right.$ $\left.P x_{0}, J\left(x_{n}-P x_{0}\right)\right\rangle \leq 0$, there exists a positive integer n_{0} such that

$$
\left\langle x_{0}-P x_{0}, J\left(x_{n}-P x_{0}\right)\right\rangle \leq \frac{\epsilon}{2}
$$

for all $n \geq n_{0}$. Since $\left(1-\alpha_{n}\right)\left(T_{n} x_{n-1}-P x_{0}\right)=\left(x_{n}-P x_{0}\right)-\alpha_{n}\left(x_{0}-P x_{0}\right)$, we have

$$
\begin{aligned}
\left(1-\alpha_{n}\right)^{2}\left\|T_{n} x_{n-1}-P x_{0}\right\|^{2} & \geq\left\|x_{n}-P x_{0}\right\|^{2}-2 \alpha_{n}\left\langle x_{0}-P x_{0}, J\left(x_{n}-P x_{0}\right)\right\rangle \\
& \geq\left\|x_{n}-P x_{0}\right\|^{2}-\alpha_{n} \epsilon
\end{aligned}
$$

for all $n \geq n_{0}$. This yields

$$
\left\|x_{n}-P x_{0}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left\|T_{n} x_{n-1}-P x_{0}\right\|^{2}+\alpha_{n} \epsilon
$$

for all $n \geq n_{0}$. Then we have

$$
\left\|x_{n}-P x_{0}\right\|^{2} \leq\left(\prod_{k=n_{0}+1}^{n}\left(1-\alpha_{k}\right)\right)\left\|x_{n_{0}}-P x_{0}\right\|^{2}+\left\{1-\prod_{k=n_{0}+1}^{n}\left(1-\alpha_{k}\right)\right\} \epsilon
$$

Hence by $\sum_{k=1}^{\infty} \alpha_{k}=\infty$, we obtain $\limsup _{n \rightarrow \infty}\left\|x_{n}-P x_{0}\right\|^{2} \leq \epsilon$. Since ϵ is arbitrary positive real number, $\left\{x_{n}\right\}$ converges strongly to $P x_{0}$.

Remark. When E is a Hilbert space, Theorem 3.2 is the result of Bauschke.

4. Applications to the Feasibility Problem

In this section, we deal with strong convergence theorems which are connected with the feasibility problem. Using a nonlinear ergodic theorem, Crombez [2] considered the feasibility problem in a Hilbert space setting. Let H be a Hilbert space, let $C_{1}, C_{2}, \ldots, C_{r}$ be closed convex subsets of H and let I be the identity operator on H. Then the feasibility problem in a Hilbert space setting may be stated as follows: The original (unknown) image z is known a priori to belong to the intersection C_{0} of r well-defined sets $C_{1}, C_{2}, \ldots, C_{r}$ in a Hilbert space; given only the metric projections $P_{C_{i}}$ of H onto $C_{i}(i=1,2, \ldots, r)$, recover z by an iterative scheme. Crombez [2] proved the following: Let $T=\alpha_{0} I+\sum_{i=1}^{r} \alpha_{i} T_{i}$ with $T_{i}=\left(1-\lambda_{i}\right) I+\lambda_{i} P_{C_{i}}$ for all $i, 0<\lambda_{i}<2, \alpha_{i} \geq 0$ for $i=0,1,2, \ldots, r, \sum_{i=0}^{r} \alpha_{i}=1$ where $C_{0}=\bigcap_{i=1}^{r} C_{i}$ is nonempty. Then starting from an arbitrary element x of H, the sequence $\left\{T^{n} x\right\}$ converges weakly to an element of C_{0}. Later, Kitahara and Takahashi [4]
and Takahashi and Tamura [10] dealt with the feasibility problem by convex combinations of sunny nonexpansive retractions in uniformly convex Banach spaces.

Using Theorem and Proposition in Section 3, we obtain two results.
Corollary 4.1. Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let C be a closed convex subset of E. Let $S_{1}, S_{2}, \ldots, S_{r}$ be nonexpansive mappings of C into itself such that $\bigcap_{i=1}^{r} F\left(S_{i}\right) \neq \emptyset$. Define a family of finite nonexpansive mappings $\left\{T_{1}, T_{2}, \ldots, T_{r}\right\}$ by $T_{i}=\left(1-\lambda_{i}\right) I+\lambda_{i} S_{i}$ for $i=1,2, \ldots, r, 0<\lambda_{i}<1$. Let $\left\{\alpha_{n}\right\} \subset(0,1)$ be a sequence which satisfies $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}\left|\alpha_{n+r}-\alpha_{n}\right|<\infty$. Define a sequence $\left\{x_{n}\right\}$ by $x_{0} \in C$ and

$$
x_{n+1}=\alpha_{n+1} x_{0}+\left(1-\alpha_{n+1}\right) T_{n+1} x_{n} \quad \text { for all } n=0,1,2, \ldots,
$$

where $T_{n+r}=T_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point z of $S_{1}, S_{2}, \ldots, S_{r}$. Further, if $P x_{0}=\lim _{n \rightarrow \infty} x_{n}$ for each $x_{0} \in C$, then P is a sunny nonexpansive retraction of C onto $\bigcap_{i=1}^{r} F\left(S_{i}\right)$.
Proof. By Proposition 3.1 and Theorem 3.2, we have $\left\{x_{n}\right\}$ converges to a common fixed point of S_{1}, \ldots, S_{r}.

Corollary 4.2. Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let C be a closed convex subset of E. Let $C_{1}, C_{2}, \ldots, C_{r}$ be nonexpansive retracts of C such that $\bigcap_{i=1}^{r} C_{i} \neq \emptyset$. Define a family of finite nonexpansive mappings $\left\{T_{1}, T_{2}, \ldots, T_{r}\right\}$ by $T_{i}=\left(1-\lambda_{i}\right) I+\lambda_{i} P_{C_{i}}$, where $0<\lambda_{i}<1$ and $P_{C_{i}}$ is a nonexpansive retraction of C onto C_{i}, for $i=1,2, \ldots$, . Let $\left\{\alpha_{n}\right\} \subset(0,1)$ be a sequence which satisfies $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}\left|\alpha_{n+r}-\alpha_{n}\right|<\infty$. Define a sequence $\left\{x_{n}\right\}$ by $x_{0} \in C$ and

$$
x_{n+1}=\alpha_{n+1} x_{0}+\left(1-\alpha_{n+1}\right) T_{n+1} x_{n}, \quad n=0,1,2, \ldots,
$$

where $T_{n+r}=T_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to a point z of $\bigcap_{i=1}^{r} C_{i}$. Further, if $P x_{0}=\lim _{n \rightarrow \infty} x_{n}$ for each $x_{0} \in C$, then P is a sunny nonexpansive retraction of C onto $\bigcap_{i=1}^{r} C_{i}$.
Proof. By Corollary 4.1 and $\bigcap_{i=1}^{r} F\left(P_{C_{i}}\right)=\bigcap_{i=1}^{r} C_{i}$, we obtain the conclusion.

References

[1] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996), 150-159.
[2] G. Crombez, Image recovery by convex combinations of projections, J. Math. Anal. Appl. 155 (1991), 413-419.
[3] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
[4] S. Kitahara and W. Takahashi, Image recovery by convex combinations of sunny nonexpansive retractions. Topol. Methods Nonlinear Analysis 2 (1993), 333-342.
[5] P.-L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Sér. A-B Paris 284 (1977), 1357-1359.
[6] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
[7] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 3641-3645.
[8] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[9] W. Takahashi and Y. Ueda, On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), 546-553.
[10] W. Takahashi and T. Tamura, Limit theorems of operators by convex combinations of nonexpansive retractions in Banach space, J. Approximation Theory 91 (1997), 386-397.
[11] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486491.

Wataru Takahashi: Department of Mathematical and Computing Sciences,, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp
Takayuki Tamura: Graduate School of Social Sciences and Humanities,, Chiba University, Chiba, 263-8522, Japan

E-mail address: tamura@le.chiba-u.ac.jp
Masashi Toyoda: Department of Mathematical and Computing Sciences,, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan

E-mail address: m-toyoda@is.titech.ac.jp

[^0]: Key words and phrases. Nonexpansive mappings, fixed point, Banach limits, iteration. MSC 2000 subject classification. 47H09, 49M05.

