Alessandro Trombetta* and Giulio Trombetta**

Received August 3, 2001; revised December 20, 2001

ABSTRACT. We prove that for any $\varepsilon > 0$ there exists a retraction of the closed unit ball in the space $L_p[0,1]$, $1 \le p < \infty$, onto the unit sphere being a (γ_p) $(2 + \varepsilon)$ -set contractive retraction.

1 Introduction. Let X be an infinite-dimensional Banach space with the closed unit ball B and the unit sphere S. A continuous mapping $R: B \to S$ with Rx = x for any $x \in S$ is a retraction of the ball onto the sphere. Since the works of Nowak [5] and Benyamini and Sternfeld [2] it is known that, for any infinite-dimensional Banach space X, there exists a k-lipschitzian retraction $R: B \to S$ (i.e. a retraction satisfying the Lipschitz condition $||Rx - Ry|| \le k ||x - y||$, for all $x, y \in B$). Let ψ be a measure of noncompactness defined on X (see Section 2). A mapping $T: D(T) \subset X \to X$ is said to be a (ψ) k-set contraction if there exists a constant $k \ge 0$ such that

$$\psi(TA) \leq k\psi(A)$$
, for all bounded sets $A \subset D(T)$.

We set

 $k_0(X) := \inf \{k \ge 1 : \text{there is a } k \text{-lipschitzian retraction } R : B \to S \},\$

 $k_{\psi}(X) := \inf \{k \ge 1 : \text{there is a } (\psi) \ k \text{-set contractive retraction } R : B \to S \}.$

In [3] it is proved that $k_0(X) \ge 3$. Recall that the Hausdorff measure of noncompactness γ on a Banach space X is defined by

 $\gamma(A) := \inf \{ r > 0 : A \text{ can be covered by a finite number of balls centered in } X \},\$

for all bounded sets $A \subset X$. If R is a k-lipschitzian retraction it is also (γ) k-set contractive. So that $k_{\gamma}(X) \leq k_0(X)$ for any infinite-dimensional Banach space X. See the book of Toledano, Benavides and Acedo [7] and the references therein for more details concerning measures of noncompactness and (ψ) k-set contractions. In [9], the author proved that $k_{\gamma}(C[0,1]) = 1$ and that, for any infinite-dimensional Banach space X, there is no retraction $R: B \to S$ being both, k-lipschitzian for some constant k and (γ) 1-set contractive.

Further he posed the problem to estimate $k_{\gamma}(X)$ for particular classical Banach spaces and to establish for which spaces is $k_{\gamma}(X) < k_0(X)$. For $1 \leq p < \infty$, let γ_p be the Hausdorff measure of noncompacents on $L_p[0, 1]$. In the present note we prove that $k_{\gamma_p}(L_p[0, 1]) \leq 2$, $1 \leq p < \infty$. Moreover, we observe that, for any infinite-dimensional Banach space X and for any measure of noncompacents ψ defined on X, there is no (γ) 1-set contractive retraction $R: B \to S$ being k-lipschitzian for some constant k.

²⁰⁰⁰ Mathematics Subject Classification. 46E30, 47H09.

Key words and phrases. retraction, k-set contraction, measure of noncompactness.

2 Notations and definitions. Let X be a Banach space and \mathcal{B} the family of all bounded subsets of X. A mapping $\psi : \mathcal{B} \to [0, +\infty[$ is called a measure of noncompactness on X if it satisfies the following properties:

1)	$\psi(A)$	= 0 if and only if A is precompact;
2)	$\psi(\overline{co}A)$	$=\psi(A)$, where $\overline{co}A$ denotes the closed convex hull of A ;
3)	$\psi(A\cup B)$	$= \max \left\{ \psi(A), \psi(B) \right\};$
4)	$\psi(A+B)$	$\leq \psi(A) + \psi(B);$
5)	$\psi(\lambda A)$	$= \lambda \psi(A), \ \lambda \in \mathbb{R}.$

Let $L_p := L_p[0,1]$, $1 \le p < \infty$, be the classical Lebesgue spaces with the usual norm denoted by $\|\cdot\|_p$. In the following we will assume $1 \le p < \infty$ and we will always denote by S_p and B_p the unit sphere and the unit closed ball of L_p , respectively. Moreover, every function $f \in L_p$ will be extended outside [0,1] by 0. Then for $f \in L_p$ and h > 0 consider the Steklow function

$$f_h(t) = \frac{1}{2h} \int_{[t-h,t+h]} f(s) ds,$$

for each $t \in [0, 1]$. For any bounded set $A \subset L_p[0, 1]$, we set

$$\omega_p(A) := \lim_{\delta \to 0} \sup_{f \in A} \max_{0 < h \le \delta} \left\| f - f_h \right\|_p.$$

It can be shown that ω_p is a measure of non compactness on L_p . Moreover, as a straightforward consequence of the Kolmogorov compactness criterion in the spaces L_p (see, e. g., [4]) we get the following

Theorem 1 Let A be a bounded subset of L_p . Then

$$\frac{1}{2}\omega_p(A) \leq \gamma_p(A) \leq \omega_p(A)$$

Remark 2 In[8], Väth notes that the precise formula for the Hausdorff measure of noncompactness in L_p

$$\gamma_p(A)=\frac{1}{2}\omega_p(A),$$

given in [1] is false; see also [16].

3 Results. Define a mapping $Q_p : B_p \to B_p$ by

$$(Q_p f)(t) = \begin{cases} \left(\frac{2}{1+\|f\|_p}\right)^{\frac{1}{p}} f\left(\frac{2}{1+\|f\|_p}t\right), \text{ for } t \in \left[0, \frac{1+\|f\|_p}{2}\right], \\\\ 0, \text{ for } t \in \left]\frac{1+\|f\|_p}{2}, 1\right]. \end{cases}$$

It is easy to see that $\|Q_p f\|_p = \|f\|_p$ for all $f \in B_p$ and $Q_p f = f$ for all $f \in S_p$.

Proposition 3 The mapping Q_p is continuous.

Proof. Let $\{f_n\}$ be a sequence of elements of B_p such that $f_n \to f(n \to \infty)$ with respect to the norm $\|\cdot\|_p$. Set

$$A_n := \left[0, \frac{1 + \|f_n\|_p}{2}\right] \cap \left[0, \frac{1 + \|f\|_p}{2}\right],$$
$$B_n := \left[0, \frac{1 + \|f_n\|_p}{2}\right] \land \left[0, \frac{1 + \|f\|_p}{2}\right] \land \left[0, \frac{1 + \|f\|_p}{2}\right],$$

for all $n \in \mathbb{N}$, where Δ denotes the symmetric difference. Let $\varepsilon > 0$. Since the family $\{f, f_1, f_2, \ldots\}$ has uniformly continuous norms and $\|f_n - f\|_p \to 0 (n \to \infty)$, we can find an $n_1 \in \mathbb{N}$ such that $\|f_n - f\|_p \leq \frac{\varepsilon}{5}$ and

$$\begin{split} \|Q_{p}f_{n} - Q_{p}f\|_{p} &\leq \left\| (Q_{p}f_{n} - Q_{p}f)\chi_{A_{n}} \right\|_{p} + \left\| (Q_{p}f_{n} - Q_{p}f)\chi_{B_{n}} \right\|_{p} \\ &\leq \left\| (Q_{p}f_{n} - Q_{p}f)\chi_{A_{n}} \right\|_{p} + \frac{\varepsilon}{5}, \text{ for all } n \geq n_{1}. \end{split}$$

Suppose $||f_n||_p \le ||f||_p$. Then, by the change of variables

$$s := \frac{2}{1 + \|f_n\|_p} t\left(t \in \left[0, \frac{1 + \|f_n\|_p}{2}\right]\right), \text{ it follows that}$$
$$\left\|(Q_p f_n - Q_p f)\chi_{A_n}\right\|_p$$

$$= \left[\int_{\left[0,\frac{1+\|f_n\|_p}{2}\right]} \left| \left(\frac{2}{1+\|f_n\|_p}\right)^{\frac{1}{p}} f_n \left(\frac{2}{1+\|f_n\|_p}t\right) - \left(\frac{2}{1+\|f\|_p}\right)^{\frac{1}{p}} f \left(\frac{2}{1+\|f\|_p}t\right) \right|^p dt \right]^{\frac{1}{p}} \right]$$
$$= \left[\int_{\left[0,1\right]} \left| f_n \left(s\right) - \left(\frac{1+\|f_n\|_p}{1+\|f\|_p}\right)^{\frac{1}{p}} f \left(\frac{1+\|f_n\|_p}{1+\|f\|_p}s\right) \right|^p ds \right]^{\frac{1}{p}} \right]$$
$$\leq \|f_n - f\|_p + \left[\int_{\left[0,1\right]} \left| f \left(s\right) - \left(\frac{1+\|f_n\|_p}{1+\|f\|_p}\right)^{\frac{1}{p}} f \left(\frac{1+\|f_n\|_p}{1+\|f\|_p}s\right) \right|^p ds \right]^{\frac{1}{p}}.$$

Now, suppose $||f_n||_p > ||f||_p$. Then, by the change of variables

$$s := \frac{2}{1 + \|f\|_p} t\left(t \in \left[0, \frac{1 + \|f\|_p}{2}\right]\right), \text{ it follows that}$$
$$\left\| (Q_p f_n - Q_p f) \chi_{A_n} \right\|_p$$

$$= \left[\int_{\left[0,\frac{1+\|f\|_{p}}{2}\right]} \left| \left(\frac{2}{1+\|f_{n}\|_{p}}\right)^{\frac{1}{p}} f_{n} \left(\frac{2}{1+\|f_{n}\|_{p}}t\right) - \left(\frac{2}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{2}{1+\|f\|_{p}}t\right) \right|^{p} dt \right]^{\frac{1}{p}} \\ = \left[\int_{\left[0,1\right]} \left| \left(\frac{1+\|f\|_{p}}{1+\|f_{n}\|_{p}}\right)^{\frac{1}{p}} f_{n} \left(\frac{1+\|f\|_{p}}{1+\|f_{n}\|_{p}}s\right) - f\left(s\right) \right|^{p} ds \right]^{\frac{1}{p}}$$

$$\leq \left[\int_{[0,1]} \left| \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} \right)^{\frac{1}{p}} f_n \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} s \right) - \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} \right)^{\frac{1}{p}} f \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} s \right) \right|^p ds \right]^{\frac{1}{p}} \\ + \left[\int_{[0,1]} \left| \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} \right)^{\frac{1}{p}} f \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} s \right) - f(s) \right|^p ds \right]^{\frac{1}{p}}.$$

Moreover, by the change of variables $u:=\frac{1+\|f\|_p}{1+\|f_n\|_p}s\,(s\in[0,1]),$ we have

$$\left[\int_{[0,1]} \left| \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} \right)^{\frac{1}{p}} f_n \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} s \right) - \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} \right)^{\frac{1}{p}} f \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} s \right) \right|^p ds \right]^{\frac{1}{p}}$$

$$= \left[\int_{\left[0, \frac{1 + \|f\|_p}{1 + \|f_n\|_p}\right]} |f_n(u) - f(u)|^p du \right]^{\frac{1}{p}} \le \|f_n - f\|_p.$$

Then

$$\left\|(Q_pf_n-Q_pf)\chi_{A_n}\right\|_p$$

$$\leq \|f_n - f\|_p + \left[\int_{[0,1]} \left| \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p}\right)^{\frac{1}{p}} f\left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p}s\right) - f(s) \right|^p ds \right]^{\frac{1}{p}}.$$

We set

$$h_{n}(t) := \begin{cases} \left(\frac{1+\|f_{n}\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\|f_{n}\|_{p}}{1+\|f\|_{p}}t\right), & \text{if } \|f_{n}\|_{p} \leq \|f\|_{p}, \\ \\ \left(\frac{1+\|f\|_{p}}{1+\|f_{n}\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\|f\|_{p}}{1+\|f_{n}\|_{p}}t\right), & \text{if } \|f_{n}\|_{p} > \|f\|_{p}, \end{cases}$$

$$(t \in [0,1]),$$

for any $n \in \mathbb{N}$.

Choose a continuous function $g:[0,1] \to \mathbb{R}$ such that $\|g - f\|_p \leq \frac{\varepsilon}{5}$. We put

$$g_{n}(t) := \begin{cases} \left(\frac{1+\|f_{n}\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}} g\left(\frac{1+\|f_{n}\|_{p}}{1+\|f\|_{p}}t\right), & \text{if } \|f_{n}\|_{p} \leq \|f\|_{p}, \\ \left(\frac{1+\|f\|_{p}}{1+\|f_{n}\|_{p}}\right)^{\frac{1}{p}} g\left(\frac{1+\|f\|_{p}}{1+\|f_{n}\|_{p}}t\right), & \text{if } \|f_{n}\|_{p} > \|f\|_{p}, \end{cases} (t \in [0,1]),$$

for any $n \in \mathbb{N}$. Suppose $||f_n||_p \le ||f||_p$. By the change of variables $s := \frac{1+||f_n||_p}{1+||f||_p} t$ $(t \in [0, 1])$, we obtain that

$$\|g_n - h_n\|_p$$

$$= \left[\int_{[0,1]} \left| \left(\frac{1 + \|f_n\|_p}{1 + \|f\|_p} \right)^{\frac{1}{p}} \left[g \left(\frac{1 + \|f_n\|_p}{1 + \|f\|_p} t \right) - f \left(\frac{1 + \|f_n\|_p}{1 + \|f\|_p} t \right) \right] \right|^p dt \right]^{\frac{1}{p}} \\ = \left[\int_{\left[0, \frac{1 + \|f_n\|_p}{1 + \|f\|_p}\right]} |g(s) - f(s)|^p ds \right]^{\frac{1}{p}} \le \|g - f\|_p \le \frac{\varepsilon}{5}.$$

If $||f_n||_p > ||f||_p$, by the change of variables $s := \frac{1+||f||_p}{1+||f_n||_p} t$ $(t \in [0,1])$, it follows again $||g_n - h_n||_p \le ||g - f||_p \le \frac{\varepsilon}{5}$. Since g is continuous, $\frac{1+||f_n||_p}{1+||f_n||_p} \to 1(n \to \infty)$ and $\frac{1+||f||_p}{1+||f_n||_p} \to 1(n \to \infty)$ we have that

$$\left|g_{n}\left(t\right)-g(t)\right|\rightarrow0(n\rightarrow\infty)$$

for each $t \in [0,1]$. Then $g_n(t) \to g(t)(n \to \infty)$, for each $t \in [0,1]$. On the other hand

$$\|g - g_n\|_p = \begin{cases} \left[\int_{[0,1]} \left| g\left(t\right) - \left(\frac{1 + \|f_n\|_p}{1 + \|f\|_p}\right)^{\frac{1}{p}} g\left(\frac{1 + \|f_n\|_p}{1 + \|f\|_p} t\right) \right|^p dt \right]^{\frac{1}{p}}, \text{ if } \|f_n\|_p \le \|f\|_p, \\ \left[\int_{[0,1]} \left| g\left(t\right) - \left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p}\right)^{\frac{1}{p}} g\left(\frac{1 + \|f\|_p}{1 + \|f_n\|_p} t\right) \right|^p dt \right]^{\frac{1}{p}}, \text{ if } \|f_n\|_p > \|f\|_p. \end{cases}$$

Moreover, we have that

$$\|g_{n}\|_{p} = \begin{cases} \left[\int_{\left[0, \frac{1+\|f_{n}\|_{p}}{1+\|f\|_{p}}\right]} |g(s)|^{p} ds \right]^{\frac{1}{p}}, \text{ if } \|f_{n}\|_{p} \leq \|f\|_{p}, \\ \left[\int_{\left[0, \frac{1+\|f\|_{p}}{1+\|f\|_{p}}\right]} |g(s)|^{p} ds \right]^{\frac{1}{p}}, \text{ if } \|f_{n}\|_{p} > \|f\|_{p}. \end{cases}$$

Then

$$\lim_n \|g_n\|_p = \|g\|_p$$

So that $\lim_n \|g_n - g\|_p = 0$. Let $n_2 \in \mathbb{N}$ such that $\|g_n - g\|_p \leq \frac{\varepsilon}{5}$, for any $n \geq n_2$. Set $\nu := \{n_1, n_2\}$, we have

$$\left\|Q_p f_n - Q_p f\right\|_p \le \left\|(Q_p f_n - Q_p f)\chi_{A_n}\right\|_p + \frac{\varepsilon}{5}$$

$$\leq \|f_n - f\|_p + \|f - h_n\|_p + \frac{\varepsilon}{5}$$
$$\leq \|f_n - f\|_p + \|f - g\|_p + \|g - g_n\|_p + \|g_n - h_n\|_p + \frac{\varepsilon}{5} \leq \varepsilon$$

for all $n \ge \nu$.

Proposition 4 The mapping Q_p is an (γ_p) 2-set contraction.

Proof. Let $f \in B_p$ and $0 < h \leq \frac{1}{4}$. Set $\alpha := \frac{1 + \|f\|_p}{2}$. In this proof we consider the Steklov function $f_{\frac{h}{\alpha}}$ of f defined by

$$f_{\frac{h}{\alpha}}(t) = \frac{\alpha}{2h} \int_{\left[t - \frac{h}{\alpha}, t + \frac{h}{\alpha}\right]} f(s) ds,$$

for $t \in [0, 3/2]$ and equal to 0 elsewhere. Moreover, we still denote by $\|\cdot\|_p$ the usual norm on $L_p[0, 3/2]$. We start to prove that

$$\left\|f-f_{\frac{h}{\alpha}}\right\|_{p}=\left\|Q_{p}f-(Q_{p}f)_{h}\right\|_{p}$$

Infact

$$\begin{split} \left\| f - f_{\frac{h}{\alpha}} \right\|_{p}^{p} &= \int_{\left[0,\frac{3}{2}\right]} \left| f(\tau) - f_{\frac{h}{\alpha}}(\tau) \right|^{p} d\tau \\ &= \int_{\left[0,\frac{h}{\alpha}\right]} \left| f(\tau) - f_{\frac{h}{\alpha}}(\tau) \right|^{p} d\tau + \int_{\left[\frac{h}{\alpha},1-\frac{h}{\alpha}\right]} \left| f(\tau) - f_{\frac{h}{\alpha}}(\tau) \right|^{p} d\tau \\ &+ \int_{\left[1-\frac{h}{\alpha},1\right]} \left| f(\tau) - f_{\frac{h}{\alpha}}(\tau) \right|^{p} d\tau + \int_{\left[1,1+\frac{h}{\alpha}\right]} \left| f(\tau) - f_{\frac{h}{\alpha}}(\tau) \right|^{p} d\tau \end{split}$$

$$= \int_{\left[0,\frac{h}{\alpha}\right]} \left| f(\tau) - \frac{\alpha}{2h} \int_{\left[0,\tau+\frac{h}{\alpha}\right]} f(s) ds \right|^p d\tau + \int_{\left[\frac{h}{\alpha},1-\frac{h}{\alpha}\right]} \left| f(\tau) - \frac{\alpha}{2h} \int_{\left[\tau-\frac{h}{\alpha},\tau+\frac{h}{\alpha}\right]} f(s) ds \right|^p d\tau \\ + \int_{\left[1-\frac{h}{\alpha},1\right]} \left| f(\tau) - \frac{\alpha}{2h} \int_{\left[\tau-\frac{h}{\alpha},1\right]} f(s) ds \right|^p d\tau + \int_{\left[1,1+\frac{h}{\alpha}\right]} \left| -\frac{\alpha}{2h} \int_{\left[\tau-\frac{h}{\alpha},1\right]} f(s) ds \right|^p d\tau.$$

By the change of variables $\tau = \frac{t}{\alpha}$ and $s = \frac{x}{\alpha}$, we obtain that

$$\begin{split} \left\|f - f_{\frac{h}{\alpha}}\right\|_{p}^{p} &= \int_{[0,h]} \left|\frac{1}{\alpha^{\frac{1}{p}}}f(\frac{t}{\alpha}) - \frac{1}{2h}\int_{[0,t+h]}\frac{1}{\alpha^{\frac{1}{p}}}f(\frac{x}{\alpha})dx\right|^{p}dt \\ &+ \int_{[h,\alpha-h]} \left|\frac{1}{\alpha^{\frac{1}{p}}}f(\frac{t}{\alpha}) - \frac{1}{2h}\int_{[t-h,t+h]}\frac{1}{\alpha^{\frac{1}{p}}}f(\frac{x}{\alpha})dx\right|^{p}dt \end{split}$$

$$+ \int_{[\alpha-h,\alpha]} \left| \frac{1}{\alpha^{\frac{1}{p}}} f(\frac{t}{\alpha}) - \frac{1}{2h} \int_{[t-h,\alpha]} \frac{1}{\alpha^{\frac{1}{p}}} f(\frac{x}{\alpha}) dx \right|^p dt$$

$$+ \int_{[\alpha,\alpha+h]} \left| -\frac{1}{2h} \int_{[t-h,\alpha]} \frac{1}{\alpha^{\frac{1}{p}}} f(\frac{x}{\alpha}) dx \right|^p dt.$$

Hence

$$\begin{split} \left\| f - f_{\frac{h}{\alpha}} \right\|_{p}^{p} &= \int_{[0,h]} |Q_{p}f(t) - (Q_{p}f)_{h}(t)|^{p} dt + \int_{[h,\alpha-h]} |Q_{p}f(t) - (Q_{p}f)_{h}(t)|^{p} dt \\ &+ \int_{[\alpha-h,\alpha]} |Q_{p}f(t) - (Q_{p}f)_{h}(t)|^{p} dt + \int_{[\alpha,\alpha+h]} |Q_{p}f(t) - (Q_{p}f)_{h}(t)|^{p} dt \end{split}$$

$$= \|Q_p f - (Q_p f)_h\|_p^p.$$

Then, for any set $A \subset B_p$, we have that

$$\omega_{p}'(Q_{p}A) = \lim_{\delta \to 0} \sup_{f \in A} \max_{0 < h \le \delta} \|Q_{p}f - (Q_{p}f)_{h}\|_{p} \le \lim_{\delta \to 0} \sup_{f \in A} \max_{0 < h \le 2\delta} \|f - f_{h}\|_{p} = \omega_{p}'(A),$$

where ω'_p is defined on $L_p[0,3/2]$ as ω_p . Let γ'_p be the Hausdorff measure of noncompactness on $L_p[0,3/2]$. Then, since $\gamma_p(C) = \gamma'_p(C)$ for all sets $C \subset B_p$ and an analogous of Theorem 1 holds in $L_p[0,3/2]$, we have that

$$\gamma_p(Q_pA) \leq \omega_p'(Q_pA) \leq \omega_p'(A) \leq 2\gamma_p(A),$$

for all sets $A \subset B_p$.

For any u > 0, we define the mapping $P_{p,u} : B_p \to L_p$ putting

$$(P_{p,u}f)(t) := \max\left\{0, \frac{u}{2}\left(2t - \|f\|_p - 1\right)\right\}, (t \in [0, 1]).$$

Observe that, for any u > 0 and for all $f \in B_p$, we have $(P_{p,u}f)(t) = 0$ for any $t \in \left[0, \frac{1+\|f\|_p}{2}\right]$. Moreover, it easy to see that, for any u > 0, the mapping $P_{p,u}$ is continuous and compact. We set, for any u > 0,

$$F_{p,u}(\lambda) := \lambda^p + \frac{1}{2(p+1)} \left(\frac{u}{2}\right)^p (1-\lambda)^{p+1}, (\lambda \in [0,1]).$$

Then, it is simple to verify that $F_{p,u}$ attains its minimum for a unique $\lambda_u \in [0, 1[$. Moreover, $0 < F_{p,u}(\lambda_u) < 1$ and

$$\lim_{u \to \infty} \lambda_u = 1.$$

For any u > 0, consider the mapping $T_{p,u} : B_p \to L_p$ defined by

$$T_{p,u}f = Q_pf + P_{p,u}f.$$

Clearly, the mapping $T_{p,u}$ is an (γ_p) 2-set contraction, and $T_{p,u}f = f$ for any $f \in B_p$. Further, for any u > 0 and for all $f \in B_p$, we have that

$$\begin{split} \|T_{p,u}f\|_{p}^{p} &= \int_{\left[0,\frac{1+\|f\|_{p}}{2}\right]} |Q_{p}f(t)|^{p} dt + \int_{\left[\frac{1+\|f\|_{p}}{2},1\right]} |Q_{p}f(t) + P_{p,u}f(t)|^{p} dt \\ &= \|f\|_{p}^{p} + \int_{\left[\frac{1+\|f\|_{p}}{2},1\right]} \left|\frac{u}{2} \left(2t - \|f\|_{p} - 1\right)\right|^{p} dt \\ &= \|f\|_{p}^{p} + \frac{1}{2(p+1)} \left(\frac{u}{2}\right)^{p} \left(1 - \|f\|_{p}\right)^{p+1} = F_{p,u}(\|f\|_{p}^{p}). \end{split}$$

So that, $||T_{p,u}f||_p^p \ge F_{p,u}(\lambda_u)$ for any $f \in B_p$. Now, we define

$$R_{p,u}f = \frac{1}{\left\|T_{p,u}f\right\|_{p}}T_{p,u}f.$$

Then, for any set $A \subset B_p$, we have that

$$\gamma_p(R_{p,u}A) \le \left(\frac{1}{F_{p,u}(\lambda_u)}\right)^{\frac{1}{p}} 2\gamma_p(A).$$

Therefore $R_{p,u}: B_p \to S_p$ is a $(\gamma_p) \ 2\left(\frac{1}{F_{p,u}(\lambda_u)}\right)^{\frac{1}{p}}$ -set contractive retraction. Since $\lim_{u\to\infty} F_{p,u}(\lambda_u) = 1$, for any $\varepsilon > 0$ there exists u > 0 such that the mapping $R_{p,u}: B_p \to S_p$ is a $(\gamma_p) \ (2+\varepsilon)$ -set contractive retraction. Thus, the following result holds.

Theorem 5 $k_{\gamma_p}(L_p) \leq 2.$

In the context above described the following question remains open.

Problem 6 Let X be an infinite-dimensional Banach space and let ψ be a measure of noncompactness on X. Does there exist a (ψ) 1-set contractive retraction $R: B \to S$?

However, we have that

Theorem 7 Let X be an infinite-dimensional Banach space and let ψ be a measure of noncompactness on X. If $R: B \to S$ is a (ψ) 1-set contractive retraction, then it is not k-lipschitzian for any constant k.

The proof of the above theorem is carried out analogously to the proof of Theorem II in [9].

References

- R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. S. Rodkina and B. N. Sadovskii, Measures of noncompactness and condensing operators, Birkhäuser, Basel, Boston, Berlin, 1992.
- [2] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc., 88 (1983), 439-445.

- [3] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge 1990.
- [4] A. Kufner, J. Oldřich and F. Svatopluk, *Function Spaces*, Noordhoff International Publishing, Prague, 1977.
- [5] B. Nowak, On the Lipschitzian retraction of the unit ball in infinite dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Ser. Sci. Math., 27 (1979), 861-864.
- [6] A. Otáhal, Measure of noncompactness of subsets of Lebesgue spaces, Cas. Pestovani. Mat., 103 (1978), 67-72.
- [7] J. M. Toledano, T. D. Benavides and G. L. Acedo, Measure of noncompactness in metric fixed point theory, Birkhäuser, Basel, Boston, Berlin, 1997.
- [8] M. Väth, A compactness criterion of mixed Krasnoselskii-Riesz type in regular ideal spaces of vector functions, Z. Anal. Anwendungen, 18 (1999) n. 3, 713-732.
- [9] J. Wosko, An example related to the retraction problem, Ann. Univ. Mariae Curie-Sklodowska, 45 (1991), 127-130.

*Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università di Napoli "Federico II", Via Cintia - 80126, Napoli, Italy e-mail: aletromb@unical.it

**Dipartimento di Matematica, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy e-mail: trombetta@unical.it