ON THE EXISTENCE OF $\left(\gamma_{p}\right) k$-SET CONTRACTIVE RETRACTIONS IN $L_{p}[0,1]$ SPACES, $1 \leq p<\infty$

Alessandro Trombetta* and Giulio Trombetta**

Received August 3, 2001; revised December 20, 2001

Abstract

We prove that for any $\varepsilon>0$ there exists a retraction of the closed unit ball in the space $L_{p}[0,1], 1 \leq p<\infty$, onto the unit sphere being a $\left(\gamma_{p}\right)(2+\varepsilon)$-set contractive retraction.

1 Introduction. Let X be an infinite-dimensional Banach space with the closed unit ball B and the unit sphere S. A continuous mapping $R: B \rightarrow S$ with $R x=x$ for any $x \in S$ is a retraction of the ball onto the sphere. Since the works of Nowak [5] and Benyamini and Sternfeld [2] it is known that, for any infinite-dimensional Banach space X, there exists a k-lipschitzian retraction $R: B \rightarrow S$ (i.e. a retraction satisfying the Lipschitz condition $\|R x-R y\| \leq k\|x-y\|$, for all $x, y \in B)$. Let ψ be a measure of noncompactness defined on X (see Section 2). A mapping $T: D(T) \subset X \rightarrow X$ is said to be a $(\psi) k$-set contraction if there exists a constant $k \geq 0$ such that

$$
\psi(T A) \leq k \psi(A), \quad \text { for all bounded sets } A \subset D(T)
$$

We set

$$
\begin{gathered}
k_{0}(X):=\inf \{k \geq 1: \text { there is a } k \text {-lipschitzian retraction } R: B \rightarrow S\} \\
k_{\psi}(X):=\inf \{k \geq 1: \text { there is a }(\psi) k \text {-set contractive retraction } R: B \rightarrow S\} .
\end{gathered}
$$

In [3] it is proved that $k_{0}(X) \geq 3$. Recall that the Hausdorff measure of noncompactness γ on a Banach space X is defined by

$$
\gamma(A):=\inf \{r>0: A \text { can be covered by a finite number of balls centered in } X\}
$$

for all bounded sets $A \subset X$. If R is a k-lipschitzian retraction it is also $(\gamma) k$-set contractive. So that $k_{\gamma}(X) \leq k_{0}(X)$ for any infinite-dimensional Banach space X. See the book of Toledano, Benavides and Acedo [7] and the references therein for more details concerning measures of noncompactness and $(\psi) k$-set contractions. In [9], the author proved that $k_{\gamma}(C[0,1])=1$ and that, for any infinite-dimensional Banach space X, there is no retraction $R: B \rightarrow S$ being both, k-lipschitzian for some constant k and $(\gamma) 1$-set contractive.

Further he posed the problem to estimate $k_{\gamma}(X)$ for particular classical Banach spaces and to establish for which spaces is $k_{\gamma}(X)<k_{0}(X)$. For $1 \leq p<\infty$, let γ_{p} be the Hausdorff measure of noncompacness on $L_{p}[0,1]$. In the present note we prove that $k_{\gamma_{p}}\left(L_{p}[0,1]\right) \leq 2$, $1 \leq p<\infty$. Moreover, we observe that, for any infinite-dimensional Banach space X and for any measure of noncompacness ψ defined on X, there is no $(\gamma) 1$-set contractive retraction $R: B \rightarrow S$ being k-lipschitzian for some constant k.

[^0]2 Notations and definitions. Let X be a Banach space and \mathcal{B} the family of all bounded subsets of X. A mapping $\psi: \mathcal{B} \rightarrow[0,+\infty[$ is called a measure of noncompactness on X if it satisfies the following properties:

1) $\quad \psi(A) \quad=0$ if and only if A is precompact;
2) $\quad \psi(\overline{c o} A)=\psi(A)$, where $\overline{c o} A$ denotes the closed convex hull of A;
3) $\psi(A \cup B)=\max \{\psi(A), \psi(B)\}$;
4) $\psi(A+B) \leq \psi(A)+\psi(B)$;
5) $\psi(\lambda A) \quad=|\lambda| \psi(A), \lambda \in \mathbb{R}$.

Let $L_{p}:=L_{p}[0,1], 1 \leq p<\infty$, be the classical Lebesgue spaces with the usual norm denoted by $\|\cdot\|_{p}$. In the following we will assume $1 \leq p<\infty$ and we will always denote by S_{p} and B_{p} the unit sphere and the unit closed ball of L_{p}, respectively. Moreover, every function $f \in L_{p}$ will be extended outside $[0,1]$ by 0 . Then for $f \in L_{p}$ and $h>0$ consider the Steklow function

$$
f_{h}(t)=\frac{1}{2 h} \int_{[t-h, t+h]} f(s) d s
$$

for each $t \in[0,1]$. For any bounded set $A \subset L_{p}[0,1]$, we set

$$
\omega_{p}(A):=\lim _{\delta \rightarrow 0} \sup _{f \in A} \max _{0<h \leq \delta}\left\|f-f_{h}\right\|_{p}
$$

It can be shown that ω_{p} is a measure of non compactness on L_{p}. Moreover, as a straightforward consequence of the Kolmogorov compactness criterion in the spaces L_{p} (see, e. g., [4]) we get the following

Theorem 1 Let A be a bounded subset of L_{p}. Then

$$
\frac{1}{2} \omega_{p}(A) \leq \gamma_{p}(A) \leq \omega_{p}(A)
$$

Remark 2 In[8], Väth notes that the precise formula for the Hausdorff measure of noncompactness in L_{p}

$$
\gamma_{p}(A)=\frac{1}{2} \omega_{p}(A)
$$

given in [1] is false; see also [16].
3 Results. Define a mapping $Q_{p}: B_{p} \rightarrow B_{p}$ by

$$
\left(Q_{p} f\right)(t)= \begin{cases}\left(\frac{2}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{2}{1+\|f\|_{p}} t\right), & \text { for } t \in\left[0, \frac{1+\|f\|_{p}}{2}\right] \\ 0, & \text { for } \left.t \in] \frac{1+\|f\|_{p}}{2}, 1\right]\end{cases}
$$

It is easy to see that $\left\|Q_{p} f\right\|_{p}=\|f\|_{p}$ for all $f \in B_{p}$ and $Q_{p} f=f$ for all $f \in S_{p}$.
Proposition 3 The mapping Q_{p} is continuous.

Proof. Let $\left\{f_{n}\right\}$ be a sequence of elements of B_{p} such that $f_{n} \rightarrow f(n \rightarrow \infty)$ with respect to the norm $\|\cdot\|_{p}$. Set

$$
\begin{aligned}
& A_{n}:=\left[0, \frac{1+\left\|f_{n}\right\|_{p}}{2}\right] \cap\left[0, \frac{1+\|f\|_{p}}{2}\right] \\
& B_{n}:=\left[0, \frac{1+\left\|f_{n}\right\|_{p}}{2}\right] \triangle\left[0, \frac{1+\|f\|_{p}}{2}\right]
\end{aligned}
$$

for all $n \in \mathbb{N}$, where \triangle denotes the symmetric difference. Let $\varepsilon>0$. Since the family $\left\{f, f_{1}, f_{2}, \ldots\right\}$ has uniformly continuous norms and $\left\|f_{n}-f\right\|_{p} \rightarrow 0(n \rightarrow \infty)$, we can find an $n_{1} \in \mathbb{N}$ such that $\left\|f_{n}-f\right\|_{p} \leq \frac{\varepsilon}{5}$ and

$$
\begin{gathered}
\left\|Q_{p} f_{n}-Q_{p} f\right\|_{p} \leq\left\|\left(Q_{p} f_{n}-Q_{p} f\right) \chi_{A_{n}}\right\|_{p}+\left\|\left(Q_{p} f_{n}-Q_{p} f\right) \chi_{B_{n}}\right\|_{p} \\
\leq\left\|\left(Q_{p} f_{n}-Q_{p} f\right) \chi_{A_{n}}\right\|_{p}+\frac{\varepsilon}{5}, \text { for all } n \geq n_{1}
\end{gathered}
$$

Suppose $\left\|f_{n}\right\|_{p} \leq\|f\|_{p}$. Then, by the change of variables

$$
\begin{gathered}
s:=\frac{2}{1+\left\|f_{n}\right\|_{p}} t\left(t \in\left[0, \frac{1+\left\|f_{n}\right\|_{p}}{2}\right]\right), \text { it follows that } \\
\left\|\left(Q_{p} f_{n}-Q_{p} f\right) \chi_{A_{n}}\right\|_{p} \\
=\left[\int_{\left[0, \frac{1+\left\|f_{n}\right\|_{p}}{2}\right]}\left|\left(\frac{2}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f_{n}\left(\frac{2}{1+\left\|f_{n}\right\|_{p}} t\right)-\left(\frac{2}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{2}{1+\|f\|_{p}} t\right)\right|^{p} d t\right]^{\frac{1}{p}} \\
=\left[\int_{[0,1]}\left|f_{n}(s)-\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} s\right)\right|^{p} d s\right]^{\frac{1}{p}} \\
\leq\left\|f_{n}-f\right\|_{p}+\left[\int_{[0,1]}\left|f(s)-\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} s\right)\right|^{p} d s\right]^{\frac{1}{p}} .
\end{gathered}
$$

Now, suppose $\left\|f_{n}\right\|_{p}>\|f\|_{p}$. Then, by the change of variables

$$
\begin{gathered}
s:=\frac{2}{1+\|f\|_{p}} t\left(t \in\left[0, \frac{1+\|f\|_{p}}{2}\right]\right), \text { it follows that } \\
\left\|\left(Q_{p} f_{n}-Q_{p} f\right) \chi_{A_{n}}\right\|_{p}
\end{gathered}
$$

$$
\begin{gathered}
=\left[\int_{\left[0, \frac{1+\|f\|_{p}}{2}\right]}\left|\left(\frac{2}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f_{n}\left(\frac{2}{1+\left\|f_{n}\right\|_{p}} t\right)-\left(\frac{2}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{2}{1+\|f\|_{p}} t\right)\right|^{p} d t\right]^{\frac{1}{p}} \\
=\left[\int_{[0,1]}\left|\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f_{n}\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s\right)-f(s)\right|^{p} d s\right]^{\frac{1}{p}} \\
\leq\left[\int_{[0,1]}\left|\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f_{n}\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s\right)-\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s\right)\right|^{p} d s\right]^{\frac{1}{p}} \\
+\left[\int_{[0,1]}\left|\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s\right)-f(s)\right|^{p} d s\right]^{\frac{1}{p}} .
\end{gathered}
$$

Moreover, by the change of variables $u:=\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s(s \in[0,1])$, we have

$$
\begin{gathered}
{\left[\int_{[0,1]}\left|\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f_{n}\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s\right)-\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s\right)\right|^{p} d s\right]^{\frac{1}{p}}} \\
=\left[\int_{\left[0, \frac{1+\|f\|_{p}}{1+\left\|f f_{n}\right\|_{p}}\right]}\left|f_{n}(u)-f(u)\right|^{p} d u\right]^{\frac{1}{p}} \leq\left\|f_{n}-f\right\|_{p} .
\end{gathered}
$$

Then

$$
\begin{gathered}
\left\|\left(Q_{p} f_{n}-Q_{p} f\right) \chi_{A_{n}}\right\|_{p} \\
\leq\left\|f_{n}-f\right\|_{p}+\left[\int_{[0,1]}\left|\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} s\right)-f(s)\right|^{p} d s\right]^{\frac{1}{p}} .
\end{gathered}
$$

We set

$$
h_{n}(t):=\left\{\begin{array}{ll}
\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} t\right), & \text { if }\left\|f_{n}\right\|_{p} \leq\|f\|_{p}, \\
\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} f\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} t\right), & \text { if }\left\|f_{n}\right\|_{p}>\|f\|_{p},
\end{array} \quad(t \in[0,1]),\right.
$$

for any $n \in \mathbb{N}$.

Choose a continuous function $g:[0,1] \rightarrow \mathbb{R}$ such that $\|g-f\|_{p} \leq \frac{\varepsilon}{5}$. We put

$$
g_{n}(t):=\left\{\begin{array}{ll}
\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}} g\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} t\right), & \text { if }\left\|f_{n}\right\|_{p} \leq\|f\|_{p}, \\
\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} g\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} t\right), & \text { if }\left\|f_{n}\right\|_{p}>\|f\|_{p},
\end{array} \quad(t \in[0,1])\right.
$$

for any $n \in \mathbb{N}$. Suppose $\left\|f_{n}\right\|_{p} \leq\|f\|_{p}$. By the change of variables $s:=\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} t(t \in[0,1])$, we obtain that

$$
\begin{gathered}
\left\|g_{n}-h_{n}\right\|_{p} \\
=\left[\int_{[0,1]}\left|\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}}\left[g\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} t\right)-f\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} t\right)\right]\right|^{p} d t\right]^{\frac{1}{p}} \\
=\left[\int_{\left[0, \frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right]}|g(s)-f(s)|^{p} d s\right]^{\frac{1}{p}} \leq\|g-f\|_{p} \leq \frac{\varepsilon}{5}
\end{gathered}
$$

If $\left\|f_{n}\right\|_{p}>\|f\|_{p}$, by the change of variables $s:=\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} t(t \in[0,1])$, it follows again $\left\|g_{n}-h_{n}\right\|_{p} \leq\|g-f\|_{p} \leq \frac{\varepsilon}{5}$. Since g is continuous, $\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} \rightarrow 1(n \rightarrow \infty)$ and $\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} \rightarrow$ $1(n \rightarrow \infty)$ we have that

$$
\left|g_{n}(t)-g(t)\right| \rightarrow 0(n \rightarrow \infty)
$$

for each $t \in[0,1]$. Then $g_{n}(t) \rightarrow g(t)(n \rightarrow \infty)$, for each $t \in[0,1]$. On the other hand

$$
\left\|g-g_{n}\right\|_{p}=\left\{\begin{array}{l}
{\left[\int_{[0,1]}\left|g(t)-\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right)^{\frac{1}{p}} g\left(\frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}} t\right)\right|^{p} d t\right]^{\frac{1}{p}}, \text { if }\left\|f_{n}\right\|_{p} \leq\|f\|_{p}} \\
{\left[\int_{[0,1]}\left|g(t)-\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right)^{\frac{1}{p}} g\left(\frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}} t\right)\right|^{p} d t\right]^{\frac{1}{p}}, \text { if }\left\|f_{n}\right\|_{p}>\|f\|_{p}}
\end{array}\right.
$$

Moreover, we have that

$$
\left\|g_{n}\right\|_{p}=\left\{\begin{array}{l}
{\left[\int_{\left[0, \frac{1+\left\|f_{n}\right\|_{p}}{1+\|f\|_{p}}\right]}|g(s)|^{p} d s\right]^{\frac{1}{p}}, \text { if }\left\|f_{n}\right\|_{p} \leq\|f\|_{p}} \\
{\left[\int_{\left[0, \frac{1+\|f\|_{p}}{1+\left\|f_{n}\right\|_{p}}\right]}|g(s)|^{p} d s\right]^{\frac{1}{p}}, \text { if }\left\|f_{n}\right\|_{p}>\|f\|_{p}}
\end{array}\right.
$$

Then

$$
\lim _{n}\left\|g_{n}\right\|_{p}=\|g\|_{p}
$$

So that $\lim _{n}\left\|g_{n}-g\right\|_{p}=0$. Let $n_{2} \in \mathbb{N}$ such that $\left\|g_{n}-g\right\|_{p} \leq \frac{\varepsilon}{5}$, for any $n \geq n_{2}$. Set $\nu:=\left\{n_{1}, n_{2}\right\}$, we have

$$
\left\|Q_{p} f_{n}-Q_{p} f\right\|_{p} \leq\left\|\left(Q_{p} f_{n}-Q_{p} f\right) \chi_{A_{n}}\right\|_{p}+\frac{\varepsilon}{5}
$$

$$
\begin{gathered}
\leq\left\|f_{n}-f\right\|_{p}+\left\|f-h_{n}\right\|_{p}+\frac{\varepsilon}{5} \\
\leq\left\|f_{n}-f\right\|_{p}+\|f-g\|_{p}+\left\|g-g_{n}\right\|_{p}+\left\|g_{n}-h_{n}\right\|_{p}+\frac{\varepsilon}{5} \leq \varepsilon
\end{gathered}
$$

for all $n \geq \nu$.
Proposition 4 The mapping Q_{p} is an $\left(\gamma_{p}\right)$ 2-set contraction.
Proof. Let $f \in B_{p}$ and $0<h \leq \frac{1}{4}$. Set $\alpha:=\frac{1+\|f\|_{p}}{2}$. In this proof we consider the Steklov function $f_{\frac{h}{a}}$ of f defined by

$$
f_{\frac{h}{\alpha}}(t)=\frac{\alpha}{2 h} \int_{\left[t-\frac{h}{\alpha}, t+\frac{h}{\alpha}\right]} f(s) d s
$$

for $t \in[0,3 / 2]$ and equal to 0 elsewhere. Moreover, we still denote by $\|\cdot\|_{p}$ the usual norm on $L_{p}[0,3 / 2]$. We start to prove that

$$
\left\|f-f_{\frac{h}{\alpha}}\right\|_{p}=\left\|Q_{p} f-\left(Q_{p} f\right)_{h}\right\|_{p}
$$

Infact

$$
\begin{gathered}
\left\|f-f_{\frac{h}{\alpha}}\right\|_{p}^{p}=\int_{\left[0, \frac{3}{2}\right]}\left|f(\tau)-f_{\frac{h}{\alpha}}(\tau)\right|^{p} d \tau \\
=\int_{\left[0, \frac{h}{\alpha}\right]}\left|f(\tau)-f_{\frac{h}{\alpha}}(\tau)\right|^{p} d \tau+\int_{\left[\frac{h}{a}, 1-\frac{h}{\alpha}\right]}\left|f(\tau)-f_{\frac{h}{a}}(\tau)\right|^{p} d \tau \\
+\int_{\left[1-\frac{h}{\alpha}, 1\right]}\left|f(\tau)-f_{\frac{h}{\alpha}}(\tau)\right|^{p} d \tau+\int_{\left[1,1+\frac{h}{\alpha}\right]}\left|f(\tau)-f_{\frac{h}{\alpha}}(\tau)\right|^{p} d \tau \\
=\int_{\left[0, \frac{h}{\alpha}\right]}\left|f(\tau)-\frac{\alpha}{2 h} \int_{\left[0, \tau+\frac{h}{\alpha}\right]} f(s) d s\right|^{p} d \tau+\int_{\left[\frac{h}{\alpha}, 1-\frac{h}{\alpha}\right]}\left|f(\tau)-\frac{\alpha}{2 h} \int_{\left[\tau-\frac{h}{\alpha}, \tau+\frac{h}{\alpha}\right]} f(s) d s\right|^{p} d \tau \\
\quad+\int_{\left[1-\frac{h}{\alpha}, 1\right]}\left|f(\tau)-\frac{\alpha}{2 h} \int_{\left[\tau-\frac{h}{\alpha}, 1\right]} f(s) d s\right|^{p} d \tau+\int_{\left[1,1+\frac{h}{\alpha}\right]}\left|-\frac{\alpha}{2 h} \int_{\left[\tau-\frac{h}{\alpha}, 1\right]} f(s) d s\right|^{p} d \tau .
\end{gathered}
$$

By the change of variables $\tau=\frac{t}{\alpha}$ and $s=\frac{x}{\alpha}$, we obtain that

$$
\begin{aligned}
\| f & -f_{\frac{h}{\alpha}} \|_{p}^{p}=\int_{[0, h]}\left|\frac{1}{\alpha^{\frac{1}{p}}} f\left(\frac{t}{\alpha}\right)-\frac{1}{2 h} \int_{[0, t+h]} \frac{1}{\alpha^{\frac{1}{p}}} f\left(\frac{x}{\alpha}\right) d x\right|^{p} d t \\
& +\int_{[h, \alpha-h]}\left|\frac{1}{\alpha^{\frac{1}{p}}} f\left(\frac{t}{\alpha}\right)-\frac{1}{2 h} \int_{[t-h, t+h]} \frac{1}{\alpha^{\frac{1}{p}}} f\left(\frac{x}{\alpha}\right) d x\right|^{p} d t
\end{aligned}
$$

$$
\begin{gathered}
+\int_{[\alpha-h, \alpha]}\left|\frac{1}{\alpha^{\frac{1}{p}}} f\left(\frac{t}{\alpha}\right)-\frac{1}{2 h} \int_{[t-h, \alpha]} \frac{1}{\alpha^{\frac{1}{p}}} f\left(\frac{x}{\alpha}\right) d x\right|^{p} d t \\
\quad+\int_{[\alpha, \alpha+h]}\left|-\frac{1}{2 h} \int_{[t-h, \alpha]} \frac{1}{\alpha^{\frac{1}{p}}} f\left(\frac{x}{\alpha}\right) d x\right|^{p} d t
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left\|f-f_{\frac{h}{\alpha}}\right\|_{p}^{p}=\int_{[0, h]}\left|Q_{p} f(t)-\left(Q_{p} f\right)_{h}(t)\right|^{p} d t+\int_{[h, \alpha-h]}\left|Q_{p} f(t)-\left(Q_{p} f\right)_{h}(t)\right|^{p} d t \\
+\int_{[\alpha-h, \alpha]}\left|Q_{p} f(t)-\left(Q_{p} f\right)_{h}(t)\right|^{p} d t+\int_{[\alpha, \alpha+h]}\left|Q_{p} f(t)-\left(Q_{p} f\right)_{h}(t)\right|^{p} d t \\
=\left\|Q_{p} f-\left(Q_{p} f\right)_{h}\right\|_{p}^{p}
\end{gathered}
$$

Then, for any set $A \subset B_{p}$, we have that

$$
\omega_{p}^{\prime}\left(Q_{p} A\right)=\lim _{\delta \rightarrow 0} \sup _{f \in A} \max _{0<h \leq \delta}\left\|Q_{p} f-\left(Q_{p} f\right)_{h}\right\|_{p} \leq \lim _{\delta \rightarrow 0} \sup _{f \in A} \max _{0<h \leq 2 \delta}\left\|f-f_{h}\right\|_{p}=\omega_{p}^{\prime}(A),
$$

where ω_{p}^{\prime} is defined on $L_{p}[0,3 / 2]$ as ω_{p}. Let γ_{p}^{\prime} be the Hausdorff measure of noncompactness on $L_{p}[0,3 / 2]$. Then, since $\gamma_{p}(C)=\gamma_{p}^{\prime}(C)$ for all sets $C \subset B_{p}$ and an analogous of Theorem 1 holds in $L_{p}[0,3 / 2]$, we have that

$$
\gamma_{p}\left(Q_{p} A\right) \leq \omega_{p}^{\prime}\left(Q_{p} A\right) \leq \omega_{p}^{\prime}(A) \leq 2 \gamma_{p}(A)
$$

for all sets $A \subset B_{p}$.
For any $u>0$, we define the mapping $P_{p, u}: B_{p} \rightarrow L_{p}$ putting

$$
\left(P_{p, u} f\right)(t):=\max \left\{0, \frac{u}{2}\left(2 t-\|f\|_{p}-1\right)\right\},(t \in[0,1])
$$

Observe that, for any $u>0$ and for all $f \in B_{p}$, we have $\left(P_{p, u} f\right)(t)=0$ for any $t \in\left[0, \frac{1+\|f\|_{p}}{2}\right]$. Moreover, it easy to see that, for any $u>0$, the mapping $P_{p, u}$ is continuous and compact. We set, for any $u>0$,

$$
F_{p, u}(\lambda):=\lambda^{p}+\frac{1}{2(p+1)}\left(\frac{u}{2}\right)^{p}(1-\lambda)^{p+1},(\lambda \in[0,1])
$$

Then, it is simple to verify that $F_{p, u}$ attains its minimum for a unique $\left.\lambda_{u} \in\right] 0,1[$. Moreover, $0<F_{p, u}\left(\lambda_{u}\right)<1$ and

$$
\lim _{u \rightarrow \infty} \lambda_{u}=1
$$

For any $u>0$, consider the mapping $T_{p, u}: B_{p} \rightarrow L_{p}$ defined by

$$
T_{p, u} f=Q_{p} f+P_{p, u} f
$$

Clearly, the mapping $T_{p, u}$ is an $\left(\gamma_{p}\right)$ 2-set contraction, and $T_{p, u} f=f$ for any $f \in B_{p}$. Further, for any $u>0$ and for all $f \in B_{p}$, we have that

$$
\begin{gathered}
\left\|T_{p, u} f\right\|_{p}^{p}=\int_{\left[0, \frac{1+\|f\|_{p}}{2}\right]}\left|Q_{p} f(t)\right|^{p} d t+\int_{\left[\frac{1+\|f\|_{p}}{2}, 1\right]}\left|Q_{p} f(t)+P_{p, u} f(t)\right|^{p} d t \\
=\|f\|_{p}^{p}+\int_{\left[\frac{1+\|f\|_{p}}{2}, 1\right]}\left|\frac{u}{2}\left(2 t-\|f\|_{p}-1\right)\right|^{p} d t \\
=\|f\|_{p}^{p}+\frac{1}{2(p+1)}\left(\frac{u}{2}\right)^{p}\left(1-\|f\|_{p}\right)^{p+1}=F_{p, u}\left(\|f\|_{p}^{p}\right)
\end{gathered}
$$

So that, $\left\|T_{p, u} f\right\|_{p}^{p} \geq F_{p, u}\left(\lambda_{u}\right)$ for any $f \in B_{p}$. Now, we define

$$
R_{p, u} f=\frac{1}{\left\|T_{p, u} f\right\|_{p}} T_{p, u} f
$$

Then, for any set $A \subset B_{p}$, we have that

$$
\gamma_{p}\left(R_{p, u} A\right) \leq\left(\frac{1}{F_{p, u}\left(\lambda_{u}\right)}\right)^{\frac{1}{p}} 2 \gamma_{p}(A)
$$

Therefore $R_{p, u}: B_{p} \rightarrow S_{p}$ is a $\left(\gamma_{p}\right) 2\left(\frac{1}{F_{p, u}\left(\lambda_{u}\right)}\right)^{\frac{1}{p}}$-set contractive retraction. Since $\lim _{u \rightarrow \infty} F_{p, u}\left(\lambda_{u}\right)=1$, for any $\varepsilon>0$ there exists $u>0$ such that the mapping $R_{p, u}: B_{p} \rightarrow$ S_{p} is a $\left(\gamma_{p}\right)(2+\varepsilon)$-set contractive retraction. Thus, the following result holds.

Theorem $5 k_{\gamma_{p}}\left(L_{p}\right) \leq 2$.

In the context above described the following question remains open.
Problem 6 Let X be an infinite-dimensional Banach space and let ψ be a measure of noncompactness on X. Does there exist $a(\psi)$ 1-set contractive retraction $R: B \rightarrow S$?

However, we have that
Theorem 7 Let X be an infinite-dimensional Banach space and let ψ be a measure of noncompactness on X. If $R: B \rightarrow S$ is $a(\psi) 1$-set contractive retraction, then it is not k-lipschitzian for any constant k.

The proof of the above theorem is carried out analogously to the proof of Theorem II in [9].

References

[1] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. S. Rodkina and B. N. Sadovskiĭ, Measures of noncompactness and condensing operators, Birkhäuser, Basel, Boston, Berlin, 1992.
[2] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc., 88 (1983), 439-445.
[3] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge 1990.
[4] A. Kufner, J. Oldřich and F. Svatopluk, Function Spaces, Noordhoff International Publishing, Prague, 1977.
[5] B. Nowak, On the Lipschitzian retraction of the unit ball in infinite dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Ser. Sci. Math., 27 (1979), 861-864.
[6] A. Otáhal, Measure of noncompactness of subsets of Lebesgue spaces, Cas. Pestovani. Mat., 103 (1978), 67-72.
[7] J. M. Toledano, T. D. Benavides and G. L. Acedo, Measure of noncompactness in metric fixed point theory, Birkhäuser, Basel, Boston, Berlin, 1997.
[8] M. Väth, A compactness criterion of mixed Krasnoselskǐ-Riesz type in regular ideal spaces of vector functions, Z. Anal. Anwendungen, 18 (1999) n. 3, 713-732.
[9] J. Wosko, An example related to the retraction problem, Ann. Univ. Mariae Curie-Sklodowska, 45 (1991), 127-130.
*Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università di Napoli "Federico II", Via Cintia - 80126, Napoli, Italy e-mail: aletromb@unical.it
** Dipartimento di Matematica, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
e-mail: trombetta@unical.it

[^0]: 2000 Mathematics Subject Classification. 46E30, 47H09.
 Key words and phrases, retraction, k-set contraction, measure of noncompactness.

