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Abstract. As an extension of Ozeki's inequality we give an inequality which estimates

the di�erence
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derived from the weighted Cauchy-Schwartz inequality for n-tuples a = (a1; :::; an); b =

(b1; :::; bn) and p = (p1; :::; pn) of positive numbers under certain conditions. We discuss

the upper bound of the di�erence not only in the general case but also in the special

cases that a and b are monotonic in the opposite sense and in the same sense.

1 Introduction As a complement of Cauchy-Schwartz inequality, the following inequal-

ity was given in [4] (cf. [7, p. 121]) which was originally presented by Ozeki [8]: If a =

(a1; :::; an) and b = (b1; :::; bn) are n-tuples of positive numbers satisfying

m1 � ak �M1; m2 � bk �M2 (k = 1; 2; : : : ; n);

0 < m1 <M1 and 0 < m2 < M2;
(1)

then
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Put T (a; b) the left-hand side of the above inequality, then T (a; b) is considered as

a function on the product [m1;M1]
n � [m2;M2]

n of n-dimensional cubes [m1;M1]
n and

[m2;M2]
n. Then it is Ozeki's idea to make use of the following two facts in order to prove

the inequality (2) (and the technique was also useful for further results in [3], [5]):

(i) T (a; b) is a separately convex function with respect to a and b, so that its maximum

is attained at an extreme point, namely, vertex of 2n-dimensional rectangle [m1;M1]
n �

[m2;M2]
n.

(ii) Denote by c = (c1; : : : ; cn) and c = (c1; : : : ; cn) the rearrangements of a nonnegative

n-tuple c = (c1; : : : ; cn) in nonincreasing order and in nondecreasing order, respectively.

Then for a and b,
P

a
k
bk =

P
akbk �

P
akbk [2, p. 261], so that

T (a; b) = T (a; b) � T (a; b):(3)

As a result, from (3) the inequality (2) was obtained by considering T (a; b) for a and b

such that they are monotonic in the opposite sense.
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Now let D(a; b) = n
P

n

k=1 akbk �
P

n

k=1 ak

P
n

k=1 bk; which is n2 times of the covarience

between a and b: As an estimation of D(a; b); Biernacki, Pidek and Ryll-Nardzewski [1] (cf.

[7, p. 299]) presented the following result:

jD(a; b)j �
h
n

2

i�
n�

h
n

2

i�
(M1 �m1)(M2 �m2) (for (a; b) satisfying (1)):

In particular, taking D(a; b) for a and b such that they are monotonic in the same sense,

(say, a = a and b = b), we obtain an inequality, which is nothing but a complement of the

well-known �Ceby�sev's inequality, a kind of Gr�uss type inequalities.

It is a problem to estimate T (a; b) with the restriction that a and b are monotonic in the

same sense, likely to the above consideration and several works [6], [9], [10], etc. related to

Gr�uss' inequality.

Now to consider the problem more generally, de�ne by

T (a; b; p) =
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2(4)

the di�erence derived from the weighted Cauchy-Schwartz inequality with a positive n-

weight (n-tuple) p = (p1; :::; pn);
P

n

k=1 pk = 1. Then unlike T (a; b) the equality-inequality

T (a; b; p) = T (a; b; p) � T (a; b; p) corresponding to (3) are false in general. (For example,

if a = (1; 1; 1); b = (2; 1; 2) and p = ( 3
15
;
7
15
;
5
15
) then T (a; b; p) = 36

15
; T (a; b; p) = 50

15

and T (a; b; p) = 56
15
:) This means that rearrangements of a and b to be monotonic in the

opposite sense are not e�ective to obtain the maximum of Tp(a; b) = T (a; b; p): However,

the calculation of the maximum for such a and b yields, in a sense, an extension of (2).

In this paper, using Ozeki's technique on convex functions, we give upper bounds of

(4) not only in the general case for a and b, but also in the special cases that a and b are

monotonic in the opposite sense and in the same sense.

2 Preliminaries We prepare some useful facts for our discussion. Let In = f1; :::; ng

and de�ne an index set � in I
2
n
= In � In by

� =
�
(i; j) 2 I

2
n
; i < j

	
:(5)

Now we state a weighted version of Lagrange's formula (cf. [7, p. 84]), which we can prove

easily.

Lemma 2.1

T (a; b; p) =
X

(i;j)2�

pipj(aibj � ajbi)
2
:(6)

>From this lemma we can see the following:

Lemma 2.2 Tp(a; b) = T (a; b; p) is a separately convex function on [m1;M1]
n� [m2;M2]

n

with respect to a and b, that is,

Tp(�a + (1� �)a0; b) � �Tp(a; b) + (1� �)Tp(a
0
; b); � 2 [0; 1]

and

Tp(a; �b + (1� �)b0) � �Tp(a; b) + (1� �)Tp(a; b
0); � 2 [0; 1]:
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Consequently, we see that Tp(a; b) attains its maximum at a point (a; b) of [m1;M1]
n �

[m2;M2]
n, with both a and b being vertices of [m1;M1]

n and [m2;M2]
n, respectively. (Note

that a point v = (v1; :::; vn) 2 [m;M ]n is a vertex if (and only if) each vk is equal to m or

M .)

For two real numbers m; M , m < M , let

K = f(x1; : : : ; xn) 2 [m;M ]n;x1 � � � � � xng

and

L = f(x1; : : : ; xn) 2 [m;M ]n;x1 � � � � � xng :

Then K and L are convex subsets in [m;M ]n. The following fact related to their extreme

points is easily seen, say, by the induction method.

Lemma 2.3 Every extreme point of K (L) is a vertex of [m;M ]n:

Now assume that A;B;C > 0, and put

~A = B + C �A; ~B = C +A �B; ~C = A +B � C and

D = A ~A +B ~B +C ~C (= 2AB + 2BC + 2CA�A
2 �B

2 �C
2):

(7)

Then it is not diÆcult to see that

(i) at least two of ~A; ~B and ~C are positive, and

(ii) if all of ~A; ~B and ~C are positive then D > 0:

The following general fact (cf. [4]) is very useful for our discussion.

Lemma 2.4 With the same notations as above, consider the function

u = f(x; y; z) = Axy +Bxz +Cyz(8)

under the condition

x; y; z � 0; x + y + z = k > 0 (k is a constant):(9)

(i) If ~A; ~B; ~C > 0; then D > 0 and

u = �C

( 
y �
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D
k

!
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x�
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D
k

!)2

�
D

4C
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D
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!2

+
ABC

D
k
2
;(10)

so that

u � umax(= the maximum of u) =
ABC

D
k
2
;

and umax is attained at a point

(x; y; z) =

 
C ~C

D
k;
B ~B

D
k;
A ~A

D
k

!
:

(ii) If one of ~A; ~B; ~C is nonpositive, say, ~B � 0; (hence ~A; ~C > 0), then

u = � ~Bxz +Ax(k � x) + Cz(k � z)(11)
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and

u � umax =
B

4
k
2
:

The value umax is attained at

(x; y; z) = (k=2; 0; k=2):

Proof. (i) Putting z = k � x � y; we have, from (8),

u = �Cy2 �
�
~Ax� Ck

�
y �Bx

2 +Bkx:

Taking the 4C times of the both sides, we have

4Cu = �4C2
y
2 � 4C

�
~Ax �Ck

�
y � 4BCx2 + 4BCkx

= �
�
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:

Hence we have
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Now, if x = C ~C
D

k; y = B ~B
D

k, (so that z = k� x� y = A ~A
D

k), then u = umax =
ABC

D
k
2
:

(ii) Putting y = k � x � z; we have, from (8),

u = � ~Bxz +Ax(k � x) + Cz(k � z):

Since xz �
�
x+z
2

�2
�

k
2

4
, x(k � x) �

k
2

4
and z(k � z) �

k
2

4
, we have

u � � ~B �
1

4
k
2 +A �

1

4
k
2 +C �

1

4
k
2 =

1

4
Bk

2
:

Hence umax =
1
4
Bk

2, which is attained at (x; y; z) = (k=2; 0; k=2): 2

3 Weighted Ozeki's inequality In this section we give an upper bound of T (a; b; p)

without any assumption of monotony on positive n-tuples a and b. Let us de�ne, for a

positive n-weight p = (p1; : : : ; pn) with
P

n

k=1 pk = 1,

P (X) =
X
k2X

pk for X � In:

say, as in [11]. Then we have:
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Lemma 3.1 Let a = (a1; : : : ; an) and b = (b1; : : : ; bn) be n-tuples such that ak = 1 or � and

bk = 1 or � (k = 1; : : : ; n), and let p = (p1; : : : ; pn) be a positive n-weight with
P

n

k=1 pk = 1.

Put

Ja = fk 2 In; ak = 1g and Jb = fk 2 In; bk = 1g:

Then

T (a; b; p) = P (Ja \ Jb)P (Ja \ J
c

b
)(1� �)2 + P (Ja \ Jb)P (J

c

a
\ Jb)(1 � �)2

+ P (Ja \ Jb)P (J
c

a
\ J

c

b
)(� � �)2 + P (Ja \ J

c

b
)P (Jc

a
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c

b
)P (Jc

a
\ J

c

b
)�2(1� �)2 + P (Jc

a
\ Jb)P (J

c

a
\ J

c

b
)�2(1� �)2:

(12)

Proof. First note that In is devided into the four subsets

J1 = Ja \ Jb; J2 = Ja \ J
c

b
; J3 = J

c

a
\ Jb and J4 = J

c

a
\ J

c

b
;

so that � = f(i; j) 2 I
2
n
; i < jg is devided into the ten subsets

�k;l = Jk � Jl; 1 � k � l � 4:

Let
P

�k;l
=
P

(i;j)2�k;l
pipj(aibj�ajbi)

2
: Then we see that T (a; b; p) is the totality of sumsP

�k;l
; 1 � k � l � 4 by Lemma 2.1. We can easily see that

P
�k;k

= 0: It is also easy to

compute
P

�k;l
, for k < l: say, for k = 1; l = 2 we have

X
�1;2

=
X

(i;j)2J1�J2

pipj (aibj � ajbi)
2 = P (J1)P (J2)(1 � �)2:

Consequently, we have

T (a; b; p) =
X
�1;2

+
X
�1;3

+
X
�1;4

+
X
�2;3

+
X
�2;4

+
X
�3;4

= P (J1)P (J2)(1 � �)2 + P (J1)P (J3)(1� �)2 + P (J1)P (J4)(� � �)2

+ P (J2)P (J3)(1 � ��)2 + P (J2)P (J4)�
2(1 � �)2 + P (J3)P (J4)�

2(1� �)2:

2

Now we have the following extension of Ozeki's inequality (cf. [4, Theorem 2.1]).

Theorem 3.2 Let a and b be positive n-tuples satisfying (1) and let p be a positive n-weight

with
P

n

k=1 pk = 1. Assume that � = m1=M1 � m2=M2 = �: Then

T (a; b; p)

�M
2
1M

2
2 max
X�In

�
(1 � ��)2

4
(1� P (X))2 + (1� �)2P (X)(1 � P (X))

�
:

(13)

Proof. We may assume that M1 = M2 = 1 (and then write � = m1; � = m2) for

convenience. In order to obtain the maximum or the best upper bound of Tp(a; b) =

T (a; b; p), we have to calculate, by convexity of T (a; b; p), its value for a and b such that

ai = 1 or �; bi = 1 or � (i = 1; :::; n): Hence we may apply the preceding lemma. Put

A = �
2(1� �)2; B = (1 � ��)2; C = �

2(1� �)2;
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E = (1� �)2; F = (�� �)2; G = (1� �)2;

and furthermore put

x = P (Ja \ J
c

b
); y = P (Jc

a
\ J

c

b
); z = P (Jc

a
\ Jb) and w = P (Ja \ Jb):

Then we have

x + y + z + w = 1 (x; y; z; w � 0)

and from (12)

u := T (a; b; p) = Axy +Bxz + Cyz +Exw + Fyw +Gzw:

First note that for positive numbers A;B;C we have

~B = C +A�B = �
2(1� �)2 + �

2(1� �)2 � (1� ��)2

= �(1� �)(1� �)(1 + � + � � ��) < 0;

because 0 < � < 1 and 0 < � < 1. Hence since x + y + z = 1� w; we have, by Lemma 2.4

(ii),

Axy +Bxz + Cyz �
B

4
(1 � w)2:

Next from the assumption � � �; we see E � F;G; so that

Exw + Fyw +Gzw � Ew(x + y + z) = Ew(1� w):

Hence we have

T (a; b; p) �
B

4
(1 �w)2 +Ew(1� w);(14)

from which we obtain the desired inequality (13). 2

Now we obtain the following result [4, Theorem 4.1] from the preceding theorem.

Theorem 3.3 With the same notations and the same assumptions as in Theorem 3:2,

T (a; b; p) �
1

3
M

2
1M

2
2 (1� ��)2 =

1

3
(M1M2 �m1m2)

2
:

Proof. As before we may assume M1 = M2 = 1: Write g(w) the right-hand side of (14).

Then it suÆces to show that

g(w) �
1

3
B (0 � w � 1):

Since E � B � 4E and

g(w) = �
4E �B

4
w
2 +

2E �B

2
w +

B

4
;

we have, by an elementary computation,

max
0�w�1

g(w) =

(
E
2

4E�B
if (E �)B � 2E;

B

4
if 2E � B � 4E:

Furthermore, it is not diÆcult to see that

E
2

4E �B
�

1

3
B (if E � B � 2E):

Hence we have the desired inequality. 2
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4 The di�erence T (a; b; p) for oppositely ordered a and b In this section we give

an upper bound of Tp(a; b) = T (a; b; p) for a and b ordered oppositely. We con�ne ourselves

to the case that a is ordered nonincreasingly and b is ordered nondecreasingly. Recall that

from Lemmas 2.2 and 2.3 the function Tp(a; b) is separately convex with respect to a and

b; and attains its maximum at a point (a; b) such that

a = (

sz }| {
M1; : : : ;M1;

n�sz }| {
m1; : : : ;m1) and b = (

tz }| {
m2; : : : ;m2;

n�tz }| {
M2; : : : ;M2);

s; t 2 I
�

n
= In [ f0g:

(15)

Now we have

Lemma 4.1 Let a(s) and b
(t) be n-tuples of real numbers such that

a
(s) = (

sz }| {
1; : : : ; 1;

n�sz }| {
�; : : : ; �) and b

(t) = (

tz }| {
�; : : : ; �;

n�tz }| {
1; : : : ; 1);

s; t 2 I
�

n
= In [ f0g;

(16)

and let p = (p1; � � � ; pn) be a positive n-weight with
P

n

i=1 pi = 1: Write Pk =
P

k

i=1 pi; for

k 2 I
�
n
(P0 = 0): Then

T (a(s); b(t); p) =

8>>>>>><
>>>>>>:

Pt(Ps � Pt)(1 � �)2+Pt(1� Ps)(1 � ��)2

+(Ps � Pt)(1 � Ps)(1 � �)2

if 0 � t � s � n;

Ps(Pt � Ps)�(1 � �)2+Ps(1� Pt)(1 � ��)2

+(Pt � Ps)(1 � Pt)�(1 � �)2

if 0 � s � t � n:

(17)

Proof.

Case I : 0 � t � s � n: Rewriting a = a
(s) and b = b

(t) more precisely, we have

a = (

tz }| {
1; : : : ; 1;

s�tz }| {
1; : : : ; 1;

n�sz }| {
�; : : : ; �); and b = (

tz }| {
�; : : : ; �;

s�tz }| {
1; : : : ; 1;

n�sz }| {
1; : : : ; 1):

Then with the same notations as in Section 3 we have

Ja = f1; : : : ; sg and Jb = ft+ 1; : : : ; ng;

and � = f(i; j) 2 I
2; i < jg is devided into the three subsets

Ja \ J
c

b
(= J2); Ja \ Jb (= J1) and J

c

a
\ Jb (= J3):

Hence similarly as in Lemma 3.1 of Section 3, T (a; b; p) is the sum of
P

J1;2
;
P

J1;3
andP

J2;3
: Note that P (J2) = Pt; P (J1) = Ps � Pt and P (J3) = 1� Ps: Hence we have

T (a; b; p) = P (J1)P (J2)(1 � �)2 + P (J1)P (J3)(1 � �)2 + P (J2)P (J3)(1 � ��)2

= Pt(Ps � Pt)(1 � �)2 + Pt(1 � Ps)(1 � ��)2 + (Ps � Pt)(1 � Ps)(1� �)2:

Case II: 0 � s � t � n: By the similar argument as in Case I, we have

T (a(s); b(t); p) = �
2(1 � �)2Pt(Ps � Pt) + (1 � ��)2Pt(1 � Ps)

+ �
2(1 � �)2(Ps � Pt)(1 � Ps):
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Summarizing Cases I and II, we obtain (17). 2

Now we show the following result stronger than Theorem 3.2 with the restriction that

a and b are oppositely ordered.

Theorem 4.2 Let a and b be positive n-tuples satisfying

M1 � a1 � � � � � an �m1 and m2 � b1 � � � � bn �M2;

and let p = (p1; : : : ; pn) be an n-weight with
P

n

k=1 pk = 1: Put � = m1=M1; � = m2=M2;

A = (1 � �)2; B = (1� ��)2; C = (1� �)2;

A1 = �
2(1 � �)2; B1 = B; C1 = �

2(1� �)2;

and de�ne ~A; ~B; ~C and D similarly as (7): (Furthermore, correspondingly de�ne ~A1;
~B1 and

~C1:) Then

D = f4� (1 + �)(1 + �)g (1 + �)(1 + �)(1� �)2(1� �)2

and
ABC

D
=

(1� ��)2

f4� (1 + �)(1 + �)g (1 + �)(1 + �)
;

(18)

and the following results hold.

(i) If (1 + �)(1 + �) < 2, then

T (a; b; p) �M
2
1M

2
2 max

�
ABC

D
� C�

2 �
D

4C
�
2
; B

�
1

4
� �

2

��
:(19)

(ii) If (1 + �)(1 + �) � 2, then

T (a; b; p) �M
2
1M

2
2B

�
1

4
� �

2

�
:(20)

Here, �; � and � are de�ned as follows:8>><
>>:
� = min1�t�n�1

���Pt � C ~C
D

��� ;
� = min1�t<s�n�1

���(Ps � Pt) �
B ~B
D

+
~A
2C

�
Pt �

C ~C
D

���� and

� = min1�t�n�1
��1
2
� Pt

�� :
(21)

Proof. We may assume that M1 = M2 = 1, and write m1 = � and m2 = � as in Theorem

3.2. Then by convexity of T (a; b; p) = Tp(a; b) and Lemma 2.3 we may compute the max-

imum of Tp(a; b) for (a; b) = (a(s); b(t)); s; t 2 I
�

n
; where a(s) and b

(t) are positive n-tuples

de�ned as (16). First we consider

Case I: 0 � t � s � n: Put

x = Pt; y = Ps � Pt and z = 1� Ps:

Then from (17) of Lemma 4.1

(u =) T (a(s); b(t); p) = Axy +Bxz + Cyz:
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Now consider the two subcases I-(1) and I-(2) as follows.

I-(1): Assume (1 + �)(1 + �) < 2: Then

~B = C +A�B = (1� �)2 + (1� �)2 � (1 � ��)2 = 2� (1 + �)(1 + �) > 0:

(Note that (1+�)(1 +�) < 2 is equivalent to ~B > 0:) For ~A and ~C; since B = (1���)2 >

(1 � �)2 = A; we have ~A = B + C �A > 0; and similarly ~C > 0: By Lemma 2.4 (cf. (10))

we can write

u = �C

( 
y �

B ~B

D

!
+

~A

2C

 
x �

C ~C

D

!)2

�
D

4C

 
x �

C ~C

D

!2

+
ABC

D
:

Hence from the above de�ntion of � and �, we have

u � �C�2 �
D

4C
�
2 +

ABC

D
:

Here, it is an elementary computation to show that D and ABC=D are expressed as (18)

in � and �:

I-(2): Assume (1 + �)(1 + �) � 2: Then ~B � 0, so that ~A; ~C > 0: By Lemma 2.4 (cf.

(11)) we can write

u = � ~Bxz +Ax(1 � x) + Cz(1� z);

and since

xz = x(1 � x � y) � x(1 � x) =
1

4
�

�
1

2
� x

�2

�
1

4
� �

2
;

z(1 � z) �
1

4
� �

2 (cf. � is de�ned in (21));

we then have

u � (� ~B +A + C)

�
1

4
� �

2

�
= B

�
1

4
� �

2

�
:

Case II: 0 � s � t � n: Put

x = Ps; y = Pt � Ps and z = 1� Pt:

Then similarly as Case I, from Lemma 4.1

u = T (a(s); b(t); p) = A1xy +B1xz + C1yz;

and furthemore

~A1 = B1 + C1 �A1 = (1� ��)2 + �
2(1� �)2 � �

2(1� �)2

= (1� �)
�
(1 + �

2)(1 � �) + 2�(1 � �)
	
> 0;

~B1 = C1 +A1 �B1 = �(1� �)(1 � �)(1 + �+ � � ��) � 0;

~C1 = A1 +B1 � C1 = (1� �)
�
(1 + �

2)(1 � �) + 2�(1� �)
	
> 0:

Hence by Lemma 2.4 (ii)

u � B1

�
1

4
� �

2

�
= B

�
1

4
� �

2

�
;
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so that

T (a; b; p) �M
2
1M

2
2B

�
1

4
� �

2

�
:

We notice that the constant � is independent from A;B; :::, so that it is identical in Cases

I and II. Summarizing the two cases, we obtain the desired facts (i) and (ii). 2

Considering the special cases � = � = 0 and � = 0 in the preceding theorem, we have:

Theorem 4.3 With the same notations and the same assumptions as in Theorem 4:2; the

following results hold.

(i) If (1 + �)(1 + �) < 2; then

T (a; b; p) �
M

2
1M

2
2ABC

D
=

M
2
1M

2
2 (1� ��)2

f4� (1 + �)(1 + �)g (1 + �)(1 + �)
:

If there are integers s = s0; t = t0 (s0 > t0) such that

Pt0 =
C ~C

D
and Ps0 � Pt0 =

B ~B

D
;

then

Tmax (= the maximum of Tp(a; b) = T (a; b; p)) =
M

2
1M

2
2ABC

D
;

which is attained at (a; b) such that

a = (

s0z }| {
M1; : : : ;M1;

n�s0z }| {
m1; : : : ;m1) and b = (

t0z }| {
m2; : : : ;m2;

n�t0z }| {
M2; : : : ;M2):

(ii) If (1 + �)(1 + �) � 2 then

T (a; b; p) �
M

2
1M

2
2B

4
=

M
2
1M

2
2 (1� ��)2

4
:

If there is an integer t = t0 such that Pt0 = 1=2; then

Tmax =
M

2
1M

2
2B

4
;

which is attained at (a; b) such that

a = (

t0z }| {
M1; : : : ;M1;

n�t0z }| {
m1; : : : ;m1) and b = (

t0z }| {
m2; : : : ;m2;

n�t0z }| {
M2; : : : ;M2):

Proof. By Theorem 4.2 it suÆces to see that

ABC

D
�

B

4
;

which is easily obtained, say, from (18). 2
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5 The di�erence T (a; b; p) for similarly ordered a and b We here give an upper

bound of Tp(a; b) = T (a; b; p) under the condition that a and b are similarly ordered. We

may con�ne ourselves for the case that both a and b are nondecreasingly ordered.

Theorem 5.1 Let a and b be positive n-tuples satisfying

m1 � a1 � � � � � an �M1 and m2 � b1 � � � � � bn �M2;

and let p = (p1; : : : ; pn) be an n-weight with
P

n

k=1 pk = 1: Put, for � = m1=M1; � =

m2=M2,

A = �
2(1� �)2; B = (� � �)2; C = (1� �)2;

A1 = �
2(1� �)2; B1 = B; C1 = (1� �)2;

and de�ne ~A; ~B; ~C and D, similarly as (7): (Furthermore, correspondingly de�ne ~A1;
~B1

and ~C1). Then

D = (1 + �)(1 + �))(1 � �)2(1 � �)2 f(3 � �)� � (1 + �)g

and
ABC

D
=

�
2(�� �)2

(1 + �)(1 + �) f(3 � �)� � (1 + �)g
:

(22)

Further assume that

� � �;

and write

� =
�1 +

p
2� �2

1� �
and � =

1 + �
2

1 + 2� � �2
:

Then

� � � � � < 1(23)

and the following results hold. (�; � and � are de�ned similarly as (21) in Therem 4:2).

(i) If (� �) � � �, then

T (a; b; p) �M
2
1M

2
2C1

�
1

4
� �

2

�
:

(ii) If � < � < �, then D > 0 and

T (a; b; p) �M
2
1M

2
2 max

�
ABC

D
� C�

2 �
D

4C
�
2
; C1

�
1

4
� �

2

��
:

(iii) If � � � � 1, then

T (a; b; p) �M
2
1M

2
2C1

�
1

4
� �

2

�
:

Proof. By Lemma 2.3, we have to compute the maximum or an upper bound of Tp(a; b) =

T (a; b; p) at points (a; b) such that

a = (

sz }| {
m1; : : : ;m1;

n�sz }| {
M1; : : : ;M1); and b = (

tz }| {
m2; : : : ;m2;

n�tz }| {
M2; : : : ;M2);(24)
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where s and t are integers in I
�
n
.

We may again assume that M1 = M2 = 1, so that m1 = � and m2 = �. It is essential

to consider the problem when � < �: Now the �rst case is

Case I: 0 � t � s � n: Let

a
(s) = (

tz }| {
�; : : : ; �;

s�tz }| {
�; : : : ; �;

n�sz }| {
1; : : : ; 1) and b

(t) = (

tz }| {
�; : : : ; �;

s�tz }| {
1; : : : ; 1;

n�sz }| {
1; : : : ; 1):

Then by the similar argument as in Lemma 4.1 (cf. (17)), we have

T (a(s); b(t); p) = �
2(1� �)2Pt(Ps � Pt) + (� � �)2Pt(1� Ps)

+ (1 � �)2(Ps � Pt)(1 � Ps)

= APt(Ps � Pt) +BPt(1 � Ps) + C(Ps � Pt)(1 � Ps):

First note that A;B;C > 0 (cf. � < �) and by de�nition

~A = B + C �A = (� � �)2 + (1� �)2 � �
2(1 � �)2

= (1 � �)
�
1 + �

2 � (1 + 2� � �
2)�
	
;

so that ~A > 0 if (and only if) 1 + �
2 � (1 + 2� � �

2)� > 0; or equivalently

� < � =
1 + �

2

1 + 2� � �2
:

Here, it is not diÆcult to see � < � < 1: Next we have

~B = C +A�B = (1� �)(1 � �) f(1 + �)� + 1� �g > 0

and
~C = A +B �C = (1� �)

�
(1� �)�2 + 2�� (1 + �)

	
;

so that ~C > 0 if (and only if) (1� �)�2 + 2�� (1 + �) > 0; or equivalently

(1 >) � > � =
�1 +

p
2� �2

1� �
:

Here, by an elementary computation we can see � < � < 1; so that we have (23). Now

from Lemma 2.4 we have the following three subcases.

I-(1): If (� <) � � �, then ~A; ~B > 0; ~C � 0, so that

T (a; b; p) � C

�
1

4
� �

2

�
� C1

�
1

4
� �

2

�
:

I-(2): If � < � < �, then ~A; ~B; ~C > 0, so that

T (a; b; p) �
ABC

D
� C�

2 �
D

4C
�
2
:

Here, by an elementary computation we can see that

D = (1 + �)(1 + �)(1� �)2(1� �)2 f(3� �)�� (1 + �)g
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and
ABC

D
=

�
2(� � �)2

(1 + �)(1 + �) f(3� �)�� (1 + �)g
:

I-(3): If � � � < 1, then ~A � 0; ~B > 0 and ~C > 0, so that

T (a; b; p) � A

�
1

4
� �

2

�
� C1

�
1

4
� �

2

�
:

Case II: 0 � s � t � n: Let

a
(s) = (

sz }| {
�; : : : ; �;

t�sz }| {
1; : : : ; 1;

n�tz }| {
1; : : : ; 1) and b

(t) = (

sz }| {
�; : : : ; �;

t�sz }| {
�; : : : ; �;

n�tz }| {
1; : : : ; 1):

Then similarly as in Case I, we have

T (a(s); b(t); p) = �
2(1� �)2Ps(Pt � Ps) + (�� �)2Ps(1� Pt)

+ (1� �)2(Pt � Ps)(1� Pt)

= A1Ps(Pt � Ps) +B1Ps(1� Pt) +C1(Pt � Ps)(1 � Pt):

For the signs of the constants ~A1;
~B1 and ~C1; we have

~A1 = B1 + C1 �A1 = (1� �)
�
1 + �

2 � �(1 + 2�� �
2)
	

� (1� �)
�
1 + �

2 � �(1 + 2�� �
2)
	

= (1� �)(1 + �)(1 � �)2 > 0;

~B1 = C1 +A1 �B1 = (1� �)(1 � �)2 > 0

and

~C1 = A1 +B1 �C1 = (1� �)
�
�1 + 2� + �

2 � �(1 + �
2)
	

� (1� �)
�
�1 + 2� + �

2 � �(1 + �
2)
	

= �(1� �)(1� �)(1 � �
2) � 0:

Hence by Lemma 2.4 we have

T (a; b; p) � C1

�
1

4
� �

2

�
:

Summarizing Cases I and II, we obtain the desired facts in the theorem. 2

Theorem 5.2 With the same notations and the same assumptions as in Theorem 5:1,

T (a; b; p) �
M

2
1M

2
2C1

4
=

M
2
1M

2
2 (1 � �)2

4
:

If there is an integer t = t0 such that Pt0 = 1=2, then

Tmax(= the maximum of T (a; b; p)) =
M

2
1M

2
2C1

4
;

which is attained at (a0; b0) such that

a
0 = (

nz }| {
M1; : : : ;M1) and b

0 = (

t0z }| {
m2; : : : ;m2;

n�t0z }| {
M2; : : : ;M2):
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Proof. By Theorem 5.1, we have only to show that if � < � < �, (or if ~A; ~B and ~C > 0)

then

ABC

D
<

C1

4
;(25)

or
ABC

D
<

B+C
4

because

B + C = (�� �)2 + (1 � �)2 < (1� �)2 = C1:

Since
B + C

4
�
ABC

D
=

(B + C)D � 4ABC

4D
;

we have to show (B + C)D � 4ABC > 0. Note that D = 4BC � ~A2 and A = B + C � ~A,

so that we have

(B + C)D � 4ABC = (B + C)(4BC � ~A2)� 4(B +C � ~A)BC

= ~A
�
A(B + C)� (B � C)2

	
� ~A

�
A
2 � (B � C)2

	
(cf. B + C > A)

= ~A ~B ~C > 0:

2

Remark 5.3 Related to Theorem 5:2 (and also Theorem 4:3); we ask if the value Tp(a"; b") =

T (a"; b"; p) =
M

2

1
M

2

2
ABC

D
at the point (a"; b") with

a" = (

s0z }| {
m1; : : : ;m1;

n�s0z }| {
M1; : : : ;M1) and b" = (

t0z }| {
m2; : : : ;m2;

n�t0z }| {
M2; : : : ;M2)

is the maximum of Tp(a; b); whenever ( ~A; ~B; ~C > 0 and ) there are integers s = s0; t = t0

satisfying

Pt0 =
C ~C

D
and Ps0 � Pt0 =

B ~B

D
:

Unfortunately, this is not true. In fact, if Pt0 =
C ~C
D

is 'suÆciently near' to 1=2, then for

the point (a0; b0) with

a
0 = (

nz }| {
M1; : : : ;M1) and b

0 = (

t0z }| {
m2; : : : ;m2;

n�t0z }| {
M2; : : : ;M2));

we have

Tp(a
0
; b
0) =M

2
1M

2
2T (a

(n)
; b
(t0); p) = C1Pt0(1� Pt0)

= C1

(
1

4
�

�
1

2
� Pt0

�2)
=

C1

4
� C1�

2
>

ABC

D

�
� =

����12 � Pt0

����
�

by the inequality (25):

Concernig the preceding remark, as a numerical example, let M1 = M2 = 1; m1 = � =
7
10

and m2 = � = 1
2
, then A = 49

400
; B = 1

25
; C = 9

100
; C1 = 1

4
; D = 2295

4002
; ::: If we put
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n = 3 and p = (p1; p2; p3) =
�
C ~C
D
;
B ~B
D
;
A ~A
D

�
=
�
1044
2295

;
1104
2295

;
147
2295

�
; then for s0 = 2; t0 = 1;

that is, for a" = ( 7
10
;
7
10
; 1); b" = (1

2
; 1; 1); we have

T (a"; b"; p) =
ABC

D
=

196

6375
= 0:0307:::

On the other hand, for s0 = 0; t0 = 1; that is, for a0 = (1; 1; 1); b0 = (1
2
; 1; 1); we have

T (a0; b0; p) = C1P1(1 � P1) =
4031

65025
= 0:0619::: >

ABC

D
:

Corollary 5.4 With the same notations and the same assumptions as in Theorem 5:1, in

particular, if the weight p = (p1; : : : ; pn) is uniform, that is, p1 = � � � = pn = 1=n, and if n

is even, then

Tmax =
M

2
1M

2
2 (1� �)2

4
:

6 A concluding remark We can show corresponding continuous or measurable versions

of all results in this paper. For example, corresponding to Theorem 3.2, we obtain the

following:

Theorem 6.1 Let f and g be positive measurable functions on a �nite measure space (
; �)

with �(
) = 1: Assume that m1 � f � M1; m2 � g � M2; 0 < m1 < M1 and 0 < m2 <

M2. Further assume that � =m1=M1 �m2=M2 = �: Then

Z



f
2
d�

Z



g
2
d��

�Z



fgd�

�2

�M
2
1M

2
2 sup
X�


�
(1� ��)2

4
(1� �(X))2 + (1 � �)2�(X)(1 � �(X))

�
�
�

(M1M2 �m1m2)
2

3

�
:

To sketch the proof, let fX1; :::;Xng be a decomposition of measurable sets in 
 and let

xk 2 Xk (k = 1; : : : ; n): Then from Theorem 3.2 we have

nX
k=1

f(xk )
2
�(Xk)

nX
k=1

g(xk)
2
�(Xk)�

 
nX

k=1

f(xk)g(xk)�(Xk)

!2

�M
2
1M

2
2 sup
X�


�
(1� ��)2

4
(1� �(X))2 + (1 � �)2�(X)(1 � �(X))

�
:

Taking the limit of the decomposition we obtain the desired inequality.
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