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ON AN EXTENSION OF THE GRAND FURUTA INEQUALITY

MASATOSHI FUJII AND EIZABURO KAMEI

Received February 12, 2002

Abstract. The grand Furuta inequality says that if A � B > 0, then
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holds for all p � 1, r � t, s � 1 and t 2 [0; 1]. Very recently Uchiyama gave an extension

of the grand Furuta inequality as follows: If A � B � C > 0, then
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holds for all p � 1, r � t, s � 1 and t 2 [0; 1]. The purpose of this short note is to

propose a simplifed proof of Uchiyama's extension. Moreover we pose a variant of the

grand Furuta inequality motivated by Uchiyama's idea.

1. introduction

As a simultaneous extension of the Ando-Hiai inequality [1] and the Furuta inequality

[5], Furuta [7] established the grand Furuta inequality, simply GFI, cf. [3]. See also [4], [8],

[15] and [17]. For convenience, we denote by A > 0 if A is a positive invertible operator on

a Hilbert space.

The grand Furuta inequality. If A � B > 0, then for each t 2 [0; 1],

A1�t+r � fA
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holds for all s � 1, p � 1 and r � t.

Very recently, Uchiyama [16] gave an extension of Theorem G which is a version of

3-variables:

Theorem U. If A � B � C > 0, then for each t 2 [0; 1],
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holds for all s � 1, p � 1 and r � t.

It is obtained as an application of the monotonicity of some operator fuctions related to

the Furuta inequality. Afterwards, Furuta pointed out that Theorem U easily follows from

Theorem G itself by making full use of his original technique, so-called Furuta lemma;
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for � 2 R, X > 0 and invertible Y . It is expressed as a one-page proof in [9].

On the other hand, we attempted a mean theoretic approach to GFI, in which we pro-

posed the following operator inequality as a key inequality in GFI, [3, Theorem 2]. Recall

the notation:

A \s B = A
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and particularly ]s = \s for s 2 [0; 1], the s-geometric mean in the sense of the Kubo-Ando

theory.

Theorem A. If A � B > 0, then

(At \s Bp)
1

(p�t)s+t � B � A(A)

for p � 1; s � 1; r � 0 and 0 � t � 1.

In this note, we want to pay our attention to the roll of Theorem A in Theorem U.

Moreover we pose a variant of GFI motivated by Uchiyama's idea.

2. A simple proof of GFI

To make a parallelism between Theorem G and Theorem U clear, we recall a proof of

GFI by using Theorem A. For this, we have to cite the Furuta inequality [5] and see [2], [6],

[11] and [14]: If A � B � 0, then for each r � 0

A1+r � (A
r

2BpA
r

2 )
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holds for all p � 1; r � 0.

For convenience, we cite the original form of the Furuta inequality:

Furuta inequality: If A � B � 0,

then for each r � 0,
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hold for p and q such that p � 0

and q � 1 with

(1 + r)q � p + r:
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Now we review a proof of GFI:

Proof of GFI. Since A � B > 0, p � 1; s � 1; r � 0 and 0 � t � 1, it follows from Theorem

A that

D = (At \s B
p)

1
(p�t)s+t � B � A:

So we apply A � D � 0 to the Furuta inequality (F) in the case where r1 = r � t and

p1 = (p � t)s+ t: Namely we have

A1+r1 � (A
r1
2 Dp1A

r1
2 )

1+r1
p1+r1 ;(1)

which is just desired inequality (G).
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3. A simplified proof of Theorem U

Along with the argument in the preceding section, we enjoy a simplifed proof of Theorem

U. An important point in the proof is the (operator) monotonicity of the �-geometric mean

for 0 � � � 1.

Proof of Theorem U. Since B � C > 0, p � 1; s � 1; r � 0 and 0 � t � 1, it follows from

Theorem A that
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In other words, we have
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Finally we apply A � D � 0 to the Furuta inequality (F) in the case where r1 = r � t and

p1 = (p � t)s+ t: Namely we have

A1+r1 � (A
r1
2 Dp1A
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1+r1
p1+r1 ;(2)

which is just desired inequality (U).

Remark 1. Comparing with two proofs, we recognize that two inequalities (G) and (U)

have the same structure. As a matter of fact, inequalities (1) and (2) are just the same, in

which two D's are di�erent a bit, though.

4. A variant of GFI

First of all, we remark that (G) in GFI is rephrased as follow: If A � B > 0, then for

each t 2 [0; 1]

A�r+t ] 1+r�t

(p�t)s+r

(At \s B
p) � A(G)

holds for all s � 1, p � 1 and r � t.

Motivated by Theorem U, we pose a variant of GFI under a weaker condition than that

of Theorem U. For this, we use the following inequality shown in [12] and [13]. Recall that

A� B means the chaotic order, i.e., logA � logB for A; B > 0.

Theorem B. If A� B for A; B > 0, then

A�r ] 1+r

p+r

Bp � B

holds for all p � 1 and t � 0.

Theorem 2. If A; B; C > 0 satisfy A� B and B � C, then for each t 2 [0; 1]
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Proof. By Theorem A, we have

B1 = (Bt \s C
p)

1
(p�t)s+t � C � B:

Since B1 � B � A, we apply Theorem B to the case p1 = (p � t)s + t; r1 = r � t and

A� B1. Namely we have

A�r+t ] 1+(r�t)
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(p�t)s+r

(Bt \s C
p) � (Bt \s C

p)
1
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Combining with (3), we have the desired inequality.
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