ON AN EXTENSION OF THE GRAND FURUTA INEQUALITY

MASATOSHI FUJII AND EIZABURO KAMEI

Received February 12, 2002

Abstract. The grand Furuta inequality says that if $A \geq B>0$, then

$$
\begin{equation*}
A^{1+r-t} \geq\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{\left.-\frac{t}{2}\right)^{s}} A^{\frac{r}{2}}\right\}^{\frac{1+r-t}{(p-t) s+r}}\right. \tag{G}
\end{equation*}
$$

holds for all $p \geq 1, r \geq t, s \geq 1$ and $t \in[0,1]$. Very recently Uchiyama gave an extension of the grand Furuta inequality as follows: If $A \geq B \geq C>0$, then

$$
\begin{equation*}
A^{1+r-t} \geq\left\{A^{\frac{r}{2}}\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1+r-t}{(p-t) \varepsilon+r}} \tag{U}
\end{equation*}
$$

holds for all $p \geq 1, r \geq t, s \geq 1$ and $t \in[0,1]$. The purpose of this short note is to propose a simplifed proof of Uchiyama's extension. Moreover we pose a variant of the grand Furuta inequality motivated by Uchiyama's idea.

1. INTRODUCTION

As a simultaneous extension of the Ando-Hiai inequality [1] and the Furuta inequality [5], Furuta [7] established the grand Furuta inequality, simply GFI, cf. [3]. See also [4], [8], [15] and [17]. For convenience, we denote by $A>0$ if A is a positive invertible operator on a Hilbert space.
The grand Furuta inequality. If $A \geq B>0$, then for each $t \in[0,1]$,

$$
\begin{equation*}
A^{1-t+r} \geq\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} \tag{G}
\end{equation*}
$$

holds for all $s \geq 1, p \geq 1$ and $r \geq t$.
Very recently, Uchiyama [16] gave an extension of Theorem G which is a version of 3 -variables:

Theorem U. If $A \geq B \geq C>0$, then for each $t \in[0,1]$,

$$
\begin{equation*}
A^{1-t+r} \geq\left\{A^{\frac{r}{2}}\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} \tag{U}
\end{equation*}
$$

holds for all $s \geq 1, p \geq 1$ and $r \geq t$.
It is obtained as an application of the monotonicity of some operator fuctions related to the Furuta inequality. Afterwards, Furuta pointed out that Theorem U easily follows from Theorem G itself by making full use of his original technique, so-called Furuta lemma;

$$
\left(Y X Y^{*}\right)^{\alpha}=Y X^{\frac{1}{2}}\left(X^{\frac{1}{2}} Y^{*} Y X^{\frac{1}{2}}\right)^{\alpha-1} X^{\frac{1}{2}} Y^{*}
$$

for $\alpha \in \mathbb{R}, X>0$ and invertible Y. It is expressed as a one-page proof in [9].
On the other hand, we attempted a mean theoretic approach to GFI, in which we proposed the following operator inequality as a key inequality in GFI, [3, Theorem 2]. Recall the notation:

$$
A h_{s} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{s} A^{\frac{1}{2}}
$$

2000 Mathematics Subject Classification. 47A30 and 47A63.
Key words and phrases. Furuta inequality and grand Furuta inequality.
and particularly $\sharp_{s}=h_{s}$ for $s \in[0,1]$, the s-geometric mean in the sense of the Kubo-Ando theory.

Theorem A. If $A \geq B>0$, then

$$
\begin{equation*}
\left(A^{t} \mathfrak{h}_{s} B^{p}\right)^{\frac{1}{(p-t) s+t}} \leq B \leq A \tag{A}
\end{equation*}
$$

for $p \geq 1, s \geq 1, r \geq 0$ and $0 \leq t \leq 1$.
In this note, we want to pay our attention to the roll of Theorem A in Theorem U. Moreover we pose a variant of GFI motivated by Uchiyama's idea.

2. A simple proof of GFI

To make a parallelism between Theorem G and Theorem U clear, we recall a proof of GFI by using Theorem A. For this, we have to cite the Furuta inequality [5] and see [2], [6], [11] and [14]: If $A \geq B \geq 0$, then for each $r \geq 0$

$$
\begin{equation*}
A^{1+r} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \tag{F}
\end{equation*}
$$

holds for all $p \geq 1, r \geq 0$.
For convenience, we cite the original form of the Furuta inequality:

Furuta inequality: If $A \geq B \geq 0$, then for each $r \geq 0$,

$$
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

and

$$
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

hold for p and q such that $p \geq 0$ and $q \geq 1$ with

$$
(1+r) q \geq p+r
$$

Now we review a proof of GFI:
Proof of $G F I$. Since $A \geq B>0, p \geq 1, s \geq 1, r \geq 0$ and $0 \leq t \leq 1$, it follows from Theorem A that

$$
D=\left(A^{t} h_{s} B^{p}\right)^{\frac{1}{(p-t)^{s+t}}} \leq B \leq A
$$

So we apply $A \geq D \geq 0$ to the Furuta inequality (F) in the case where $r_{1}=r-t$ and $p_{1}=(p-t) s+t$: Namely we have

$$
\begin{equation*}
A^{1+r_{1}} \geq\left(A^{\frac{r_{1}}{2}} D^{p_{1}} A^{\frac{r_{1}}{2}}\right)^{\frac{1+r_{1}}{p_{1}+r_{1}}} \tag{1}
\end{equation*}
$$

which is just desired inequality (G).

3. A simplified proof of Theorem U

Along with the argument in the preceding section, we enjoy a simplifed proof of Theorem U . An important point in the proof is the (operator) monotonicity of the α-geometric mean for $0 \leq \alpha \leq 1$.
Proof of Theorem U. Since $B \geq C>0, p \geq 1, s \geq 1, r \geq 0$ and $0 \leq t \leq 1$, it follows from Theorem A that

$$
\left(B^{t} h_{s} C^{p}\right)^{\frac{1}{(p-t) s+t}} \leq C \leq B
$$

so that

$$
1 \not \|_{(p-t)^{s+t}}\left(B^{t} h_{s} C^{p}\right) \leq B .
$$

Moreover we have $B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \leq 1$ since $A^{t} \geq B^{t}$. Hence it follows that

$$
B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \not \sharp_{(p-t) s+t}\left(B^{t} \mathfrak{h}_{s} C^{p}\right) \leq 1 \nexists_{\frac{1}{(p-t) s+t}}\left(B^{t} \mathfrak{h}_{s} C^{p}\right) \leq B,
$$

so that

$$
A^{-t} \sharp \frac{1}{(p-t)^{s+t}}\left(B^{\frac{-t}{2}} C^{p} B^{\frac{-t}{2}}\right)^{s} \leq B^{1-t} \leq A^{1-t} .
$$

In other words, we have

$$
D=\left[A^{\frac{t}{2}}\left(B^{\frac{-t}{2}} C^{p} B^{\frac{-t}{2}}\right)^{s} A^{\frac{t}{2}}\right]^{\frac{1}{(p-t)^{s}+t}} \leq A
$$

Finally we apply $A \geq D \geq 0$ to the Furuta inequality (F) in the case where $r_{1}=r-t$ and $p_{1}=(p-t) s+t$: Namely we have

$$
\begin{equation*}
A^{1+r_{1}} \geq\left(A^{\frac{r_{1}}{2}} D^{p_{1}} A^{\frac{r_{1}}{2}}\right)^{\frac{1+r_{1}}{p_{1}+r_{1}}} \tag{2}
\end{equation*}
$$

which is just desired inequality (U).
Remark 1. Comparing with two proofs, we recognize that two inequalities (G) and (U) have the same structure. As a matter of fact, inequalities (1) and (2) are just the same, in which two D 's are different a bit, though.

4. A variant of GFI

First of all, we remark that (G) in GFI is rephrased as follow: If $A \geq B>0$, then for each $t \in[0,1]$

$$
\begin{equation*}
A^{-r+t} \sharp \frac{1+r-t}{(p-t) s+r}\left(A^{t} h_{s} B^{p}\right) \leq A \tag{G}
\end{equation*}
$$

holds for all $s \geq 1, p \geq 1$ and $r \geq t$.
Motivated by Theorem U, we pose a variant of GFI under a weaker condition than that of Theorem U. For this, we use the following inequality shown in [12] and [13]. Recall that $A \gg B$ means the chaotic order, i.e., $\log A \geq \log B$ for $A, B>0$.

Theorem B. If $A \gg B$ for $A, B>0$, then

$$
A^{-r} \sharp_{\frac{1+r}{p+r}} B^{p} \leq B
$$

holds for all $p \geq 1$ and $t \geq 0$.
Theorem 2. If $A, B, C>0$ satisfy $A \gg B$ and $B \geq C$, then for each $t \in[0,1]$

$$
A^{-r+t} \not \sharp_{\frac{1+r-t}{(p-t) s+r}}\left(B^{t} \mathfrak{h}_{s} C^{p}\right) \leq\left(B^{t} \mathfrak{h}_{s} C^{p}\right)^{\frac{1}{(p-t) s+t}} \leq C \leq B
$$

holds for all $p \geq 1, s \geq 1$ and $r \geq t$.

Proof. By Theorem A, we have

$$
B_{1}=\left(B^{t} \hbar_{s} C^{p}\right)^{\frac{1}{p-t) s+t}} \leq C \leq B
$$

Since $B_{1} \ll B \ll A$, we apply Theorem B to the case $p_{1}=(p-t) s+t, r_{1}=r-t$ and $A \gg B_{1}$. Namely we have

$$
\begin{gathered}
A^{-r+t} \sharp_{\frac{1+(r-t)}{(p-t) \varepsilon+r}} B_{1}^{p_{1}} \leq B_{1}, \\
A^{-r+t} \sharp_{\frac{1+(r-t)}{(p-t) s+r}}\left(B^{t} h_{s} C^{p}\right) \leq\left(B^{t} h_{s} C^{p}\right)^{\frac{1}{(p-t) s+t}} .
\end{gathered}
$$

Combining with (3), we have the desired inequality.

Acknowledgement. The authors would like to express their thanks to Professor Furuta for giving an opportunity to read [9] and [10]. The latter is devoted to further discussion on GFI from Uchiyama's view.

References

[1] T.Ando and F.Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197/198(1994), 113-131.
[2] M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator theory, 23(1990), 67-72.
[3] M.Fujii and E.Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124(1996), 2751-2756.
[4] M.Fujii, A.Matsumoto and R.Nakamoto, A short proof of the best possibility for the grand Furuta inequality, J.Inequal. Appl., 4(1999), 339-344.
[5] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc., 101(1987), 85-88.
[6] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65(1989), 126.
[7] T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Alg. and Its Appl., 219(1995),139-155.
[8] T.Furuta, Simplified proof of an order preserving operator inequality, Proc. Japan Acad., 74, Ser. A(1998), 114.
[9] T.Furuta, A proof of an order preserving inequality, Preprint.
[10] T.Furuta, Order preserving inequalities and related operator functions, Preprint.
[11] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33(1988), 883-886.
[12] E.Kamei, Chaotic order and Furuta inequality, Sci. Math. Japon, 53(2001), 289-293.
[13] E.Kamei and M.Nakamura, Remark on chaotic Furuta inequality, Sci. Math. Japon., 53(2001), 535539.
[14] K.Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124(1996), $141-146$.
[15] K.Tanahashi, The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc., 128(2000), 511-519.
[16] M.Uchiyama, Criteria for operator means, J. Math. Soc. Japan, to appear.
[17] T.Yamazaki, Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality, Math. Inequal. Appl., 2(1999), 473-477.

Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582 8582 , Japan.

E-mail address: mfujii@@cc.osaka-kyoiku.ac.jp
Maebashi Institute of Technology, Kamisadori, Maebashi, Gunma 371-0816, Japan
E-mail address: kamei@@maebashi-it.ac.jp

