UNCOUNTABLE LEVEL SETS OF LIPSCHITZ FUNCTIONS AND ANALYTIC SETS

EMMA D'ANIELLO

Received December 21, 2001

ABSTRACT. We show that a subset of the interval [0, 1] is an analytic set with Lebesgue measure zero if and only if it coincides with the set of values of uncountable order of some Lipschitz function from [0, 1] into [0, 1].

1. INTRODUCTION

Let $f:[0,1] \to \mathbb{R}$. A value y of the function f is said to be of uncountable order if the set $f^{-1}(\{y\})$ is uncountable.

The characterization of the set of points where level sets of continuous functions are uncountable is a very old result of S. Mazurkiewicz and W. Sierpinski ([5], [4]). Their characterization is as follows.

Theorem 1.1. A subset of the interval [0, 1] is analytic if and only if it coincides with the set of values of uncountable order of some continuous function from [0, 1] into [0, 1].

Recently, in a joint paper with U. B. Darji, we have characterized the set of points where level sets of C^1 functions are uncountable [3]. Our result is as follows.

Theorem 1.2. A subset of the interval [0, 1] coincides with the set of values of uncountable order of some C^1 function $f : [0, 1] \rightarrow [0, 1]$ if and only if it is analytic and its closure has Lebesgue measure zero.

In this paper we characterize such sets for Lipschitz functions. Our characterization is as follows.

Theorem 1.3. Let M be a subset of [0, 1]. Then M is equal to $\{y : f^{-1}(\{y\}) \text{ is uncountable}\}$ for some Lipschitz function $f : [0, 1] \rightarrow [0, 1]$ if and only if M is an analytic set with Lebesgue measure zero.

2. Uncountable Level Sets

We proceed towards the goal of this paper.

We first need few definitions and terminology. Throughout, λ denotes the Lebesgue measure, and π_1 and π_2 denote coordinate projections.

Definition 2.1. Let f be a Lipschitz function on a closed interval I. By U_f , D_f and $Z_{(f,1)}$ we denote the sets

$$\{y: f^{-1}(\{y\}) \text{ is uncountable}\},\$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 26A30.

This research has been partially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Italy) and by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni dell'Istituto Nazionale di Alta Matematica "F.Severi".

 $\{x : f \text{ is differentiable at } x\}$

and

$$\{x \in D_f : f^{(1)}(x) = 0\},\$$

respectively.

Theorem 2.2. ([2]: Lemma 1) If f is a continuous function of bounded variation on [0, 1], there exists a homeomorphism h of [0, 1] onto itself such that $f \circ h$ is a Lipschitz function.

Definition 2.3. A box is a set of the form $I \times J$ where I, J are compact intervals.

Definition 2.4. Let I be a closed interval. Then, we use I_L , I_M , I_R to denote the left third, middle third and the right third intervals of I, respectively. If $B = I \times J$ is a box, then $B_L = I_L \times J$, $B_M = I_M \times J$, and $B_R = I_R \times J$. We call B_L , B_M , B_R the vertical splitting of B.

Definition 2.5. Let B be a box. A continuous function f is diagonal to B if the restriction of f to B is a linear function which passes through the diagonal corners of B.

Definition 2.6. A continuous function f is said to be jagged inside box B if f is diagonal to each of B_L, B_M, B_R .

Henceforth, we shall denote by CBV continuous functions of bounded variation, and, given a CBV function f, we shall denote by V(f) its variation.

Lemma 2.7. Let I = [a, b], J = [c, d], $B = I \times J$ and $\epsilon > 0$. Let $\{C_i\}_{i \in \mathbb{N}}$ be a sequence of closed subsets of J, let A be a subset of J with $\lambda(A) = 0$ and $A \cap C_i \neq \emptyset$, for every i. Then, there is a CBV function f from I onto J and there is a sequence $\{\mathcal{G}_i\}_{i \in \mathbb{N}}$ of countable collections of boxes contained in B such that

- 1. the variation of f on I is less than $\lambda(J) + \epsilon$,
- 2. $f^{-1}(\{y\})$ is countable for all $y \in J$,
- 3. f(a) = c, f(b) = d,
- 4. f is linearly jagged in each $B' \in \bigcup_{i=1}^{\infty} \mathcal{G}_i$,
- 5. if $i \neq j$, then $\mathcal{G}_i \cap \mathcal{G}_j = \emptyset$ and $\bigcup_{i=1}^{\infty} \mathcal{G}_i$ is a pairwise disjoint collection,
- 6. $A \cap C_i \subseteq \pi_2(\cup \mathcal{G}_i)$ and $\pi_2(B') \cap A \cap C_i \neq \emptyset$ for all $B' \in \mathcal{G}_i$, and
- 7. $diam(B') < \epsilon$ for all $B' \in \mathcal{G}_i$.

Proof. We will construct a sequence $\{f_k\}_{k\in\mathbb{N}}$ of CBV functions whose uniform limit is the desired function.

Let $f_0 : I \to J$ be a linear function which satisfies Condition 3 of the Lemma. Let $J_1^1, J_2^1, \ldots, J_n^1, \ldots$ be a sequence of non-overlapping closed intervals contained in J with the following properties:

 $\begin{array}{ll} \text{a.} & A \cap C_1 \subseteq \cup_{i=1}^{\infty} J_i^1, \, A \cap C_1 \cap J_i^1 \neq \emptyset, \\ \text{b.} & \sum_{i=1}^{\infty} \lambda(J_i^1) < \frac{\epsilon}{5 \cdot 2} \text{ and } \lambda(f_0^{-1}(J_i^1)) < \frac{\epsilon}{2}. \end{array}$

Let $I_i^1 = f_0^{-1}(J_i^1)$. In each of I_i^1 , replace f_0 by an appropriate continuous function which is jagged in $(I_i^1 \times J_i^1)_L$, diagonal to $(I_i^1 \times J_i^1)_M$ and diagonal to $(I_i^1 \times J_i^1)_R$. Let f_1 be the resulting continuous piecewise linear function and let $\mathcal{G}_1 = \{(I_i^1 \times J_i^1)_L : i \in \mathbb{N}\}$. Then, at the end of stage 1, the following properties are satisfied:

- (i) f_1 is a continuous function linearly jagged inside each $B' \in \mathcal{G}_1$ with $f_1(a) = c$ and $f_1(b) = d$,
- (ii) $|f_1^{-1}(\{y\})| \le 5$ for all $y \in J$,

334

(iii) f_1 is a CBV function and

$$V(f_1) \leq V(f_0) + 5 \cdot \sum_{i=1}^{\infty} \lambda(J_i^1)$$

$$< V(f_0) + 5 \cdot \frac{\epsilon}{5 \cdot 2}$$

$$= \lambda(J) + \frac{\epsilon}{2}.$$

- (iv) $A \cap C_1 \subseteq \pi_2(\cup \mathcal{G}_1)$ and $\pi_2(B') \cap A \cap C_1 \neq \emptyset$ for all $B' \in \mathcal{G}_1$,
- (v) $||f_1 f_0||_0 \le \sum_{i=1}^{\infty} \lambda(J_i^1) < \frac{\epsilon}{5 \cdot 2}$.

Let us now construct f_2 . Let $J_1^2, J_2^2, \ldots, J_n^2, \ldots$ be a sequence of non-overlapping closed intervals contained in J such that

- a. either there is i' such that $J_i^2 \subseteq J_{i'}^1$ or J_i^2 does not overlap with any J_s^1 , $s \in \mathbb{N}$,
- $\begin{array}{ll} \text{b.} \ A\cap C_2\subseteq \cup_{i=1}^\infty J_i^2, \ A\cap C_2\cap J_i^2\neq \emptyset,\\ \text{c.} \ \sum_{i=1}^\infty \lambda(J_i^2)<\frac{\epsilon}{5\cdot 2^2} \ \text{and} \ \lambda(f_1^{-1}(J_i^2))<\frac{\epsilon}{2}. \end{array}$

Now, if there is i' such that $J_i^2 \subseteq J_{i'}^1$, we let $I_i^2 = f_1^{-1}(J_i^2) \cap (I_{i'}^1)_R$, otherwise we let $I_i^2 = f_1^{-1}(J_i^2)$. Let f_2 be the modification of f_1 on $\cup_i I_i^2 \times J_i^2$ as earlier and $\mathcal{G}_2 = \{(I_i^2 \times J_i^2)_L :$ $i \in \mathbb{N}$. Then, at the end of stage 2, the following properties are satisfied:

- (i) f_2 is a continuous function linearly jagged inside each $B' \in \mathcal{G}_2$, with $f_2(a) = c$ and $f_2(b) = d,$
- (ii) $|f_2^{-1}(\{y\})| \le 5 + (2-1) \cdot 4$ for all $y \in J$,
- (iii) f_2 is a CBV function and

$$V(f_2) \leq V(f_1) + 5 \cdot \sum_{i=1}^{\infty} \lambda(J_i^2)$$

$$< V(f_1) + 5 \cdot \frac{\epsilon}{5 \cdot 2^2},$$

$$= V(f_1) + \frac{\epsilon}{2^2}.$$

(iv) $A \cap C_2 \subseteq \pi_2(\cup \mathcal{G}_2)$ and $\pi_2(B') \cap A \cap C_2 \neq \emptyset$ for all $B' \in \mathcal{G}_2$, (v) $||f_2 - f_1||_0 \le \sum_i \lambda(J_i^2) < \frac{\epsilon}{5 \cdot 2^2}$.

Now let us assume that we are at stage k > 1, f_k and \mathcal{G}_k have been constructed so that the following properties are satisfied:

- (i) f_k is a continuous function linearly jagged inside each $B' \in \mathcal{G}_k$, with $f_1(a) = c$ and $f_1(b) = d, ,$
- (ii) $|f_k^{-1}(\{y\})| \le 5 + (k-1) \cdot 4$ for all $y \in J$, (iii) f_k is a CBV function and

$$V(f_k) < V(f_{k-1}) + \frac{\epsilon}{2^k},$$

- (iv) $A \cap C_k \subseteq \pi_2(\cup \mathcal{G}_k)$ and $\pi_2(B') \cap A \cap C_k \neq \emptyset$ for all $B' \in \mathcal{G}_k$,
- (v) $||f_k f_{k-1}||_0 \le \sum_i \lambda(J_i^k) < \frac{\epsilon}{5 \cdot 2^k}$.

Let us now construct f_{k+1} . Let $J_1^{k+1}, J_2^{k+1}, \ldots, J_n^{k+1}, \ldots$ be a sequence of non-overlapping closed intervals contained in J such that

- a. either there is i' such that $J_i^{k+1} \subseteq J_{i'}^k$ or J_i^{k+1} does not overlap with any J_s^k , $s \in \mathbb{N}$, b. $A \cap C_{k+1} \subseteq \bigcup_{i=1}^{\infty} J_i^{k+1}$, $A \cap C_{k+1} \cap J_i^{k+1} \neq \emptyset$, c. $\sum_{i=1}^{\infty} \lambda(J_i^{k+1})) < \frac{\epsilon}{5 \cdot 2^{k+1}}$ and $\lambda(f_k^{-1}(J_i^{k+1})) < \frac{\epsilon}{2}$.

E. D'ANIELLO

Now, if there is i' such that $J_i^{k+1} \subseteq J_{i'}^k$, we let $I_i^{k+1} = f_k^{-1}(J_i^{k+1}) \cap (I_{i'}^k)_R$, otherwise we let $I_i^{k+1} = f_k^{-1}(J_i^{k+1})$. Let f_{k+1} be the modification of f_k on $\cup_i I_i^{k+1} \times J_i^{k+1}$ as earlier and $\mathcal{G}_{k+1} = \{(I_i^{k+1} \times J_i^{k+1})_L : i \in \mathbb{N}\}.$

Now, it is easy to verify that f_{k+1} satisfies all induction hypotheses of stage k + 1 except (*iii*). In order to prove (*iii*) we notice that

$$V(f_{k+1}) \leq V(f_k) + 5 \cdot \sum_i \lambda(J_i^k)$$

$$\leq V(f_k) + 5 \cdot \frac{\epsilon}{5 \cdot 2^{k+1}}$$

$$= V(f_k) + \frac{\epsilon}{2^{k+1}}.$$

By (v), we have that $\{f_k\}$ converges uniformly to some continuous function f. By (iii) we have that

$$V(f) \le \lambda(J) + \epsilon.$$

Hence, f is of bounded variation. Clearly, f satisfies the required conditions.

Definition 2.8. We will use τ, σ etc. to denote an element of $\mathbb{N}^{\leq N}$ (= finite sequences of elements of \mathbb{N}) or \mathbb{N}^N . We use $|\sigma|$ to denote the length of σ and, if $|\sigma| > k$, then $\sigma|k$ to denote the restriction of σ to the first k coordinates, and $\sigma(k)$ to denote the k-th coordinate of σ . If σ is a finite string and k is a positive integer, then σk denotes the concatenation of σ followed by k.

Proposition 2.9. Let $A \subseteq [0,1]$ be an analytic set with $\lambda(A) = 0$. Then, there is a CBV function $f:[0,1] \rightarrow [0,1]$ such that

- (i) $f^{-1}(\{y\})$ is uncountable for all $y \in A$, and
- (ii) $f^{-1}(\{y\})$ is countable for all $y \notin A$.

Proof. As A is an analytic subset of [0, 1], we may obtain a Suslin scheme [1] $\{C_{\tau}\}_{\tau \in \mathbb{N}^{\leq N}}$ such that

- (a) each of C_{τ} is a closed subset of [0, 1],
- (b) for each $\sigma \in \mathbb{N}^N$, $C_{\sigma|k+1} \subseteq C_{\sigma|k}$, and $diam(C_{\sigma|k}) < \frac{1}{2^k}$,

(c) $A = \bigcup_{\sigma \in \mathbb{N}^N} \cap_{k=1}^{\infty} C_{\sigma|k}$.

We will construct the desired f as the uniform limit of a sequence of continuous functions $\{f_k\}_{k\in\mathbb{N}}$. Let $f_0:[0,1] \to [0,1]$ be the identity map and let $\mathcal{G}_0 = \{[0,1] \times [0,1]\}$. Applying Lemma 2.7 to $B = [0,1] \times [0,1]$, $\{C_{\sigma|1}\}_{\sigma\in\mathbb{N}^N}$, A and $\epsilon = \frac{1}{2}$, we obtain a function f_1 and a sequence of countable collections of boxes $\{\mathcal{H}_i\}_{i\in\mathbb{N}}$ which satisfy the conclusion of Lemma 2.7. Let $\mathcal{G}_1 = \{B'_L, B'_R : B' \in \mathcal{H}_i \text{ for some } i\}$. For each $B' \in \mathcal{H}_i$, define $\phi_1(B'_L) = \phi_1(B'_R) = i$. Note that ϕ_1 is well-defined as $\mathcal{H}_i \cap \mathcal{H}_j = \emptyset$ for $i \neq j$. Then, f_1 , ϕ_1 and \mathcal{G}_1 satisfy the following conditions:

- 1. f_1 is a CBV function with $V(f_1) < 1 + \frac{1}{2}$,
- 2. $f_1 = f_0$ outside $\pi_1(\cup \mathcal{G}_1)$,
- 3. $f_1^{-1}(\{y\})$ is countable for all y,
- 4. \mathcal{G}_1 is a pairwise disjoint collection,
- 5. f_1 is diagonal to each $B' \in \mathcal{G}_1$,
- 6. for each $\sigma \in \mathbb{N}^1$, $\phi_1^{-1}(\{\sigma\})$ is a countable collection of boxes and $A \cap C_{\sigma} \subseteq \pi_2(\cup \phi_1^{-1}(\{\sigma\}))$, and if $B' \in \phi_1^{-1}(\{\sigma\})$, then $\pi_2(B') \cap A \cap C_{\sigma} \neq \emptyset$, and
- 7. for each $B' \in \mathcal{G}_1$, $diam(B') < \frac{1}{2}$.

Now, suppose that we are at stage k > 1 and a function f_k , a countable collection of boxes \mathcal{G}_k contained in the unit square and a function $\phi_k : \mathcal{G}_k \to \mathbb{N}^k$ have been constructed such that:

- 1. f_k is a CBV function with $V(f_k) < 1 + \sum_{i=1}^k \frac{1}{2^i}$,
- 2. $f_k^{-1}(\{y\})$ is countable for all y,
- 3. $f_k = f_{k-1}$ outside $\pi_1(\cup \mathcal{G}_k)$,
- 4. \mathcal{G}_k is a pairwise disjoint collection,
- 5. f_k is diagonal to each $B' \in \mathcal{G}_k$,
- 6. for each $\sigma \in \mathbb{N}^k$, $\phi_k^{-1}(\{\sigma\})$ is a countable collection of boxes and $A \cap C_{\sigma} \subseteq \pi_2(\cup \phi_k^{-1}(\{\sigma\}))$, and if $B' \in \phi_k^{-1}(\{\sigma\})$, then $\pi_2(B') \cap A \cap C_{\sigma} \neq \emptyset$, 7. for each $\sigma \in \mathbb{N}^k$, $\cup \phi_k^{-1}(\{\sigma\}) \subseteq \cup \phi_{k-1}^{-1}(\{\sigma|(k-1)\})$,
- 8. for each $B' \in \mathcal{G}_k$, $diam(B') < \frac{1}{2^k}$, and
- 9. for each $B' \in \mathcal{G}_{k-1}$ with $\tau = \phi_{k-1}(B')$ and for positive integer m, we have that if $\pi_2(B') \cap C_{\tau m} \neq \emptyset$, then for each $y \in A \cap C_{\tau m} \cap \pi_2(B')$, there are two disjoint boxes $B_1,B_2 \in \mathcal{G}_k \text{ with } B_1 \cup B_2 \subseteq B' \text{ such that } y \in \pi_2(B_1) \cap \pi_2(B_2) \text{ and } \phi_k(B_1) = \phi_k(B_2) =$ τm .

Let us now define f_{k+1} . Enumerate \mathcal{G}_k as B_1, B_2, \ldots Let $l \geq 1$ and $\sigma = \phi_k(B_l)$. If there is no i so that $\pi_2(B_l) \cap A \cap C_{\sigma i} \neq \emptyset$, then we let $g_l = f_k$ on $\pi_1(B_l)$. Otherwise, we apply Lemma 2.7 to B_l , $\pi_2(B_l) \cap C_{\sigma i}$, i = 1, 2, ... (listing only the non-empty ones), $A \cap \pi_2(B_l)$ and $\epsilon = \frac{1}{2^{k+1+l}}$, and obtain a function g_l and a sequence of countable collections of boxes $\{\mathcal{H}_i^l\}_{i\in\mathbb{N}}$ which satisfy the conclusion of Lemma 2.7. For each $B'\in\mathcal{H}_i^l$, define $\phi_{k+1}^l(B'_L) = \phi_{k+1}^l(B'_R) = \sigma i$. We do this for each l and let $f_{k+1} = f_k$ outside $\bigcup_{l=1}^{\infty} \pi_1(B_l)$ and $f_{k+1} = g_l$ on $\pi_1(B_l)$. We let $\mathcal{G}_{k+1} = \{B'_L, B'_R : B' \in \mathcal{H}^l_i \text{ for some } i, l\}$ and let ϕ_{k+1} be the union of all the partial ϕ_{k+1}^l . These $f_{k+1}, \mathcal{G}_{k+1}, \phi_{k+1}$ satisfy the induction hypotheses. As f_{k+1} is continuous and modified only inside boxes of stage k and these boxes have diameters less than $\frac{1}{2^k}$, we have that $\{f_k\}_{k\in\mathbb{N}}$ converges uniformly to some continuous function f. By induction hypothesis 1, we have that f also is a CBV function.

Let us now show that $f^{-1}(\{y\})$ is uncountable for $y \in A$ and countable otherwise. We shall prove that $y \in A$ if and only if $f^{-1}(\{y\})$ is uncountable. (\Rightarrow) Let $y \in A$. Let $\sigma \in \mathbb{N}^N$ be such that $y \in \bigcap_{k=1}^{\infty} C_{\sigma|k}$. Applying induction hypothesis

9 at stage k = 1 with $B = [0, 1] \times [0, 1]$, we may obtain two disjoint boxes B_0^y and B_1^y in \mathcal{G}_1 such that $y \in \pi_2(B_0^y) \cap \pi_2(B_1^y)$ and that $\phi_1(B_0^y) = \phi_1(B_1^y) = \sigma|1$. Now suppose that $k \geq 1$ and we have 2^k many pairwise disjoint boxes $B^y_{\alpha}, \alpha \in \{0,1\}^k$ with each $B^y_{\alpha} \in \mathcal{G}_k, y \in \mathcal{G}_k$ $\cap_{\alpha \in \{0,1\}^k} \pi_2(B^y_\alpha)$ and $\phi_k(B^y_\alpha) = \sigma | k$ for all α . Applying induction hypothesis 9 at stage k+1to each B^y_{α} , for $\alpha \in \{0,1\}^k$ and $m = \sigma(k+1)$, we obtain an analogous appropriate collection of boxes at stage k+1. Now, it is easy to verify that the Cantor set $\bigcup_{\alpha \in \{0,1\}^N} \bigcap_{k=1}^{\infty} \pi_1(B_{\alpha|k}^{\gamma})$ maps to y under f.

 (\Leftarrow) Let $f^{-1}(\{y\})$ be uncountable. As $f = f_1$ outside $\pi_1(\cup \mathcal{G}_1)$ and $f_1^{-1}(\{y\})$ is countable, we have that there is $B_1 \in \mathcal{G}_1$ such that B_1 contains uncountably many points of the graph of f whose second coordinate is y. Let $l_1 = \phi_1(B_1)$. By a similar argument, there has to be $B_2 \in \mathcal{G}_2$ such that B_2 contains uncountably many points of the graph of f whose second coordinate is y and $B_2 \subseteq B_1$. By induction hypotheses 4 and 7, we have that $\phi_2(B_2) = (l_1, l_2)$ for some l_2 . Continuing in this fashion, we obtain a sequence of boxes $\{B_k\}_{k\in\mathbb{N}}$ and a sequence of integers $\{l_k\}_{k\in\mathbb{N}}$ such that $y\in\pi_2(B_k), B_k\in\mathcal{G}_k, B_{k+1}\subseteq B_k$ and $\phi_k(B_k) = \sigma | k$ where $\sigma = (l_1, l_2, \dots)$. From Condition 6 we have that $\pi_2(B_k) \cap A \cap C_{\sigma|k} \neq \emptyset$, and from Condition 8 that $diam(B_k) \to 0$ as $k \to \infty$. Hence, $y \in \bigcap_{k=1}^{\infty} C_{\sigma|k}$. Therefore, $y \in A$.

Proposition 2.10. Let A be an analytic subset of [0,1] with $\lambda(A) = 0$. Then, there is a Lipschitz function $f:[0,1] \rightarrow [0,1]$ such that

- (i) $f^{-1}(\{y\})$ is uncountable for all $y \in A$, and
- (ii) $f^{-1}(\{y\})$ is countable for all $y \notin A$.

Proof. By Proposition 2.9 there exists a CBV function $g:[0,1] \to [0,1]$ such that $g^{-1}(\{y\})$ is uncountable for all $y \in A$ and countable otherwise. Applying Theorem 2.2 we obtain a homeomorphism h from [0,1] onto [0,1] such that $g \circ h$ is a Lipschitz function. Now, $f = g \circ h$ is the desired function.

Proposition 2.11. Suppose that $f : [0,1] \to \mathbb{R}$ is a Lipschitz function. Then, the set of points where level sets are uncountable is an analytic set with Lebesgue measure zero.

Proof. By a very old result of S. Mazurkiewicz and W. Sierpinski [5] U_f is an analytic set. Let $U_f^{-1} = \{y \in U_f : \exists x_y \in D_f \text{ with } f(x_y) = y\}$. As f is Lipschitz, it follows that $\lambda(U_f \setminus U_f^{-1}) = 0$. As for every $y \in U_f f^{-1}(\{y\})$ is uncountable, it contains a perfect set and hence it is clear that for every $y \in U_f^{-1}$ it is $x_y \in \tilde{Z}_{(f,1)}$. Let U_f^{-2} be the set of all points in U_f^{-1} which are not a local extremum of f. As $U_f^{-1} \setminus U_f^{-2}$ is at most countable, it has Lebesgue measure equal to zero. Let $\epsilon > 0$. For every $y \in U_f^{-2}$ choose a sequence $\{p_{y,k}\}_{k \in \mathbb{N}}$ converging to x_y such that, for every k,

- (i) the image under f of the semi-open interval $J_{y,k}$ containing x_y and having as endpoints x_y and $p_{y,k}$ is a non-degenerate interval, and
- (ii) $|f(x_y) f(p_{y,k})| < \epsilon \cdot |x_y p_{y,k}|.$

Let, for every $y \in U_f^{-2}$ and for every k, $f(\overline{J_{y,k}}) = [f(a_{y,k}), f(b_{y,k})]$. Now, $V_y = \{[f(a_{y,k}), f(b_{y,k})]\}_{k \in \mathbb{N}}$ is a family of non-degenerate intervals containing y and with diameters going to zero. Let $V = \bigcup_{y \in U_f^{-2}} V_y$. Clearly, V is a Vitali covering of U_f^{-2} . By the Vitali covering theorem ([1]), there exists a countable sub-collection of pair-wise disjoint intervals $\{[f(a_{y_i,k_i}), f(b_{y_i,k_i})]\}_{i \in \mathbb{N}}$ such that $\lambda(U_f^{-2} \setminus \bigcup_{i=1}^{\infty} [f(a_{y_i,k_i}), f(b_{y_i,k_i})]) = 0$. The collection $\{I_i\}_{i \in \mathbb{N}}$ of closed intervals having as end-points a_{y_i,k_i} and b_{y_i,k_i} is pair-wise disjoint since so is $\{[f(a_{y_i,k_i}), f(b_{y_i,k_i})]\}_{i \in \mathbb{N}}$.

$$\begin{aligned} &|f(a_{y_i,k_i}) - f(b_{y_i,k_i})| \\ &\leq ||f(a_{y_i,k_i}) - f(x_{y_i})| + |f(x_{y_i}) - f(b_{y_i,k_i})| \\ &< \epsilon \cdot (|a_{y_i,k_i} - x_{y_i}| + |x_{y_i} - b_{y_i,k_i}|). \end{aligned}$$

Therefore,

$$\sum_{i=1}^{\infty} |f(a_{y_i,k_i}) - f(b_{y_i,k_i})|$$

$$\leq \sum_{i=1}^{\infty} (|f(a_{y_i,k_i}) - f(x_{y_i})| + |f(x_{y_i}) - f(b_{y_i,k_i})|)$$

$$\leq \epsilon \cdot \sum_{i=1}^{\infty} (|a_{y_i,k_i} - x_{y_i}| + |x_{y_i} - b_{y_i,k_i}|)$$

$$< 2 \cdot \epsilon.$$

Hence, $\lambda(U_f) = \lambda(U_f^2) \leq 2 \cdot \epsilon$, for every ϵ .

Theorem 2.12. Let $M \subseteq [0, 1]$. Then the following are equivalent:

- 1. M is an analytic set with $\lambda(M) = 0$,
- 2. there is a Lipschitz function f from [0,1] into [0,1] such that $f^{-1}(\{y\})$ is uncountable for every $y \in M$ and countable otherwise.

Proof. $(1) \Rightarrow (2)$ This is Proposition 2.10.

 $(2) \Rightarrow (1)$ This is Proposition 2.11.

References

- [1] A. M. Bruckner, J. B. Bruckner, B. S. Thomson, Real Analysis, Prentice-Hall, New Jersey, 1997.
- [2] A. M. Bruckner, C. Goffman, Differentiability through change of variables, Proc. Amer. Math. Soc. 61 (1976), 235-241.
- [3] E. D'Aniello, U. B. Darji, Cⁿ functions, Hausdorff measures and analytic sets, to appear in Advances in Mathematics 164 (2001), 117-143.
- [4] K. Kuratowski, Topology I, Academic Press, 1966.
- [5] S. Mazurkiewicz, W. Sierpinski, Sur un problème concernant les fonctions continues, Fund. Math. 6 (1924), 161-169.

DIPARTIMENTO DI MATEMATICA, SECONDA UNIVERSITÀ DEGLI STUDI DI NAPOLI, VIA VIVALDI 43, 81100 CASERTA, ITALIA

 $E\text{-}mail\ address:$ emma.daniello@@unina2.it