ON FUZZY QUOTIENT BCI-ALGEBRAS INDUCED BY FUZZY IDEALS

SUNG MIN HONG, SEON JEONG KIM AND YOUNG BAE JUN

Received March 1, 2002

Abstract

We define fuzzy quotient $B C I$-algebras induced by fuzzy ideals and study the relation between fuzzy quotient $B C I$-algebras and fuzzy ideals. We establish isomorphism theorem.

1. Introduction

For the general development of $B C I$-algebras, the (fuzzy) ideal theory plays an important role. Of course, the quotient structure by (fuzzy) ideal plays an important role also. In general, the relation " \sim " on a $B C I$-algebra X defined by $x \sim y$ if and only if $x * y \in A$ and $y * x \in A$ is used, where $x, y \in X$ and A is an ideal of X, to constructing quotient structure of $B C I$-algebra induced by an ideal. F. L. Zhang [8] gave an equivalent relation on a $B C I$-algebra by using a different method, and constructed the corresponding quotient structures. S. M. Hong and Y. B. Jun [1] fuzzified the equivalence relation obtained by Zhang's way, and established a quotient $B C I$-algebra which is induced by a fuzzy ideal. In this paper, we consider another fuzzification of the equivalence relation given by $\mathrm{F} . \mathrm{L}$. Zhang, and construct fuzzy quotient $B C I$-algebras induced by fuzzy ideals. We establish an isomorphism theorem, and give a characterization for a quotient $B C I$-algebra induced by a fuzzy ideal to be commutative (positive implicative).

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper.
Recall that a $B C I$-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms for every $x, y, z \in X$,
(a1) $((x * y) *(x * z)) *(z * y)=0$,
(a2) $(x *(x * y)) * y=0$,
(a3) $x * x=0$,
(a4) $x * y=0$ and $y * x=0$ imply $x=y$.
A partial ordering \leq on X can be defined by $x \leq y$ if and only if $x * y=0$. In a $B C I$-algebra X, the following hold:
(b1) $x * 0=x$.
(b2) $(x * y) * z=(x * z) * y$.
(b3) $0 *(x * y)=(0 * x) *(0 * y)$.
(b4) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

[^0]A mapping $f: X \rightarrow Y$ of $B C I$-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. An ideal of a $B C I$-algebra X is defined to be a subset A of X containing 0 such that if $x * y \in A$ and $y \in A$ then $x \in A$. If x is an element of an ideal A of a $B C I$-algebra X and $y \leq x$, then $y \in A$. For any elements x and y of a $B C I$-algebra X and $n \in \mathbb{N}$, let us write $x * y^{n}$ instead of $(((x * y) * y) * \cdots) * y$ in which y occurs n times.

Proposition 2.1. (Huang [2]) For any elements x and y of a $B C I$-algebra X and $n \in \mathbb{N}$, we have $0 *(x * y)^{n}=\left(0 * x^{n}\right) *\left(0 * y^{n}\right)$.

We now review some fuzzy logic concepts. Let X be a set. A fuzzy set in X is a mapping from X to $[0,1]$. In the sequel, we place a bar over a symbol to denote a fuzzy set so \bar{A}, \bar{B}, \bar{G}, \cdots all represent fuzzy sets in X. A fuzzy ideal of a $B C I$-algebra X is defined to be a fuzzy set \bar{A} in X such that
(F1) $\bar{A}(0) \geq \bar{A}(x)$ for all $x \in X$,
(F2) $\bar{A}(x) \geq \min \{\bar{A}(x * y), \bar{A}(y)\}$ for all $x, y \in X$.
Note that every fuzzy ideal \bar{A} of a $B C I$-algebra X is order reversing, i.e., if $x \leq y$ then $\bar{A}(x) \geq \bar{A}(y)$. A fuzzy ideal \bar{A} of a $B C I$-algebra X is said to be closed if $\bar{A}(0 * x) \geq \bar{A}(x)$ for all $x \in X$. A fuzzy set \bar{A} in a $B C I$-algebra X is called a fuzzy commutative ideal if it satisfies (F1) and
(F3) $\bar{A}(x *((y *(y * x)) *(0 *(0 *(x * y))))) \geq \min \{\bar{A}((x * y) * z), \bar{A}(z)\}$ for all $x, y, z \in X$. A fuzzy set \bar{A} in a $B C I$-algebra X is called a fuzzy positive implicative ideal if it satisfies (F1) and
(F4) $\bar{A}(x * z) \geq \min \{\bar{A}(((x * z) * x) *(y * z)), \bar{A}(y)\}$ for all $x, y, z \in X$.

3. Quotient Structures

Let A be an ideal of a $B C I$-algebra X and let $n \in \mathbb{N}$. We define a relation " \sim " on X as follows:

$$
x \sim y(A) \text { if and only if } 0 *(x * y)^{n} \in A \text { and } 0 *(y * x)^{n} \in A
$$

Then " \sim " is a congruence relation on X (see [8] and [1]).
Let X be a $B C I$-algebra and denote by A_{x} the equivalence class containing $x \in X$, and by X / A the set of all equivalence classes of X with respect to " \sim ", that is,

$$
A_{x}:=\{y \in X \mid x \sim y(A)\} \text { and } X / A:=\left\{A_{x} \mid x \in X\right\} .
$$

Define a binary operation " \diamond " on X / A by $A_{x} \diamond A_{y}=A_{x * y}$ for all $A_{x}, A_{y} \in X / A$. Then $\left(X / A ; \diamond, A_{0}\right)$ is a $B C I$-algebra (see [8]).

Theorem 3.1. If A is an ideal of a BCI-algebra X, then the mapping $\phi: X \rightarrow X / A$ given by $\phi(x)=A_{x}$ is an epimorphism with kernel A.

Proof. The map $\phi: X \rightarrow X / A$ is clearly surjective and since

$$
\phi(x * y)=A_{x * y}=A_{x} \diamond A_{y}=\phi(x) \diamond \phi(y)
$$

ϕ is an epimorphism. Now

$$
\operatorname{Ker} \phi=\left\{x \in X \mid \phi(x)=A_{x}=A_{0}\right\}=\{x \in X \mid x \in A\}=A
$$

This completes the proof.
Theorem 3.2. Let $f: X \rightarrow Y$ be an epimorphism of $B C I$-algebras. If Y satisfies the implication $0 * x^{n}=0 * y^{n} \Rightarrow x=y$ for every $x, y \in Y$ and $n \in \mathbb{N}$, then the quotient algebra $X / \operatorname{Ker} f$ is isomorphic to Y.

Proof. Obviously, $\operatorname{Ker} f$ is an ideal of X. Let $x, y \in X$ be such that $f(x)=f(y)$. Then

$$
f\left(0 *(x * y)^{n}\right)=f(0) * f\left((x * y)^{n}\right)=0 * f(x * y)^{n}=0 *(f(x) * f(y))^{n}=0
$$

Similarly, $f\left(0 *(y * x)^{n}\right)=0$, and so $0 *(x * y)^{n} \in \operatorname{Ker} f$ and $0 *(y * x)^{n} \in \operatorname{Ker} f$. Hence $x \sim$ $y(\operatorname{Ker} f)$. This means that x and y belong to a class of $X / \operatorname{Ker} f$. Conversely if $x \sim y(\operatorname{Ker} f)$, then $0 *(x * y)^{n} \in \operatorname{Ker} f$ and $0 *(y * x)^{n} \in \operatorname{Ker} f$, which imply that
$0=f\left(0 *(x * y)^{n}\right)=f\left(\left(0 * x^{n}\right) *\left(0 * y^{n}\right)\right)=f\left(0 * x^{n}\right) * f\left(0 * y^{n}\right)=\left(0 * f(x)^{n}\right) *\left(0 * f(y)^{n}\right)$ and $\left(0 * f(y)^{n}\right) *\left(0 * f(x)^{n}\right)=0$ by the similar way. It follows from (a4) that $0 * f(x)^{n}=$ $0 * f(y)^{n}$ so from the hypothesis that $f(x)=f(y)$. Therefore $X / \operatorname{Ker} f \ni(\operatorname{Ker} f)_{x} \mapsto f(x) \in Y$ is a one-to-one correspondence between $X / \operatorname{Ker} f$ and Y. Moreover $(\operatorname{Ker} f)_{x} \diamond(\operatorname{Ker} f)_{y}=$ (Kerf) $)_{x * y}$ implies $f(x) * f(y)=f(x * y)$. Hence the above correspondence gives the required isomorphism.

Let \bar{A} be a fuzzy ideal of a $B C I$-algebra X. Define a binary relation " \approx " on X as follows:

$$
x \approx y(\bar{A}) \text { if and only if } \bar{A}\left(0 *(x * y)^{n}\right)=\bar{A}(0)=\bar{A}\left(0 *(y * x)^{n}\right)
$$

for all $x, y \in X$ and $n \in \mathbb{N}$.
Lemma 3.3. The binary relation " \approx " is an equivalence relation on a BCI-algebra X.
Proof. Obviously, " \approx " is reflexive and symmetric. Let $x, y, z \in X$ be such that $x \approx y(\bar{A})$ and $y \approx z(\bar{A})$. Then

$$
\bar{A}\left(0 *(x * y)^{n}\right)=\bar{A}(0)=\bar{A}\left(0 *(y * x)^{n}\right) \text { and } \bar{A}\left(0 *(y * z)^{n}\right)=\bar{A}(0)=\bar{A}\left(0 *(z * y)^{n}\right)
$$

for every $n \in \mathbb{N}$. On the other hand,

$$
\begin{aligned}
&\left(0 *(x * z)^{n}\right) *\left(0 *(x * y)^{n}\right)=\left(\left(0 * x^{n}\right) *\left(0 * z^{n}\right)\right) *\left(\left(0 * x^{n}\right) *\left(0 * y^{n}\right)\right) \\
& \leq\left(0 * y^{n}\right) *\left(0 * z^{n}\right)=0 *(y * z)^{n} .
\end{aligned}
$$

Since \bar{A} is order reversing, it follows that

$$
\bar{A}\left(\left(0 *(x * z)^{n}\right) *\left(0 *(x * y)^{n}\right)\right) \geq \bar{A}\left(0 *(y * z)^{n}\right)
$$

so from (F2) that

$$
\begin{aligned}
\bar{A}\left(0 *(x * z)^{n}\right) & \geq \min \left\{\bar{A}\left(\left(0 *(x * z)^{n}\right) *\left(0 *(x * y)^{n}\right)\right), \bar{A}\left(0 *(x * y)^{n}\right)\right\} \\
& \geq \min \left\{\bar{A}\left(0 *(y * z)^{n}\right), \bar{A}\left(0 *(x * y)^{n}\right)\right\} \\
& =\bar{A}(0)
\end{aligned}
$$

Clearly $\bar{A}\left(0 *(x * z)^{n}\right) \leq \bar{A}(0)$ by (F1), and so $\bar{A}\left(0 *(x * z)^{n}\right)=\bar{A}(0)$. Similarly, we obtain $\bar{A}\left(0 *(z * x)^{n}\right)=\bar{A}(0)$. Hence $x \approx z(\bar{A})$, which proves the transitivity of \approx. This completes the proof.

Lemma 3.4. For any elements x, y and z of a BCI-algebra $X, x \approx y(\bar{A})$ implies $x * z \approx$ $y * z(\bar{A})$ and $z * x \approx z * y(\bar{A})$.
Proof. If $x \approx y(\bar{A})$, then $\bar{A}\left(0 *(x * y)^{n}\right)=\bar{A}(0)=\bar{A}\left(0 *(y * x)^{n}\right)$ for every $n \in \mathbb{N}$. Note that

$$
\begin{aligned}
& \left(0 *((x * z) *(y * z))^{n}\right) *\left(0 *(x * y)^{n}\right) \\
= & \left(\left(0 *(x * z)^{n}\right) *\left(0 *(y * z)^{n}\right)\right) *\left(0 *(x * y)^{n}\right) \\
= & \left(\left(\left(0 * x^{n}\right) *\left(0 * z^{n}\right)\right) *\left(\left(0 * y^{n}\right) *\left(0 * z^{n}\right)\right)\right) *\left(0 *(x * y)^{n}\right) \\
\leq & \left(\left(0 * x^{n}\right) *\left(0 * y^{n}\right)\right) *\left(0 *(x * y)^{n}\right) \\
= & \left(0 *(x * y)^{n}\right) *\left(0 *(x * y)^{n}\right) \\
= & 0 .
\end{aligned}
$$

Since \bar{A} is order reversing, it follows that

$$
\bar{A}\left(\left(0 *((x * z) *(y * z))^{n}\right) *\left(0 *(x * y)^{n}\right)\right) \geq \bar{A}(0)
$$

so from (F2) that

$$
\begin{aligned}
& \bar{A}\left(0 *((x * z) *(y * z))^{n}\right) \\
\geq & \min \left\{\bar{A}\left(\left(0 *((x * z) *(y * z))^{n}\right) *\left(0 *(x * y)^{n}\right), \bar{A}\left(0 *(x * y)^{n}\right)\right\}\right. \\
\geq & \bar{A}(0)
\end{aligned}
$$

Obviously, $\bar{A}\left(0 *((x * z) *(y * z))^{n}\right) \leq \bar{A}(0)$ by (F1). Hence

$$
\bar{A}\left(0 *((x * z) *(y * z))^{n}\right)=\bar{A}(0)
$$

Similarly, we get $\bar{A}\left(0 *((y * z) *(x * z))^{n}\right)=\bar{A}(0)$, and therefore $x * z \approx y * z(\bar{A})$. Similar $\operatorname{argument}$ induces $z * x \approx z * y(\bar{A})$. This completes the proof.

Using Lemma 3.4 and the transitivity of \approx, we have the following lemma.
Lemma 3.5. If $x \approx u(\bar{A})$ and $y \approx v(\bar{A})$ in a $B C I$-algebra X, then $x * y \approx u * v(\bar{A})$.
Let X be a $B C I$-algebra and denote by \bar{A}_{x} the equivalence class containing $x \in X$, and by X / \bar{A} the set of all equivalence classes of X with respect to " \approx ", that is,

$$
\bar{A}_{x}:=\{y \in X \mid x \approx y(\bar{A})\} \text { and } X / \bar{A}:=\left\{\bar{A}_{x} \mid x \in X\right\} .
$$

Define a binary operation " \oslash " on X / \bar{A} by $\bar{A}_{x} \oslash \bar{A}_{y}=\bar{A}_{x * y}$ for all $\bar{A}_{x}, \bar{A}_{y} \in X / \bar{A}$. We first verify that the operation " \oslash " is well defined. Let $x, y, u, v \in X$ be such that $\bar{A}_{x}=\bar{A}_{u}$ and $\bar{A}_{y}=\bar{A}_{v}$. Then $x \approx u(\bar{A})$ and $y \approx v(\bar{A})$, which imply that $x * y \approx u * v(\bar{A})$ by Lemma 3.5. Let $w \in \bar{A}_{x} \oslash \bar{A}_{y}$. Then $w \approx x * y \approx u * v(\bar{A})$, and so $w \in \bar{A}_{u * v}=\bar{A}_{u} \oslash \bar{A}_{v}$. Now if $z \in \bar{A}_{u} \oslash \bar{A}_{v}$, then $z \approx u * v \approx x * y(\bar{A})$, and thus $z \in \bar{A}_{x * y}=\bar{A}_{x} \oslash \bar{A}_{y}$. Therefore $\bar{A}_{x} \oslash \bar{A}_{y}=\bar{A}_{u} \oslash \bar{A}_{v}$, that is, " \oslash " is well defined. Next we shall show that $\left(X / \bar{A} ; \oslash, \bar{A}_{0}\right)$ is a $B C I$-algebra. Let $\bar{A}_{x}, \bar{A}_{y}, \bar{A}_{z} \in A / \bar{A}$. Then

$$
\begin{aligned}
& \left(\left(\bar{A}_{x} \oslash \bar{A}_{y}\right) \oslash\left(\bar{A}_{x} \oslash \bar{A}_{z}\right)\right) \oslash\left(\bar{A}_{z} \oslash \bar{A}_{y}\right) \\
= & \left(\overline{\bar{A}}_{x * y} \oslash \bar{A}_{x * z}\right) \oslash \bar{A}_{z * y} \\
= & \bar{A}_{(x * y) *(x * z)} \oslash \bar{A}_{z * y} \\
= & \bar{A}_{(x * y) *(x * z)) *(z * y)} \\
= & \bar{A}_{0},
\end{aligned}
$$

which shows that X / \bar{A} satisfies the condition (a1). Similarly, we can deduce the conditions (a2) and (a3). Let $x, y \in X$ be such that $\bar{A}_{x} \oslash \bar{A}_{y}=\bar{A}_{0}$ and $\bar{A}_{y} \oslash \bar{A}_{x}=\bar{A}_{0}$. Then $\bar{A}_{x * y}=\bar{A}_{0}=\bar{A}_{y * x}$, and so $x * y \approx 0 \approx y * x(\bar{A})$. It follows from (b1) that

$$
\bar{A}\left(0 *(x * y)^{n}\right)=\bar{A}\left(0 *((x * y) * 0)^{n}\right)=\bar{A}(0)
$$

and

$$
\bar{A}\left(0 *(y * x)^{n}\right)=\bar{A}\left(0 *((y * x) * 0)^{n}\right)=\bar{A}(0)
$$

so that $x \approx y(\bar{A})$. Hence $\bar{A}_{x}=\bar{A}_{y}$. We shall state this as a theorem.
Theorem 3.6. If \bar{A} is a fuzzy ideal of a $B C I$-algebra X, then $\left(X / \bar{A} ; \oslash, \bar{A}_{0}\right)$ is a $B C I$ algebra.

We then call X / \bar{A} fuzzy quotient $B C I$-algebra of X induced by the fuzzy ideal \bar{A}.
Lemma 3.7. (Xi [7]) Let $f: X \rightarrow Y$ be an epimorphism of $B C I$-algebras. If \bar{B} is a fuzzy ideal of Y, then the homomorphic preimage of \bar{B} under f, denoted by $f^{-1}(\bar{B})$, is a fuzzy ideal of X.

Theorem 3.8. (Isomorphism theorem) Let $f: X \rightarrow Y$ be an epimorphism of $B C I$-algebras and let \bar{B} be a fuzzy ideal of Y. Then X / \bar{A} is isomorphic to Y / \bar{B}, where $\bar{A}=f^{-1}(\bar{B})$.

Proof. Note that X / \bar{A} and Y / \bar{B} are $B C I$-algebras (see Theorem 3.6 and Lemma 3.7). Let $\Phi: X / \bar{A} \rightarrow Y / \bar{B}$ be a mapping defined by $\Phi\left(\bar{A}_{x}\right)=\bar{B}_{f(x)}$, where $x \in X$. Let $x, y \in X$ be such that $\bar{A}_{x}=\bar{A}_{y}$. Then

$$
\begin{aligned}
\bar{B}(0) & =\bar{B}(f(0))=f^{-1}(\bar{B})(0)=\bar{A}(0)=\bar{A}\left(0 *(x * y)^{n}\right) \\
& =f^{-1}(\bar{B})\left(0 *(x * y)^{n}\right)=\bar{B}\left(f\left(0 *(x * y)^{n}\right)\right)=\bar{B}\left(0 *(f(x) * f(y))^{n}\right)
\end{aligned}
$$

Similarly $\bar{B}\left(0 *(f(y) * f(x))^{n}\right)=\bar{B}(0)$. Hence $f(x) \approx f(y)(\bar{B})$, that is, $\bar{B}_{f(x)}=\bar{B}_{f(y)}$. Therefore Φ is well defined. For any $\bar{A}_{x}, \bar{A}_{y} \in X / \bar{A}$, we have

$$
\Phi\left(\bar{A}_{x} \oslash \bar{A}_{y}\right)=\Phi\left(\bar{A}_{x * y}\right)=\bar{B}_{f(x * y)}=\bar{B}_{f(x) * f(y)}=\bar{B}_{f(x)} \oslash \bar{B}_{f(y)}=\Phi\left(\bar{A}_{x}\right) \oslash \Phi\left(\bar{A}_{y}\right)
$$

Hence Φ is a homomorphism. Now let $x, y \in X$ be such that $\bar{B}_{f(x)}=\bar{B}_{f(y)}$. Then $f(x) \approx$ $f(y)(\bar{B})$, and so

$$
\begin{aligned}
\bar{A}(0) & =f^{-1}(\bar{B})(0)=\bar{B}(f(0))=\bar{B}(0)=\bar{B}\left(0 *(f(x) * f(y))^{n}\right) \\
& =\bar{B}\left(f(0) * f\left((x * y)^{n}\right)\right)=\bar{B}\left(f\left(0 *(x * y)^{n}\right)\right) \\
& =f^{-1}(\bar{B})\left(0 *(x * y)^{n}\right)=\bar{A}\left(0 *(x * y)^{n}\right)
\end{aligned}
$$

and $\bar{A}\left(0 *(y * x)^{n}\right)=\bar{A}(0)$ by the same way. Thus $x \approx y(\bar{A})$, that is, $\bar{A}_{x}=\bar{A}_{y}$. This shows that Φ is injective. Clearly Φ is surjective, and the proof is complete.

Lemma 3.9. (Meng and Xin [6]) A BCI-algebra X is positive implicative if and only if it satisfies $x * y=((x * y) * y) *(0 * y)$ for all $x, y \in X$.
Lemma 3.10. (Liu and Meng [4]) A fuzzy ideal \bar{A} of a $B C I$-algebra X is fuzzy positive implicative if and only if it satisfies $\bar{A}(x * y)=\bar{A}(((x * y) * y) *(0 * y))$ for all $x, y \in X$.

Theorem 3.11. Let \bar{A} be a fuzzy ideal of a BCI-algebra X. Then the fuzzy quotient $B C I$ algebra X / \bar{A} of X induced by \bar{A} is positive implicative if and only if \bar{A} is a fuzzy positive implicative ideal of X.
Proof. Assume that the quotient algebra X / \bar{A} is positive implicative. Then

$$
\bar{A}_{x * y}=\bar{A}_{x} \oslash \bar{A}_{y}=\left(\left(\bar{A}_{x} \oslash \bar{A}_{y}\right) \oslash \bar{A}_{y}\right) \oslash\left(\bar{A}_{0} \oslash \bar{A}_{y}\right)=\bar{A}_{((x * y) * y) *(0 * y)},
$$

that is, $x * y \approx((x * y) * y) *(0 * y)(\bar{A})$. It follows from (F1) and (F2) that
$\bar{A}(x * y) \geq \min \{\bar{A}((x * y) *(((x * y) * y) *(0 * y))), \bar{A}(((x * y) * y) *(0 * y))\}=\bar{A}(((x * y) * y) *(0 * y))$.
Obviously $\bar{A}(x * y) \leq \bar{A}(((x * y) * y) *(0 * y))$ because $((x * y) * y) *(0 * y) \leq x * y$ by (a1), (b1) and (b2) and \bar{A} is order reversing. Hence $\bar{A}(x * y)=\bar{A}(((x * y) * y) *(0 * y))$, and thus \bar{A} is a fuzzy positive implicative ideal of X. Conversely suppose that \bar{A} is a fuzzy positive implicative ideal of X. Using (b2) and Lemma 3.10, we have

$$
\begin{aligned}
& \bar{A}((x * y) *(((x * y) * y) *(0 * y))) \\
= & \bar{A}((x *(((x * y) * y) *(0 * y))) * y) \\
= & \bar{A}((((x *(((x * y) * y) *(0 * y))) * y) * y) *(0 * y)) \\
= & \bar{A}(0)
\end{aligned}
$$

Since $(((x * y) * y) *(0 * y)) *(x * y)=0$, it follows that

$$
\bar{A}((((x * y) * y) *(0 * y)) *(x * y))=\bar{A}(0)
$$

Hence $x * y \approx((x * y) * y) *(0 * y)(\bar{A})$, and so

$$
\bar{A}_{x} \oslash \bar{A}_{y}=\bar{A}_{x * y}=\bar{A}_{((x * y) * y) *(0 * y)}=\left(\left(\bar{A}_{x} \oslash \bar{A}_{y}\right) \oslash \bar{A}_{y}\right) \oslash\left(\bar{A}_{0} \oslash \bar{A}_{y}\right) .
$$

It follows from Lemma 3.9 that X / \bar{A} is a positive implicative $B C I$-algebra.
Lemma 3.12. (Meng and Xin [5]) A BCI-algebra X is commutative if and only if it satisfies $x *(x * y)=y *(y *(x *(x * y)))$ for all $x, y \in X$.

Lemma 3.13. (Jun and Meng [3]) Let \bar{A} be a closed fuzzy ideal of a $B C I$-algebra X. Then \bar{A} is fuzzy commutative if and only if it satisfies $\bar{A}(x *(y *(y * x))) \geq \bar{A}(x * y)$ for all $x, y \in X$.

Theorem 3.14. Let \bar{A} be a closed fuzzy ideal of a $B C I$-algebra X. Then the fuzzy quotient $B C I$-algebra X / \bar{A} of X induced by \bar{A} is commutative if and only if \bar{A} is fuzzy commutative.

Proof. Assume that \bar{A} is a closed fuzzy commutative ideal of X. Then, by Lemma 3.13, (b2) and (a3), we have
$\bar{A}((x *(x * y)) *(y *(y *(x *(x * y))))) \geq \bar{A}((x *(x * y)) * y)=\bar{A}((x * y) *(x * y))=\bar{A}(0)$.
On the other hand, note that
$\bar{A}((y *(y *(x *(x * y)))) *(x *(x * y)))=\bar{A}((y *(x *(x * y))) *(y *(x *(x * y))))=\bar{A}(0)$ by (b2) and (a3). Hence $x *(x * y) \approx y *(y *(x *(x * y)))(\bar{A})$, which implies that

$$
\bar{A}_{x} \oslash\left(\bar{A}_{x} \oslash \bar{A}_{y}\right)=\bar{A}_{x *(x * y)}=\bar{A}_{y *(y *(x *(x * y)))}=\bar{A}_{y} \oslash\left(\bar{A}_{y} \oslash\left(\bar{A}_{x} \oslash\left(\bar{A}_{x} \oslash \bar{A}_{y}\right)\right)\right) .
$$

It follows from Lemma 3.12 that X / \bar{A} is commutative. Conversely let \bar{A} be a closed fuzzy ideal of X such that X / \bar{A} is commutative. Then

$$
\bar{A}_{x *(x * y)}=\bar{A}_{x} \oslash\left(\bar{A}_{x} \oslash \bar{A}_{y}\right)=\bar{A}_{y} \oslash\left(\bar{A}_{y} \oslash\left(\bar{A}_{x} \oslash\left(\bar{A}_{x} \oslash \bar{A}_{y}\right)\right)\right)=\bar{A}_{y *(y *(x *(x * y)))},
$$

and hence $x *(x * y) \approx y *(y *(x *(x * y)))(\bar{A})$. It follows from (b2) and (F1) that $\bar{A}((x *(y *(y *(x *(x * y))))) *(x * y))=\bar{A}((x *(x * y)) *(y *(y *(x *(x * y)))))=\bar{A}(0) \geq \bar{A}(x * y)$, so from (F2) that

$$
\begin{aligned}
& \bar{A}(x *(y *(y *(x *(x * y))))) \\
\geq & \min \{\bar{A}((x *(y *(y *(x *(x * y))))) *(x * y)), \bar{A}(x * y)\} \\
= & \bar{A}(x * y) .
\end{aligned}
$$

Using (a1), (b2) and (a3), we get

$$
(x *(y *(y * x))) *(x *(y *(y *(x *(x * y))))) \leq 0 *(x * y) .
$$

Since \bar{A} is order reversing, it follows from (F2) and its closedness that

$$
\begin{aligned}
& \bar{A}(x *(y *(y * x))) \\
\geq & \min \{\bar{A}((x *(y *(y * x))) *(x *(y *(y *(x *(x * y))))), \\
\geq & \min \{\bar{A}(x *(y *(x * y)), \bar{A}(x * y)\} \\
= & \bar{A}(x * y) .
\end{aligned}
$$

Hence, by Lemma $3.13, \bar{A}$ is fuzzy commutative.
Acknowledgements. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

[1] S. M. Hong and Y. B. Jun, Quotient BCI-algebras via fuzzy ideals, Far East J. Math. Sci. 4(3) (1996), 343-351.
[2] W. P. Huang, Nil-radical in BCI-algebras, Math. Japonica 37 (2) (1992), 363-366.
[3] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI-algebras, Comm. Korean Math. Soc. 9(1) (1994), 19-25.
[4] Y. L. Liu and J. Meng, Fuzzy ideals in BCI-algebras, Fuzzy Sets and Systems 123) (2001), 227-237.
[5] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japonica $37(3)$ (1992), 569-572.
[6] J. Meng and X. L. Xin, Positive implicative BCI-algebras, Pure Appl. Math. 9(1) (1993), 19-22.
[7] O. G. Xi, Fuzzy BCK-algebra, Math. Japonica 36(5) (1991), 935-942.
[8] F. L. Zhang, A class of quotient algebras in BCI-algebras, Selected Papers on BCK- and BCI-algebras (in P. R. China) 1 (1992), 89-90.

Department of Mathematics (Education), Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail : smhong\{skim, ybjun\}@nongae.gsnu.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06F35, 03G25, 03B52.
 Key words and phrases. Fuzzy (commutative, positive implicative) ideal, fuzzy quotient BCI-algebra induced by fuzzy ideal.

