ON FUZZY QUOTIENT BCI-ALGEBRAS INDUCED BY FUZZY IDEALS

SUNG MIN HONG, SEON JEONG KIM AND YOUNG BAE JUN

Received March 1, 2002

ABSTRACT. We define fuzzy quotient BCI-algebras induced by fuzzy ideals and study the relation between fuzzy quotient BCI-algebras and fuzzy ideals. We establish isomorphism theorem.

1. INTRODUCTION

For the general development of BCI-algebras, the (fuzzy) ideal theory plays an important role. Of course, the quotient structure by (fuzzy) ideal plays an important role also. In general, the relation "~" on a BCI-algebra X defined by $x \sim y$ if and only if $x * y \in A$ and $y * x \in A$ is used, where $x, y \in X$ and A is an ideal of X, to constructing quotient structure of BCI-algebra induced by an ideal. F. L. Zhang [8] gave an equivalent relation on a BCI-algebra by using a different method, and constructed the corresponding quotient structures. S. M. Hong and Y. B. Jun [1] fuzzified the equivalence relation obtained by Zhang's way, and established a quotient BCI-algebra which is induced by a fuzzy ideal. In this paper, we consider another fuzzification of the equivalence relation given by F. L. Zhang, and construct fuzzy quotient BCI-algebras induced by fuzzy ideals. We establish an isomorphism theorem, and give a characterization for a quotient BCI-algebra induced by a fuzzy ideal to be commutative (positive implicative).

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper. Recall that a *BCI-algebra* is an algebra (X, *, 0) of type (2, 0) satisfying the following axioms for every $x, y, z \in X$,

- (a1) ((x * y) * (x * z)) * (z * y) = 0,
- (a2) (x * (x * y)) * y = 0,
- (a3) x * x = 0,
- (a4) x * y = 0 and y * x = 0 imply x = y.

A partial ordering \leq on X can be defined by $x \leq y$ if and only if x * y = 0. In a *BCI*-algebra X, the following hold:

- (b1) x * 0 = x.
- (b2) (x * y) * z = (x * z) * y.
- (b3) 0 * (x * y) = (0 * x) * (0 * y).
- (b4) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25, 03B52.

Key words and phrases. Fuzzy (commutative, positive implicative) ideal, fuzzy quotient BCI-algebra induced by fuzzy ideal.

A mapping $f: X \to Y$ of *BCI*-algebras is called a *homomorphism* if f(x*y) = f(x)*f(y)for all $x, y \in X$. An *ideal* of a *BCI*-algebra X is defined to be a subset A of X containing 0 such that if $x * y \in A$ and $y \in A$ then $x \in A$. If x is an element of an ideal A of a *BCI*-algebra X and $y \leq x$, then $y \in A$. For any elements x and y of a *BCI*-algebra X and $n \in \mathbb{N}$, let us write $x * y^n$ instead of $(((x * y) * y) * \cdots) * y$ in which y occurs n times.

Proposition 2.1. (Huang [2]) For any elements x and y of a BCI-algebra X and $n \in \mathbb{N}$, we have $0 * (x * y)^n = (0 * x^n) * (0 * y^n)$.

We now review some fuzzy logic concepts. Let X be a set. A *fuzzy set* in X is a mapping from X to [0, 1]. In the sequel, we place a bar over a symbol to denote a fuzzy set so \overline{A} , \overline{B} , \overline{G} , \cdots all represent fuzzy sets in X. A *fuzzy ideal* of a *BCI*-algebra X is defined to be a fuzzy set \overline{A} in X such that

(F1) $\overline{A}(0) \ge \overline{A}(x)$ for all $x \in X$,

(F2) $\overline{A}(x) \ge \min\{\overline{A}(x * y), \overline{A}(y)\}$ for all $x, y \in X$.

Note that every fuzzy ideal \overline{A} of a BCI-algebra X is order reversing, i.e., if $x \leq y$ then $\overline{A}(x) \geq \overline{A}(y)$. A fuzzy ideal \overline{A} of a BCI-algebra X is said to be *closed* if $\overline{A}(0 * x) \geq \overline{A}(x)$ for all $x \in X$. A fuzzy set \overline{A} in a BCI-algebra X is called a *fuzzy commutative ideal* if it satisfies (F1) and

(F3) $\bar{A}(x * ((y * (y * x)) * (0 * (0 * (x * y))))) \ge \min\{\bar{A}((x * y) * z), \bar{A}(z)\}$ for all $x, y, z \in X$. A fuzzy set \bar{A} in a *BCI*-algebra X is called a *fuzzy positive implicative ideal* if it satisfies (F1) and

(F4)
$$\overline{A}(x*z) \ge \min\left\{\overline{A}\left(\left((x*z)*x\right)*(y*z)\right), \overline{A}(y)\right\}$$
 for all $x, y, z \in X$.

3. QUOTIENT STRUCTURES

Let A be an ideal of a *BCI*-algebra X and let $n \in \mathbb{N}$. We define a relation "~" on X as follows:

 $x \sim y(A)$ if and only if $0 * (x * y)^n \in A$ and $0 * (y * x)^n \in A$.

Then " \sim " is a congruence relation on X (see [8] and [1]).

Let X be a *BCI*-algebra and denote by A_x the equivalence class containing $x \in X$, and by X/A the set of all equivalence classes of X with respect to "~", that is,

$$A_x := \{y \in X \mid x \sim y(A)\}$$
 and $X/A := \{A_x \mid x \in X\}.$

Define a binary operation " \diamond " on X/A by $A_x \diamond A_y = A_{x*y}$ for all $A_x, A_y \in X/A$. Then $(X/A; \diamond, A_0)$ is a *BCI*-algebra (see [8]).

Theorem 3.1. If A is an ideal of a BCI-algebra X, then the mapping $\phi : X \to X/A$ given by $\phi(x) = A_x$ is an epimorphism with kernel A.

Proof. The map $\phi: X \to X/A$ is clearly surjective and since

$$\phi(x * y) = A_{x * y} = A_x \diamond A_y = \phi(x) \diamond \phi(y),$$

 ϕ is an epimorphism. Now

$$Ker\phi = \{x \in X \mid \phi(x) = A_x = A_0\} = \{x \in X \mid x \in A\} = A$$

This completes the proof.

Theorem 3.2. Let $f : X \to Y$ be an epimorphism of BCI-algebras. If Y satisfies the implication $0 * x^n = 0 * y^n \Rightarrow x = y$ for every $x, y \in Y$ and $n \in \mathbb{N}$, then the quotient algebra X/Kerf is isomorphic to Y.

Proof. Obviously, Ker f is an ideal of X. Let $x, y \in X$ be such that f(x) = f(y). Then

$$f\left(0*(x*y)^n\right) = f(0)*f\big((x*y)^n\big) = 0*f(x*y)^n = 0*\big(f(x)*f(y)\big)^n = 0.$$

Similarly, $f(0 * (y * x)^n) = 0$, and so $0 * (x * y)^n \in \text{Ker} f$ and $0 * (y * x)^n \in \text{Ker} f$. Hence $x \sim y(\text{Ker} f)$. This means that x and y belong to a class of X/Ker f. Conversely if $x \sim y(\text{Ker} f)$, then $0 * (x * y)^n \in \text{Ker} f$ and $0 * (y * x)^n \in \text{Ker} f$, which imply that

$$0 = f(0 * (x * y)^n) = f((0 * x^n) * (0 * y^n)) = f(0 * x^n) * f(0 * y^n) = (0 * f(x)^n) * (0 * f(y)^n)$$

and $(0 * f(y)^n) * (0 * f(x)^n) = 0$ by the similar way. It follows from (a4) that $0 * f(x)^n = 0 * f(y)^n$ so from the hypothesis that f(x) = f(y). Therefore $X/\operatorname{Ker} f \ni (\operatorname{Ker} f)_x \mapsto f(x) \in Y$ is a one-to-one correspondence between $X/\operatorname{Ker} f$ and Y. Moreover $(\operatorname{Ker} f)_x \diamond (\operatorname{Ker} f)_y = (\operatorname{Ker} f)_{x*y}$ implies f(x) * f(y) = f(x*y). Hence the above correspondence gives the required isomorphism.

Let \overline{A} be a fuzzy ideal of a *BCI*-algebra X. Define a binary relation " \approx " on X as follows:

 $x \approx y(\overline{A})$ if and only if $\overline{A}(0 * (x * y)^n) = \overline{A}(0) = \overline{A}(0 * (y * x)^n)$

for all $x, y \in X$ and $n \in \mathbb{N}$.

Lemma 3.3. The binary relation " \approx " is an equivalence relation on a BCI-algebra X.

Proof. Obviously, " \approx " is reflexive and symmetric. Let $x, y, z \in X$ be such that $x \approx y(\bar{A})$ and $y \approx z(\bar{A})$. Then

$$\bar{A}(0*(x*y)^n) = \bar{A}(0) = \bar{A}(0*(y*x)^n) \text{ and } \bar{A}(0*(y*z)^n) = \bar{A}(0) = \bar{A}(0*(z*y)^n)$$
for every $n \in \mathbb{N}$. On the other hand,

$$\begin{array}{rcl} \left(0 * (x * z)^n \right) * \left(0 * (x * y)^n \right) &=& \left((0 * x^n) * (0 * z^n) \right) * \left((0 * x^n) * (0 * y^n) \right) \\ &\leq& \left(0 * y^n \right) * (0 * z^n) = 0 * (y * z)^n. \end{array}$$

Since \overline{A} is order reversing, it follows that

$$\bar{A}\big((0*(x*z)^n)*(0*(x*y)^n)\big) \ge \bar{A}\big(0*(y*z)^n\big)$$

so from (F2) that

$$\begin{split} \bar{A}\big(0*(x*z)^n\big) &\geq \min\{\bar{A}\big((0*(x*z)^n)*(0*(x*y)^n)\big), \,\bar{A}\big(0*(x*y)^n\big)\}\\ &\geq \min\{\bar{A}\big(0*(y*z)^n\big), \,\bar{A}\big(0*(x*y)^n\big)\}\\ &= \bar{A}(0). \end{split}$$

Clearly $\bar{A}(0 * (x * z)^n) \leq \bar{A}(0)$ by (F1), and so $\bar{A}(0 * (x * z)^n) = \bar{A}(0)$. Similarly, we obtain $\bar{A}(0 * (z * x)^n) = \bar{A}(0)$. Hence $x \approx z(\bar{A})$, which proves the transitivity of \approx . This completes the proof.

Lemma 3.4. For any elements x, y and z of a BCI-algebra X, $x \approx y(\bar{A})$ implies $x * z \approx y * z(\bar{A})$ and $z * x \approx z * y(\bar{A})$.

Proof. If $x \approx y(\bar{A})$, then $\bar{A}(0 * (x * y)^n) = \bar{A}(0) = \bar{A}(0 * (y * x)^n)$ for every $n \in \mathbb{N}$. Note that $(0 + ((x + z)) + (y + z))^n) + (0 + (x + z))^n)$

$$\begin{array}{l} (0*((x*z)*(y*z))^n)*(0*(x*y)^n) \\ = & ((0*(x*z)^n)*(0*(y*z)^n))*(0*(x*y)^n) \\ = & (((0*x^n)*(0*z^n))*((0*y^n)*(0*z^n)))*(0*(x*y)^n) \\ \leq & ((0*x^n)*(0*y^n))*(0*(x*y)^n) \\ = & (0*(x*y)^n)*(0*(x*y)^n) \\ = & 0. \end{array}$$

Since \overline{A} is order reversing, it follows that

$$\bar{A}\big((0*((x*z)*(y*z))^n)*(0*(x*y)^n)\big) \geq \bar{A}(0)$$

so from (F2) that

$$\begin{array}{r} \bar{A} \big(0 * ((x * z) * (y * z))^n \big) \\ \geq & \min \big\{ \bar{A} \big((0 * ((x * z) * (y * z))^n \big) * \big(0 * (x * y)^n \big), \, \bar{A} \big(0 * (x * y)^n \big) \big\} \\ \geq & \bar{A} (0). \end{array}$$

Obviously, $\overline{A}(0 * ((x * z) * (y * z))^n) \leq \overline{A}(0)$ by (F1). Hence

$$\bar{A}(0 * ((x * z) * (y * z))^n) = \bar{A}(0)$$

Similarly, we get $\overline{A}(0 * ((y * z) * (x * z))^n) = \overline{A}(0)$, and therefore $x * z \approx y * z(\overline{A})$. Similar argument induces $z * x \approx z * y(\overline{A})$. This completes the proof.

Using Lemma 3.4 and the transitivity of \approx , we have the following lemma.

Lemma 3.5. If $x \approx u(\overline{A})$ and $y \approx v(\overline{A})$ in a BCI-algebra X, then $x * y \approx u * v(\overline{A})$.

Let X be a *BCI*-algebra and denote by \overline{A}_x the equivalence class containing $x \in X$, and by X/\overline{A} the set of all equivalence classes of X with respect to " \approx ", that is,

$$\bar{A}_x := \{y \in X \mid x \approx y(\bar{A})\} \text{ and } X/\bar{A} := \{\bar{A}_x \mid x \in X\}.$$

Define a binary operation " \oslash " on X/\bar{A} by $\bar{A}_x \oslash \bar{A}_y = \bar{A}_{xyy}$ for all \bar{A}_x , $\bar{A}_y \in X/\bar{A}$. We first verify that the operation " \oslash " is well defined. Let $x, y, u, v \in X$ be such that $\bar{A}_x = \bar{A}_u$ and $\bar{A}_y = \bar{A}_v$. Then $x \approx u(\bar{A})$ and $y \approx v(\bar{A})$, which imply that $x * y \approx u * v(\bar{A})$ by Lemma 3.5. Let $w \in \bar{A}_x \oslash \bar{A}_y$. Then $w \approx x * y \approx u * v(\bar{A})$, and so $w \in \bar{A}_{u*v} = \bar{A}_u \oslash \bar{A}_v$. Now if $z \in \bar{A}_u \oslash \bar{A}_v$, then $z \approx u * v \approx x * y(\bar{A})$, and thus $z \in \bar{A}_{xyy} = \bar{A}_x \oslash \bar{A}_y$. Therefore $\bar{A}_x \oslash \bar{A}_y = \bar{A}_u \oslash \bar{A}_v$, that is, " \oslash " is well defined. Next we shall show that $(X/\bar{A}; \oslash, \bar{A}_0)$ is a *BCI*-algebra. Let $\bar{A}_x, \bar{A}_y, \bar{A}_z \in A/\bar{A}$. Then

$$\begin{array}{rcl} \left(\left(\bar{A}_x \oslash \bar{A}_y \right) \oslash \left(\bar{A}_x \oslash \bar{A}_z \right) \right) \oslash \left(\bar{A}_z \oslash \bar{A}_y \right) \\ = & \left(\bar{A}_{x * y} \oslash \bar{A}_{x * z} \right) \oslash \bar{A}_{z * y} \\ = & \bar{A}_{(x * y) * (x * z)} \oslash \bar{A}_{z * y} \\ = & \bar{A}_{((x * y) * (x * z)) * (z * y)} \\ = & \bar{A}_{0}, \end{array}$$

which shows that X/\bar{A} satisfies the condition (a1). Similarly, we can deduce the conditions (a2) and (a3). Let $x, y \in X$ be such that $\bar{A}_x \otimes \bar{A}_y = \bar{A}_0$ and $\bar{A}_y \otimes \bar{A}_x = \bar{A}_0$. Then $\bar{A}_{x*y} = \bar{A}_0 = \bar{A}_{y*x}$, and so $x * y \approx 0 \approx y * x(\bar{A})$. It follows from (b1) that

$$A(0 * (x * y)^{n}) = A(0 * ((x * y) * 0)^{n}) = A(0)$$

 and

$$\bar{A}(0*(y*x)^n) = \bar{A}(0*((y*x)*0)^n) = \bar{A}(0)$$

so that $x \approx y(\bar{A})$. Hence $\bar{A}_x = \bar{A}_y$. We shall state this as a theorem.

Theorem 3.6. If \overline{A} is a fuzzy ideal of a BCI-algebra X, then $(X/\overline{A}; \oslash, \overline{A}_0)$ is a BCI-algebra.

We then call X/\overline{A} fuzzy quotient BCI-algebra of X induced by the fuzzy ideal \overline{A} .

Lemma 3.7. (Xi [7]) Let $f: X \to Y$ be an epimorphism of BCI-algebras. If \overline{B} is a fuzzy ideal of Y, then the homomorphic preimage of \overline{B} under f, denoted by $f^{-1}(\overline{B})$, is a fuzzy ideal of X.

Theorem 3.8. (Isomorphism theorem) Let $f : X \to Y$ be an epimorphism of BCI-algebras and let \overline{B} be a fuzzy ideal of Y. Then X/\overline{A} is isomorphic to Y/\overline{B} , where $\overline{A} = f^{-1}(\overline{B})$.

328

Proof. Note that X/\bar{A} and Y/\bar{B} are BCI-algebras (see Theorem 3.6 and Lemma 3.7). Let $\Phi: X/\bar{A} \to Y/\bar{B}$ be a mapping defined by $\Phi(\bar{A}_x) = \bar{B}_{f(x)}$, where $x \in X$. Let $x, y \in X$ be such that $\bar{A}_x = \bar{A}_y$. Then

$$\begin{split} \bar{B}(0) &= \bar{B}\big(f(0)\big) = f^{-1}(\bar{B})(0) = \bar{A}(0) = \bar{A}\big(0*(x*y)^n\big) \\ &= f^{-1}(\bar{B})\big(0*(x*y)^n\big) = \bar{B}\big(f(0*(x*y)^n)\big) = \bar{B}\big(0*(f(x)*f(y))^n\big). \end{split}$$

Similarly $\bar{B}(0 * (f(y) * f(x))^n) = \bar{B}(0)$. Hence $f(x) \approx f(y)(\bar{B})$, that is, $\bar{B}_{f(x)} = \bar{B}_{f(y)}$. Therefore Φ is well defined. For any $\bar{A}_x, \bar{A}_y \in X/\bar{A}$, we have

$$\Phi(\bar{A}_x \oslash \bar{A}_y) = \Phi(\bar{A}_{x*y}) = \bar{B}_{f(x*y)} = \bar{B}_{f(x)*f(y)} = \bar{B}_{f(x)} \oslash \bar{B}_{f(y)} = \Phi(\bar{A}_x) \oslash \Phi(\bar{A}_y).$$

Hence Φ is a homomorphism. Now let $x, y \in X$ be such that $\overline{B}_{f(x)} = \overline{B}_{f(y)}$. Then $f(x) \approx f(y)(\overline{B})$, and so

$$\begin{split} \bar{A}(0) &= f^{-1}(\bar{B})(0) = \bar{B}(f(0)) = \bar{B}(0) = \bar{B}(0*(f(x)*f(y))^n) \\ &= \bar{B}(f(0)*f((x*y)^n)) = \bar{B}(f(0*(x*y)^n)) \\ &= f^{-1}(\bar{B})(0*(x*y)^n) = \bar{A}(0*(x*y)^n), \end{split}$$

and $\bar{A}(0 * (y * x)^n) = \bar{A}(0)$ by the same way. Thus $x \approx y(\bar{A})$, that is, $\bar{A}_x = \bar{A}_y$. This shows that Φ is injective. Clearly Φ is surjective, and the proof is complete.

Lemma 3.9. (Meng and Xin [6]) A BCI-algebra X is positive implicative if and only if it satisfies x * y = ((x * y) * y) * (0 * y) for all $x, y \in X$.

Lemma 3.10. (Liu and Meng [4]) A fuzzy ideal \overline{A} of a BCI-algebra X is fuzzy positive implicative if and only if it satisfies $\overline{A}(x * y) = \overline{A}(((x * y) * y) * (0 * y))$ for all $x, y \in X$.

Theorem 3.11. Let \overline{A} be a fuzzy ideal of a BCI-algebra X. Then the fuzzy quotient BCIalgebra X/\overline{A} of X induced by \overline{A} is positive implicative if and only if \overline{A} is a fuzzy positive implicative ideal of X.

Proof. Assume that the quotient algebra X/A is positive implicative. Then

$$\bar{A}_{x*y} = \bar{A}_x \oslash \bar{A}_y = \left((\bar{A}_x \oslash \bar{A}_y) \oslash \bar{A}_y \right) \oslash (\bar{A}_0 \oslash \bar{A}_y) = \bar{A}_{((x*y)*y)*(0*y)},$$

that is, $x * y \approx ((x * y) * y) * (0 * y)(\overline{A})$. It follows from (F1) and (F2) that

 $\bar{A}(x*y) \geq \min \big\{ \bar{A}\big((x*y)*(((x*y)*y)*(0*y)) \big), \ \bar{A}\big(((x*y)*y)*(0*y) \big) \big\} = \bar{A}\big(((x*y)*y)*(0*y) \big).$

Obviously $\bar{A}(x * y) \leq \bar{A}(((x * y) * y) * (0 * y))$ because $((x * y) * y) * (0 * y) \leq x * y$ by (a1), (b1) and (b2) and \bar{A} is order reversing. Hence $\bar{A}(x * y) = \bar{A}(((x * y) * y) * (0 * y))$, and thus \bar{A} is a fuzzy positive implicative ideal of X. Conversely suppose that \bar{A} is a fuzzy positive implicative ideal of X. Using (b2) and Lemma 3.10, we have

$$\begin{array}{rcl} & A\left((x*y)*(((x*y)*y)*(0*y))\right) \\ = & \bar{A}((x*(((x*y)*y)*(0*y)))*y) \\ = & \bar{A}((((x*(((x*y)*y)*(0*y)))*y)*y)*(0*y)) \\ = & \bar{A}(0). \end{array}$$

Since (((x * y) * y) * (0 * y)) * (x * y) = 0, it follows that

$$\bar{A}\big((((x * y) * y) * (0 * y)) * (x * y)\big) = \bar{A}(0).$$

Hence $x * y \approx ((x * y) * y) * (0 * y)(\overline{A})$, and so

$$\bar{A}_x \oslash \bar{A}_y = \bar{A}_{x*y} = \bar{A}_{((x*y)*y)*(0*y)} = ((\bar{A}_x \oslash \bar{A}_y) \oslash \bar{A}_y) \oslash (\bar{A}_0 \oslash \bar{A}_y).$$

It follows from Lemma 3.9 that X/A is a positive implicative BCI-algebra.

Lemma 3.12. (Meng and Xin [5]) A BCI-algebra X is commutative if and only if it satisfies x * (x * y) = y * (y * (x * (x * y))) for all $x, y \in X$.

Lemma 3.13. (Jun and Meng [3]) Let \overline{A} be a closed fuzzy ideal of a BCI-algebra X. Then \overline{A} is fuzzy commutative if and only if it satisfies $\overline{A}(x * (y * (y * x))) \geq \overline{A}(x * y)$ for all $x, y \in X$.

Theorem 3.14. Let \overline{A} be a closed fuzzy ideal of a BCI-algebra X. Then the fuzzy quotient BCI-algebra X/\overline{A} of X induced by \overline{A} is commutative if and only if \overline{A} is fuzzy commutative.

Proof. Assume that \overline{A} is a closed fuzzy commutative ideal of X. Then, by Lemma 3.13, (b2) and (a3), we have

$$\bar{A}\big((x*(x*y))*(y*(y*(x*(x*y))))\big) \ge \bar{A}\big((x*(x*y))*y\big) = \bar{A}\big((x*y)*(x*y)\big) = \bar{A}(0).$$

On the other hand, note that

 $\bar{A}\big((y*(y*(x*(x*y))))*(x*(x*y))\big) = \bar{A}\big((y*(x*(x*y)))*(y*(x*(x*y)))\big) = \bar{A}(0)$

by (b2) and (a3). Hence $x * (x * y) \approx y * (y * (x * (x * y)))(\overline{A})$, which implies that

$$\bar{A}_x \oslash (\bar{A}_x \oslash \bar{A}_y) = \bar{A}_{x*(x*y)} = \bar{A}_{y*(y*(x*(x*y)))} = \bar{A}_y \oslash (\bar{A}_y \oslash (\bar{A}_x \oslash (\bar{A}_x \oslash \bar{A}_y))).$$

It follows from Lemma 3.12 that X/\overline{A} is commutative. Conversely let \overline{A} be a closed fuzzy ideal of X such that X/\overline{A} is commutative. Then

$$\begin{split} \bar{A}_{x*(x*y)} &= \bar{A}_x \oslash (\bar{A}_x \oslash \bar{A}_y) = \bar{A}_y \oslash (\bar{A}_y \oslash (\bar{A}_x \oslash (\bar{A}_x \oslash \bar{A}_y))) = \bar{A}_{y*(y*(x*(x*y)))}, \\ \text{and hence } x*(x*y) &\approx y*(y*(x*(x*y)))(\bar{A}). \text{ It follows from (b2) and (F1) that} \\ \bar{A}\big((x*(y*(y*(x*(x*y)))))*(x*y)\big) = \bar{A}\big((x*(x*y))*(y*(y*(x*(x*y))))\big) = \bar{A}(0) \ge \bar{A}(x*y), \\ \text{so from (F2) that} \end{split}$$

$$\begin{array}{l} A\big(x*(y*(y*(x*(x*y))))\big)\\ \geq & \min\{\bar{A}\big((x*(y*(y*(x*(x*y)))))*(x*y)), \, \bar{A}(x*y)\}\\ = & \bar{A}(x*y). \end{array}$$

Using (a1), (b2) and (a3), we get

$$(x * (y * (y * x))) * (x * (y * (y * (x * (x * y))))) \le 0 * (x * y).$$

Since \overline{A} is order reversing, it follows from (F2) and its closedness that

$$\begin{array}{rl} & A\big(x*(y*(y*x))\big) \\ \geq & \min\left\{\bar{A}\big((x*(y*(y*x)))*(x*(y*(y*(x*(x*y)))))\big), \\ & \bar{A}\big(x*(y*(y*(x*(x*y))))\big)\right\} \\ \geq & \min\left\{\bar{A}\big(0*(x*y)\big), \bar{A}(x*y)\right\} \\ = & \bar{A}(x*y). \end{array}$$

Hence, by Lemma 3.13, \overline{A} is fuzzy commutative.

Acknowledgements. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

- S. M. Hong and Y. B. Jun, Quotient BCI-algebras via fuzzy ideals, Far East J. Math. Sci. 4(3) (1996), 343-351.
- [2] W. P. Huang, Nil-radical in BCI-algebras, Math. Japonica 37(2) (1992), 363-366.
- [3] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI-algebras, Comm. Korean Math. Soc. 9(1) (1994), 19-25.
- [4] Y. L. Liu and J. Meng, Fuzzy ideals in BCI-algebras, Fuzzy Sets and Systems 123) (2001), 227-237.
- [5] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japonica 37(3) (1992), 569-572.
- [6] J. Meng and X. L. Xin, Positive implicative BCI-algebras, Pure Appl. Math. 9(1) (1993), 19-22.
- [7] O. G. Xi, Fuzzy BCK-algebra, Math. Japonica 36(5) (1991), 935-942.

 [8] F. L. Zhang, A class of quotient algebras in BCI-algebras, Selected Papers on BCK- and BCI-algebras (in P. R. China) 1 (1992), 89-90.

Department of Mathematics (Education), Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail : smhong{skim, ybjun}@nongae.gsnu.ac.kr