ON THREE ζ-TYPES OF MAXIMAL S-SUBSETS OF AN S-SET.

Zensiro Goseki

Received March 12, 2001; revised October 7, 2001

Abstract

Let $\Gamma(M)$ be the set of S-subsets of a centered S-set M with a zero, where S is a semigroup. In general, minimal ζ-subsets of an S-set M fall into three types, where ζ is a conjugate map on $\Gamma(M)$. Now, for the ζ-core K_{ζ} of a maximal S-subset K of an S-set M, the $\bar{\zeta}$-socle of M / K_{ζ} consists of the only minimal $\bar{\zeta}$-subset of M / K_{ζ}, where $\bar{\zeta}$ is a conjugate map on $\Gamma\left(M / K_{\zeta}\right)$ naturally induced by ζ. Here we use this fact to introduce the three ζ-types of maximal S-subsets of M and we give a characterization of a maximal S-subset of M of ζ-type $i(i=1,2,3)$. Now, it is known that a finite group G is solvable if and only if every maximal subgroup of G is c-normal in G. On the other hand, a concept of a c_{ζ}-subset of an S-set is analogous to that of a c-normal subgroup of a group and here we show that for any maximal S-subset K of an S-set M, K is a c_{ζ}-subset of M if and only if K is either of ζ-type 1 or of ζ-type 2. Continuously, we give some properties about an S-set whose maximal S-subset is always a c_{ζ}-subset.

1 Introduction. Throughout this paper, let M be a centered (right) S-set, where S is a semigroup with a zero. We denote by $\Gamma(M)$ and $\Gamma_{\max }(M)$ the set of S-subsets of M and the set of maximal S-subsets of M, respectively. Let ζ be a conjugate map on $\Gamma(M)$. If $K \in \Gamma_{\max }(M)$, then M / K_{ζ} is a $\bar{\zeta}$-primtive S-set and so $\operatorname{Soc}_{\bar{\zeta}}\left(M / K_{\zeta}\right)$ is a minimal $\bar{\zeta}$-subset of M / K_{ζ}, where K_{ζ} is the ζ-core of K and $\bar{\zeta}$ is a conjugate map on $\Gamma\left(M / K_{\zeta}\right)$ naturally induced by ζ. In general, minimal ζ-subsets of an S-set M fall into three different types (cf. [2, Lemma 4.1]). Thereby, we say that a maximal S-subset K of M is of ζ-type $i(i=1,2,3)$ if $\operatorname{Soc}_{\bar{\zeta}}\left(M / K_{\zeta}\right)$ is of type $i(i=1,2,3)$ as a minimal $\bar{\zeta}$-subset of M / K_{ζ}. In Section 2 , we give a chracterization to the three ζ-types of maximal S-subsets of an S-set.

In [3], we introduced a concept of a $c_{\zeta^{-}}$subset of an S-set, which is analogous to that of a c-normal subgroup of a group. In Section 3 , we show that for any maximal S-subset K of M, K is a c_{ζ}-subset of M if and only if K is either of ζ-type 1 or of ζ-type 2 . Furthermore, we define an S-set M to be ζ-monolithic if each maximal S-subset of M is a c_{ζ}-subset of M. On the other hand, it is well known that a finite group G is solvable if and only if every maximal subgroup of G is c-normal in $G([4$, Theorem 3]). This fact motivates us to take an interest in a ζ-monolithic S-set and we give some properties with respect to a ζ-monolithic S-set. One is relevant to a heredity on the ζ-monolithics of an S-set and the other is relevant to the nilpotency of ζ.

2 Three ζ-types of maximal S-subsets. In this paper, S will denote a semigroup with a zero 0 . Each (right) S-set M is assumed to be centered, that is, M contains an element $\theta=\theta s=m 0$ for all $m \in M$ and $s \in S$. This element θ will be called the zero of M. Unless otherwise noted terminology and notations will be as found in [3] and [5]. Hence $\Gamma(M)$

[^0]always denotes the set of S-subsets of M. Furthermore, $\Gamma_{\max }(M)$ also denotes the set of maximal S-subsets of M. Now, we list some definitions with respect to a conjugate map on $\Gamma(M)$.

Definition 2.1. A map $\zeta: \Gamma(M) \rightarrow \Gamma(M)$ is said to be a conjugate map on $\Gamma(M)$ if for any $L \in \Gamma(M), \zeta(L)=\cup\left\{\zeta\left(u S^{1}\right) \mid u \in L\right\}$ and $\zeta^{2}(L) \subseteq L$, that is, $\zeta(\zeta(L)) \subseteq L$.

In the rest of this paper, ζ denotes always a conjugate map on $\Gamma(M)$.
Definition 2.2. An S-subset L of M is said to be a ζ-subset of M if $\zeta(L) \subseteq L$. We denote by $\Gamma_{\zeta}(M)$ the set of ζ-subsets of M.

Definition 2.3. For any $L \in \Gamma(M)$, the ζ-core of L in M is defined to be $L_{\zeta}=\cup\left\{a S^{1} \mid a \in L\right.$ with $\left.\zeta\left(a S^{1}\right) \subseteq L\right\}$.

We note that L_{ζ} is the greatest ζ-subset of M contained in L (cf. [3, Lemma3.1]).
Definition 2.4. For the Rees factor S-set M / L with $L \in \Gamma_{\zeta}(M)$ and for conjugate map ζ on $\Gamma(M)$, the $\operatorname{map} \zeta_{L}: \Gamma(M / L) \rightarrow \Gamma(M / L)$ is defined by $\zeta_{L}\left(K^{\prime}\right)=\iota\left(\zeta\left(\iota^{-1}\left(K^{\prime}\right)\right)\right.$ for all $K^{\prime} \in \Gamma(M / L)$, where ι is the natural map from M to M / L.

We note that ζ_{L} is a conjugate map on $\Gamma(M / L)$ (cf. [2, Proposition 3.2]).
Definition 2.5. An S-set M is said to be ζ-primitive if there is a $K \in \Gamma_{\max }(M)$ such that $K_{\zeta}=\{\theta\}$.

Definition 2.6. The ζ-socle $\operatorname{Soc}_{\zeta}(M)$ of M is defined to be the union of minimal ζ-subsets of M, with the stipulation that $\operatorname{Soc}_{\zeta}(M)=\{\theta\}$ if there are no minimal ζ-subsets of M.

Here, we recall that, for a $K \in \Gamma_{\max }(M), M / K_{\zeta}$ is a $\zeta_{K_{\zeta}}$-primitive S-set and $\operatorname{Soc}_{\zeta_{K_{\zeta}}}\left(M / K_{\zeta}\right)$ consists of the only minimal $\zeta_{K_{\zeta}}$-subset of $M / K_{\zeta}(c f$. [3, Remark A and Lemma 3.3]).

In general, a minimal ζ-subset N of an S-set M is of one of the folowing types (cf. [2, Lemma 4.1]):
(1) N is a simple S-subset of M and $\zeta(N)=\{\theta\}$;
(2) N is a simple S-subset of M and $\zeta(N)=N$;
(3) there is a simple S-subset L of M such that $N=L \cup \zeta(L), L \cap \zeta(L)=\{\theta\}, L=\zeta^{2}(L)$ and $\zeta(L)$ is also a simple S-subset of M.

Definition 2.7. Let $K \in \Gamma_{\max }(M)$. If $\operatorname{Soc}_{\zeta_{K_{\zeta}}}\left(M / K_{\zeta}\right)$ is a minimal $\zeta_{K_{\zeta}}$-subset of M / K_{ζ} of type $i, i \in\{1,2,3\}$, then K is said to be of ζ-type i.

In the rest of this section, we give a characterization to maximal S-subsets of an S-set in connection with the ζ-types. Let $K \in \Gamma_{\max }(M)$. Set $s(K)=a S^{1}$ for an $a \in M$ with $a \notin K$. Since $a S^{1} \cup K=M, s(K)$ is independent of the choice of such a. Set $m_{\zeta}(K)=s(K) \cup \zeta(s(K))$ and $d_{\zeta}(K)=m_{\zeta}(K) \cap K_{\zeta}$. Then $m_{\zeta}(K), d_{\zeta}(K) \in \Gamma_{\zeta}(M)$. Furthermore, we abbreviate $m_{\zeta}(K)$ and $d_{\zeta}(K)$ to $m(K)$ and $d(K)$ respectively, if there is no danger of confusion.

Proposition 2.8. Let $K \in \Gamma_{\max }(M)$. Then the following conditions are equivalent:
(1) K is of ζ-type 1 ;
(2) $\zeta^{2}(M) \subseteq K$;
$(3) \zeta\left(m_{\zeta}(K)\right) \subseteq d_{\zeta}(K)$.

Proof. Set $\bar{\zeta}=\zeta_{K_{\zeta}}$ and denote by $\bar{\theta}$ the zero of M / K_{ζ}.
(1) $\leftrightarrow(2)$ (i) Suppose that M / K_{ζ} is a simple S-set. Then $K=K_{\zeta}$. Furthermore, $\bar{\zeta}\left(M / K_{\zeta}\right)=$ $\bar{\zeta}^{2}\left(M / K_{\zeta}\right)$. Thus K is of ζ-type 1 if and only if $\bar{\zeta}^{2}\left(M / K_{\zeta}\right)=\{\bar{\theta}\}$, that is, $\zeta^{2}(M) \subseteq K$. Hence our assertion holds.
(ii) Suppose that M / K_{ζ} is a nonsimple S-set. Then $\operatorname{Soc}_{\bar{\zeta}}\left(M / K_{\zeta}\right)=\bar{\zeta}\left(K / K_{\zeta}\right) \vee \bar{\zeta}^{2}\left(K / K_{\zeta}\right)$ by [3. Lemma 3.3]. Hence K is of ζ-type 1 if and only if $\bar{\zeta}^{2}\left(K / K_{\zeta}\right)=\{\bar{\theta}\}$. On the other hand, $M / K_{\zeta}=K / K_{\zeta} \vee \bar{\zeta}\left(K / K_{\zeta}\right)$ by [3, Lemma 3.2]. Hence $\bar{\zeta}^{2}\left(K / K_{\zeta}\right)=\{\bar{\theta}\}$ if and only if $\bar{\zeta}^{2}\left(M / K_{\zeta}\right)=\{\bar{\theta}\}$, that is, $\zeta^{2}(M) \subseteq K$ because $\zeta^{2}(M) \in \Gamma_{\zeta}(M)$. Thus our assertion holds.
$(2) \rightarrow(3)$ Let $\zeta(m(K)) \nsubseteq K$. Then $s(K) \subseteq \zeta(m(K))$ and so $\zeta(s(K)) \subseteq \zeta^{2}(m(K)) \subseteq K$. Thus $\zeta(m(K))=\zeta(s(K)) \cup \zeta^{2}(s(K)) \subseteq K$, a contradiction. Hence $\zeta(m(K)) \subseteq K$. Since $\zeta(m(K)) \in \Gamma_{\zeta}(M), \quad \zeta(m(K)) \subseteq m(K) \cap K_{\zeta}=d(K)$
$(3) \rightarrow(2)$ Since $m(K) \cup K=M, \zeta^{2}(M)=\zeta^{2}(m(K)) \cup \zeta^{2}(K)$. On the other hand, $\zeta^{2}(m(K)) \subseteq$ $\zeta(d(K)) \subseteq d(K) \subseteq K$ and $\zeta^{2}(K) \subseteq K$. Thus $\zeta^{2}(M) \subseteq K$.

Proposition 2.9. Let $K \in \Gamma_{\max }(M)$. Then the following conditions are equivalent:
(1) K is of ζ-type 2;
$(2) \zeta(K) \subseteq K$ and $\zeta(M) \nsubseteq K$;
$(3) \zeta(K) \subseteq K$ and $\zeta^{2}(M) \nsubseteq K$;
(4) $\zeta(s(K))=s(K)$.

Proof. Set $\bar{\zeta}=\zeta_{K_{\zeta}}$.
$(1) \leftrightarrow(2) \leftrightarrow(3)$ Suppose that $\operatorname{Soc}_{\zeta}\left(M / K_{\zeta}\right)$ is a simple S-subset of M / K_{ζ} and M / K_{ζ} is a nonsimple S-set. Then, by [3, Lemma 3.3], $\operatorname{Soc}_{\bar{\zeta}}\left(M / K_{\zeta}\right)=\bar{\zeta}\left(K / K_{\zeta}\right)$ and $\bar{\zeta}^{2}\left(K / K_{\zeta}\right)=\{\bar{\theta}\}$. In this case, K is of ζ-type 1. On the other hand, if K is of ζ-type 2 , then $\operatorname{Soc}_{\zeta}\left(M / K_{\zeta}\right)$ is a simple S-subset of M / K_{ζ}. Hence, if K is of ζ-type 2 , then M / K_{ζ} is a simple S-set. Thus K is of ζ-type 2 if and only if M / K_{ζ} is a simple S-set and $\bar{\zeta}\left(M / K_{\zeta}\right)=M / K_{\zeta}$, that is, $K=K_{\zeta}$ and $\zeta(M) \nsubseteq K$. In this case, we can substitute $\bar{\zeta}^{2}\left(M / K_{\zeta}\right)=M / K_{\zeta}$ for $\bar{\zeta}\left(M / K_{\zeta}\right)=M / K_{\zeta}$, that is, $\zeta^{2}(M) \nsubseteq K$. Hence our assertion holds.
(2) \rightarrow (4) Since $M=s(K) \cup K, \zeta(M)=\zeta(s(K)) \cup \zeta(K) \nsubseteq K$, and $\zeta(K) \subseteq K$. Hence $\zeta(s(K)) \nsubseteq K$. Therefore $s(K) \subseteq \zeta(s(K)) \subseteq \zeta^{2}(s(K)) \subseteq s(K)$, that is, $s(K)=\zeta(s(K))$.
(4) $\rightarrow(2)$ Assume that $\zeta(K) \nsubseteq K$. Then $s(K) \subseteq \zeta(K)$ and so $s(K)=\zeta(s(K)) \subseteq \zeta^{2}(K) \subseteq K$, a contradiction. Hence $\zeta(K) \subseteq K$. Furthermore, since $\zeta(s(K))=s(K) \nsubseteq K, \zeta(M) \nsubseteq K$.

Proposition 2.10. Let $K \in \Gamma_{\max }(M)$. Then the following conditions are equivalent:
(1) K is of ζ-type 3 ;
(2) $\zeta(K) \nsubseteq K$ and $\zeta^{2}(M) \nsubseteq K$;
(3) $\zeta\left(m_{\zeta}(K)\right) \nsubseteq d_{\zeta}(K)$ and $\zeta(s(K)) \neq s(K)$.

Proof. Since K is of ζ-type 3 if and only if K is neither of ζ-type 1 nor of ζ-type 2 , our assertion follows at once from Proposition 2.8 and 2.9.

Throrem 2.11. Let $K \in \Gamma_{\max }(M)$. Then $m_{\zeta}(K) / d_{\zeta}(K)$ is a minimal $\zeta_{d_{\zeta}(K)}$-subset of $M / d_{\zeta}(K)$. Furthermore, $m_{\zeta}(K) / d_{\zeta}(K)$ is of type i as a minimal $\zeta_{d_{\zeta}(K)}$-subset of $M / d_{\zeta}(K)$ if and only if K is of ζ-type $i(i=1,2,3)$.
Proof. Let $x \in m(K)$ with $x \notin d(K)$. Then $x \notin K_{\zeta}$. Hence, if $x \in K$, then $\zeta\left(x S^{1}\right) \nsubseteq K$ and so $s(K) \subseteq \zeta\left(x S^{1}\right)$. In this case, $m(K)=s(K) \cup \zeta(s(K)) \subseteq \zeta\left(x S^{1}\right) \cup \zeta^{2}\left(x S^{1}\right) \subseteq$ $\zeta\left(x S^{1}\right) \cup x S^{1} \subseteq \zeta(m(K)) \cup m(K)=m(K)$. Hence $x S^{1} \cup \zeta\left(x S^{1}\right)=m(K)$. On the other hand, if $x \notin K$ then $x S^{1} \cup \zeta\left(x S^{1}\right)=m(K)$ is clear. This shows that $m(K) / d(K)$ is a minimal $\bar{\zeta}$-subset of $M / d(K)$, where $\bar{\zeta}=\zeta_{d(K)}$.

Now, a minimal $\bar{\zeta}$-subset $m(K) / d(K)$ of $M / d(K)$ is of type 1 if and only if $\bar{\zeta}(m(K) / d(K))=$ $\{\bar{\theta}\}$, that is, K is of ζ-type 1 by Proposition 2.8 , where $\bar{\theta}$ is the zero of $M / d(K)$. Next, a minimal $\bar{\zeta}$-subset $m(K) / d(K)$ of $M / d(K)$ is of type 2 if and only if $m(K) / d(K)$ is a simple S-subset of $M / d(K)$ and $\bar{\zeta}(m(K) / d(K))=m(K) / d(K)$. In this case, $s(K) \cup d(K)=m(K)$ and $\zeta(s(K)) \cup d(K)=s(K) \cup d(K)$. Hence $s(K) \subseteq \zeta(s(K)) \subseteq \zeta^{2}(s(K)) \subseteq s(K)$, that is, $s(K)=\zeta(s(K))$. Thus K is of ζ-type 2 by Proposition 2.9. Conversely, assume that K is of ζ-type 2. By Proposition 2.9, $s(K)=\zeta(s(K))=m(K)$. Let $x \in m(K)$ and $x \notin d(K)$. Assume that $x \in K$. Since $x \notin K_{\zeta}, \zeta\left(x S^{1}\right) \nsubseteq K$ and so $s(K) \subseteq \zeta\left(x S^{1}\right)$. Hence $s(K)=\zeta(s(K)) \subseteq \zeta^{2}\left(x S^{1}\right) \subseteq x S^{1} \subseteq K$, a contradiction. Thus $x \notin K$ and so $x S^{1}=s(K)$. Hence $m(K) / d(K)$ is a simple S-subset of $M / d(K)$ and $\bar{\zeta}(m(K) / d(K))=m(K) / d(K)$. Hence a minimal $\bar{\zeta}$-subset $m(K) / d(K)$ of $M / d(K)$ is of type 2. At the same time, we know that a minimal $\bar{\zeta}$-subset $m(K) / d(K)$ of $M / d(K)$ is of type 3 if and only if K is of ζ-type 3 .

Corollary 2.12. Let $K \in \Gamma_{\max }(M)$. Then $d_{\zeta}(K)=\{\theta\}$ if and only if $m_{\zeta}(K)$ is a minimal ζ-subset of M.
Proof. 'Only if' part. This follows from Theorem 2.11.
'If' part. Let $d(K) \neq\{\theta\}$. Since $d(K) \subseteq m(K)$ and $m(K)$ is a minimal ζ-subset of $M, d(K)=m(K)$. Hence $m(K) \subseteq K_{\zeta}$, a contradiction. Hence $d(K)=\{\theta\}$.
3. ζ-monolithic S-sets. It is well known that a finite group G is solvable if and only if every maximal subgroup of G is c-normal in $G(c f$. [4, Theorem 3.1]). On the other hand, we introduced a concept of a c_{ζ}-subset of an S-set which is analogous to that of a c-normal subgroup of a group (cf. [3]). From this point of view we take an interest in an S-set M such that each maximal S-subset of M is a c_{ζ}-subset of M.

Definition 3.1. (cf. [1, Definition 3.1]) An S-set M is said to be ζ-monolithic if $\Gamma_{\max }(M) \neq$ \emptyset and each maximal S-subset of M is a c_{ζ}-subset of M.

Theorem 3.2. Let $K \in \Gamma_{\max }(M)$. Then K is a c_{ζ}-subset of M if and only if K is either of ζ-type 1 or of ζ-type 2.
Proof. 'Only if' part. Sincce K is a c_{ζ} subset of M, we have $m(K) \cap K \subseteq K_{\zeta}$. Assume that K is of ζ-type 3. Then $\zeta(s(K)) \neq s(K)$ by Proposition 2.10. If $s(K) \subset \zeta(s(K))$, then $\zeta(s(K)) \subseteq \zeta^{2}(s(K)) \subseteq s(K)$, a contradiction. Hence $s(K) \nsubseteq \zeta(s(K))$. Thus $\zeta(s(K)) \subseteq K$.

Since $m(K) \cap K \subseteq K_{\zeta}, \zeta(s(K)) \subseteq K_{\zeta}$. Thus $\zeta^{2}(M)=\zeta^{2}(s(K) \cup K)=\zeta^{2}(s(K)) \cup \zeta^{2}(K) \subseteq K$, a contradiction to Proposition 2.10. Hence K is either of ζ-type 1 or of ζ-type 2.
'If' part. Assume that K is of ζ-type 1. By Proposition 2.8, $\zeta(m(K)) \subseteq K$. Thus $\zeta(m(K) \cup$ $K) \subseteq K$ and so $m(K) \cap K \subseteq K_{\zeta}$, that is, K is a c_{ζ} subset of M. Next, assume that K is of ζ-type 2. Then $K \in \Gamma_{\zeta}(M)$ by Proposition 2.9. Hence K is a c_{ζ}-subset of M.

Without reference to Theorem 3.2, we shall hereinafter use this result. First, we investigate a heredity on the ζ monolithics of an S-set.

Definition 3.3. For any $L \in \Gamma(M)$ and any conjugate map ζ on $\Gamma(M)$, the map $\left.\zeta\right|_{L}$: $\Gamma(L) \rightarrow \Gamma(L)$ is defined by $\left.\zeta\right|_{L}(H)=L \cap \zeta(H)$ for all $H \in \Gamma(L)$.

If $L \in \Gamma_{\zeta}(M)$, then $\left.\zeta\right|_{L}(H)=\zeta(H)$ for all $H \in \Gamma(L)$ and so, in this case, we use the notation ζ for $\left.\zeta\right|_{L}$.

Proposition 3.4. Let ζ be a conjugate map on $\Gamma(M)$ and let $L \in \Gamma(M)$. Then $\left.\zeta\right|_{L}$ is a conjugate map on $\Gamma(L)$.
Proof. Let $H \in \Gamma(L)$. Then $\left.\zeta\right|_{L}{ }^{2}(H)=\left.\zeta\right|_{L}(L \cap \zeta(H))=L \cap \zeta(L \cap \zeta(H)) \subseteq \zeta^{2}(H) \subseteq H$ and $\left.\zeta\right|_{L}(H)=L \cap \zeta(H)=L \cap\left\{\cup\left\{\zeta\left(a S^{1}\right) \mid a \in H\right\}\right\}=\cup\left\{L \cap \zeta\left(a S^{1}\right) \mid a \in H\right\}=\cup\left\{\left.\zeta\right|_{L}\left(a S^{1}\right) \mid a \in\right.$ $H\}$. Hence $\left.\zeta\right|_{L}$ is a conjugate map on $\Gamma(M)$.

An S-subset L of M is said to be maximal sensitive in M if $\Gamma_{\max }(L) \neq \emptyset$ and, for any $H \in \Gamma_{\max }(L)$, there is a $K \in \Gamma_{\max }(M)$ such that $H=L \cap K$.

Theorem 3.5. Let an S-set M be ζ-monolithic.
(1) For any $L \in \Gamma(M)$, if L is maximal sensitive in M, then L is also $\left.\zeta\right|_{L-m o n o l i t h i c . ~} ^{\text {- }}$
(2) For any $L \in \Gamma_{\zeta}(M)$, if $\Gamma_{\max }(M / L) \neq \emptyset$, then M / L is also ζ_{L}-monolithic.

Proof. (1) Let $H \in \Gamma_{\max }(L)$. Then there is a $K \in \Gamma_{\max }(M)$ such that $H=L \cap K$. Since M is ζ-monolithic, there is an $N \in \Gamma_{\zeta}(M)$ such that $K \cup N=M$ and $K \cap N \subseteq K_{\zeta}$. Then $L=L \cap(K \cup N)=(L \cap K) \cup(L \cap N)=H \cup(L \cap N)$. Furthermore, it is clear that $L \cap N \in \Gamma_{\left.\zeta\right|_{L}}(L)$. Since $H \cap(L \cap N) \subseteq K \cap N=K_{\zeta} \cap N \in \Gamma_{\zeta}(M), H \cap(L \cap N) \subseteq H_{\left.\zeta\right|_{L}}$. Therefore H is a $c_{\left.\zeta\right|_{L}}$-subset of L and so L is $\left.\zeta\right|_{L \text {-monolithic. }}$
(2) This follows at once from Proposition 2.8 and 2.9.

Theorem 3.6. For any $L \in \Gamma_{\zeta}(M)$, if L is ζ-monolithic and M / L is ζ_{L}-monolithic, then M is ζ-monolithic.
Proof. Let $K \in \Gamma_{\max }(M)$. If $L \subseteq K$, then K / L is a $c_{\zeta_{L}}$-subset of M / L and so K is a $c_{\zeta^{-}}$-subset of M by Proposition 2.8 and 2.9. Let $L \nsubseteq K$. Then $L \cap K \in \Gamma_{\max }(L)$. Hence there is an $N \in \Gamma_{\zeta}(L)$ such that $N \cup(L \cap K)=L$ and $N \cap(L \cap K) \subseteq(L \cap K)_{\zeta}$. Then $N \subseteq K$ implies $L \subseteq K$, a contradition. Hence $N \nsubseteq K$ and so $N \cup K=M$. Furthermore, $N \cap K=(N \cap L) \cap K=N \cap(L \cap K) \subseteq(L \cap K)_{\zeta} \subseteq K_{\zeta}$. Thus K is a c_{ζ}-subset of M. Hence M is ζ-monolithic.

Corollary 3.7. Let $K \in \Gamma_{\max }(M) \cap \Gamma_{\zeta}(M)$ which is maximal sensitive in M. Then M is ζ-monolithic if and only if K is ζ-monolithic.
Proof. 'Only if' part. This follows from Theorem 3.5.
'If' part. In this case, $K=K_{\zeta}$. Hence M / K_{ζ} is a simple S-set and so M / K_{ζ} is $\zeta_{K_{\zeta}}$ monolithic.Moreover, K_{ζ} is ζ-monolithic by the assumption. Hence M is ζ-monolithic by Theorem 3.6.

Next, we investigate a connection between the nilpotency of a conjugate map ζ on $\Gamma(M)$ and the ζ-monolithics on M. We recall that for any $L \in \Gamma(M)$, a cojugate map ζ on $\Gamma(M)$ is said to be nilpotent on L if $\zeta^{n}(L)=\{\theta\}$ for some positive integer n.

Now, for any $\triangle \subseteq \Gamma_{\max }(M)$, we define $\Phi(\triangle)=\cap\{K \mid K \in \triangle\}$ if $\triangle \neq \emptyset$: otherwise, we let $\Phi(\triangle)=M$. Let $\Gamma_{1}, \zeta(M)$ be the set of maximal S-subsets of M of ζ-type 1 and set $\Phi_{1}, \zeta(M)=\Phi\left(\Gamma_{1}, \zeta(M)\right)$. Furthermore, let $\Gamma_{2,3, \zeta}(M)$ be the set of maximal S-subsets of M, which are either of ζ-type 2 or of ζ-type 3 and set $\Phi_{2,3, \zeta}(M)=\Phi\left(\Gamma_{2,3, \zeta}(M)\right)$. Finally, set $\Phi_{\max }(M)=\Phi\left(\Gamma_{\max }(M)\right)$. The subscript ζ in those notations is deleted if there is no danger of confusion.

Theorem 3.8. Let ζ be a cojugate map on $\Gamma(M)$. Then the following properties hold:
(1) ζ is nilpotent on M if and only if ζ is nilpotent on $\Phi_{\max }(M)$ and all maximal S-subsets of M are of ζ-type 1 .
(2) ζ is nilpotent on $\Phi_{\max }(M)$ if and only if ζ is nilpotent on $\Phi_{2,3, \zeta}(M)$. In this case, $\Phi_{2,3, \zeta}(M)$ is the greatest S-subset of M in the set of S-subsets of M on which ζ is nilpotent. Furthermore, $\Phi_{2,3, \zeta}(M) \in \Gamma_{\zeta}(M)$.

Proof. (1) If ζ is nilpotent on M, then for each $K \in \Gamma_{\max }(M), \zeta_{K_{\zeta}}$ is nilpotent on $\operatorname{Soc}_{\zeta_{K_{\zeta}}}\left(M / K_{\zeta}\right)$. Hence K is of ζ-type 1. It is clear that ζ is nilpotent on $\Phi_{\max }(M)$. The converse is a direct consequence of Proposition 2.8.
(2) 'Only if' part. If $\Gamma_{2,3}(M)=\emptyset$, then ζ is nilpotent on M by (1). Let $\Gamma_{2,3}(M) \neq \emptyset$. By Proposition 2.8, $\zeta^{2}\left(\Phi_{2,3}(M)\right) \subseteq \Phi_{1}(M)$. Hence $\zeta^{2}\left(\Phi_{2,3}(M)\right) \subseteq \Phi_{1}(M) \cap \Phi_{2,3}(M)=$ $\Phi_{\max }(M)$. Thus ζ is nilpotent on $\Phi_{2,3}(M)$.
'If' part. This is clear.
Proceeding to the last assertion of our theorem, let $H \in \Gamma(M)$ on which ζ is nilpotent. We will show that $H \subseteq \Phi_{2,3}(M)$. Suppose that $H \nsubseteq \Phi_{2,3}(M)$. Then there is a $K \in \Gamma_{2,3}(M)$ with $H \nsubseteq K$. Now $H \cup K=M$ and $m(K) \subseteq H \cup \zeta(H)$. Since ζ is nilpotent on $H \cup \zeta(H), \zeta$ is nilpotent on $m(K)$. Thus $\zeta(m(K)) \subseteq d(K)$ because $m(K) / d(K)$ is a minimal $\zeta_{d(K)}$-subset of $M / d(K)$ by Theorem 2.11. Hence K is of ζ-type 1 by Proposition 2.8, a contradiction. Thus $H \subseteq \Phi_{2,3}(M)$. Therefore, $\Phi_{2,3}(M)$ is the greatest S-subset of M in the set of S-subset of M on which ζ is nilpotent. Furthermore, ζ is nilpotent on $\Phi_{2,3}(M) \cup \zeta\left(\Phi_{2,3}(M)\right)$ and so it equals $\Phi_{2,3}(M)$. Hence $\Phi_{2,3}(M) \in \Gamma_{\zeta}(M)$.

Theorem 3.9. Let M be a ζ-primitive S-set. Then M is ζ-monolithic if and only if there is a maximal S-subset K of M such that $K_{\zeta}=\{\theta\}$ and ζ is nilpotent on K.

In this case, if M is a nonsimple S-set, then $\zeta^{2}(M)=\{\theta\}$.
Proof. If M is a simple S-set, then $\{\theta\}$ is the only maximal S-subset of M and so our assertion holds clearly. Suppose that M is a nonsimple S-set.
'Only if' part. Assume that M is ζ-monolithic. Now, there is a $K \in \Gamma_{\max }(M)$ with $K \neq\{\theta\}$ and $K_{\zeta}=\{\theta\}$. Hence $\zeta(K) \nsubseteq K$. On the other hand, K is either of ζ-type 1 or of ζ-type 2. Hence K is of ζ-type 1 by Proposition 2.9. Thus $\zeta^{2}(M) \subseteq K$ by Proposition 2.8. Since $\zeta^{2}(M) \in \Gamma_{\zeta}(M), \zeta^{2}(M)=\{\theta\}$ folows from $K_{\zeta}=\{\theta\}$.
'If' part. Let $K \in \Gamma_{\max }(M)$ such that $K_{\zeta}=\{\theta\}$ and ζ is nilpotent on K. Since $M=$ $\zeta(K) \vee K$ by [3, Lemma 3.2], ζ is nilpotent on M. Hence M is ζ-monolithic by Theorem 3.8.

Cprpllary 3.10. Let an S-set M be ζ-monolithic and let $L, K \in \Gamma_{\max }(M)$ with $L_{\zeta}=K_{\zeta}$. Then $L=K$.

Proof. Set $H=L_{\zeta}=K_{\zeta}$. If $H=L$, then $L=K_{\zeta} \subseteq K$, that is, $L=K$. Without loss of generality, we assume that $H \neq L$ and $H \neq K$. Then M / H is $\zeta_{H^{-}}$primitive and $\zeta_{H^{-}}$ monolithic by Theorem 3.5. Hence ζ_{H} is nilpotent on M / H by Theorem 3.9. Moreover, $(L / H)_{\zeta_{H}}=(K / H)_{\zeta_{H}}=\{\bar{\theta}\}$, where $\bar{\theta}$ is the zero of M / H. Hence we have $L / H=K / H$ by [3, Corollary 3.5]. Thus $L=K$.

If ζ is nilpotent on M, then M is ζ-monolithic by Theorem 3.8. Hence Corollary 3.10 is an extension of [3, Corollary 3.5].

Now, set $\Gamma_{d_{\zeta}}(M)=\left\{K \mid K \in \Gamma_{\max }(M)\right.$ with $\left.d_{\zeta}(K)=\{\theta\}\right\}$ and $\Phi_{d_{\zeta}}(M)=\Phi\left(\Gamma_{d_{\zeta}}(M)\right)$. Furthermore, we denote by $\Phi_{\zeta}(M)$ the ζ-core of $\Phi_{\max }(M)$.

Theorem 3.11. (1) For any S-set $M, \Phi_{d_{\zeta}}(M)$ is the smallest S-subset of M in the set of S-subsets H of M such that $\operatorname{Soc}_{\zeta}(M) \cup H=M$.
(2) For any S-set M such that $\Phi_{\zeta}(M)=\{\theta\}$, if M is ζ-monolithic, then $M=\operatorname{Soc}_{\zeta}(M) \vee$ $\Phi_{d_{\zeta}}(M)$.
Proof. (1) If $\operatorname{Soc}_{\zeta}(M)=\{\theta\}$, then $\Gamma_{d_{\zeta}}(M)=\emptyset$ by Corollary 2.12, that is, $\Phi_{d_{\zeta}}(M)=M$. Thus our assertion holds. Suppose that $\operatorname{Soc}_{\zeta}(M) \neq\{\theta\}$. Let $H \in \Gamma(M)$ such that $\operatorname{Soc}_{\zeta}(M) \cup$ $H=M$. If $\operatorname{Soc}_{\zeta}(M) \subseteq H$, then $H=M$ and so $\Phi_{d_{\zeta}}(M) \subseteq H$. Assume that $\operatorname{Soc}_{\zeta}(M) \nsubseteq H$. Let Ω be the set of simple S-subsets L of M satisfying the following conditions:
(i) L is a simple S-subset of M such that $L \nsubseteq H$;
(ii) $L \cup \zeta(L)$ is a minimal ζ-subset of M.

Then $\Omega \neq \emptyset$. Let $L \in \Omega$ and set $L^{\wedge}=H \cup\{\cup\{A \mid A \in \Omega$ with $A \neq L\}\}$. Then $L^{\wedge} \cup$ $L=H \cup \operatorname{Soc}_{\zeta}(M)=M$ and $L^{\wedge} \cap L=\{\theta\}$. Hence $L^{\wedge} \in \Gamma_{d_{\zeta}}(M)$ and so $\Phi_{d_{\zeta}}(M) \subseteq L^{\wedge}$. On the other hand, $H=\cap\left\{L^{\wedge} \mid L \in \Omega\right\}$. Hence $\Phi_{d_{\zeta}}(M) \subseteq H$. Next, we shall show that $\operatorname{Soc}_{\zeta}(M) \cup \Phi_{d_{\zeta}}(M)=M$. If $\Phi_{d_{\zeta}}(M)=M$, then it is clear. Assume that $\Phi_{d_{\zeta}}(M) \neq M$, that is, $\Gamma_{d_{\zeta}}(M) \neq \emptyset$. Let $K \in \Gamma_{d_{\zeta}}(M)$. Then $m(K)$ is a minimal ζ-subset of M by Corollary 2.12 and $m(K) \cup K=M$. Hence $\operatorname{Soc}_{\zeta}(M) \cup K=M$. Therefore $\operatorname{Soc}_{\zeta}(M) \cup\{\cap\{K \mid K \in$ $\left.\left.\Gamma_{d_{\zeta}}(M)\right\}\right\}=M$, that is, $\operatorname{Soc}_{\zeta}(M) \cup \Phi_{d_{\zeta}}(M)=M$.
(2) If $\operatorname{Soc}_{\zeta}(M)=\{\theta\}$, then $\Gamma_{d_{\zeta}}(M)=\emptyset$, that is $\Phi_{d_{\zeta}}(M)=M$. Thus our assertion holds. Let $\operatorname{Soc}_{\zeta}(M) \neq\{\theta\}$ and let L be a minimal ζ-subset of M. Since $\Phi_{\zeta}(M)=\{\theta\}, L \nsubseteq \Phi_{\zeta}(M)$ and so there is a $K \in \Gamma_{\max }(M)$ with $L \nsubseteq K$. Then $L=m(K)$ and so $K \in \Gamma_{d_{\zeta}}(M)$ by Corollary 2.12. If K is of ζ-type 1 , then $\zeta(m(K))=\{\theta\}$ by Proposition 2.8 and so $m(K)=s(K)$. If K is of ζ-type 2, then $m(K)=s(K)$ by Proposition 2.9. Therefore $L=s(K)$ is a simple S subset of M. Thus $L \cap K=\{\theta\}$ and so $L \cap \Phi_{d_{\zeta}}(M)=\{\theta\}$. Hence $\operatorname{Soc}_{\zeta}(M) \cap \Phi_{d_{\zeta}}(M)=\{\theta\}$. Thus $\operatorname{Soc}_{\zeta}(M) \vee \Phi_{d_{\zeta}}(M)=M$ by (1).

Here, we handle examples with respect to a decision of ζ-types of maximal S-subsets of an S-set (cf. Proposition 2.8, 2.9 and 2.10), a nilpotency of a conjugate map (cf. Theorem 3.9) and a decomposition of a ζ-monolithic S-set (cf. Theorem 3.11).

Let f be an S-endomorphism of M. The map $\zeta_{f}: \Gamma(M) \rightarrow \Gamma(M)$ is defined by $\zeta_{f}(L)=\cup\left\{f\left(u S^{1}\right) \cap f^{-1}\left(u S^{1}\right) \mid u \in L\right\}$ for all $L \in \Gamma(M)$. Then ζ_{f} is a conjugate map on $\Gamma(M)$. Here, any semigroup S is considered a (right) S-set by its multiplication. For any $\alpha \in S$, the S-endomorphism $\lambda_{\alpha}: S \rightarrow S$ is defined by $\lambda_{\alpha}(x)=\alpha x$ for all $x \in S$.

Example 3.12. Let S be a band with a zero such that $\Gamma_{\max }(S) \neq \emptyset$. For an $a \in S$, set $\zeta=\zeta_{\lambda_{a}}$. Let $u \in S$ and $x \in \lambda_{a}(u S) \cap \lambda_{a}^{-1}(u S)$. Then there are $s, t \in S$ such that $x=$ aus and $a x=u t$. In this case, $x=a u s=a^{2} u s=a x=u t$. Thus $\zeta(u S) \subseteq u S$. Hence each S-subset of S is always a ζ-subset of S. This shows by Proposition 2.10 that S itself is a ζ-monolithic S-set.

Example 3.13. Let S be a commutative semigroup with a zero such that $\Gamma_{\max }(S) \neq \emptyset$. For an $a \in S$, set $\zeta=\zeta_{\lambda_{a}}$. By the same way as Example 3.12, we know that S itself is a ζ-monolithic S-set.

Example 3.14. Let $S=\{0, a, b, c\}$ be a semigroup with the multiplication table:

	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	0	b	b
c	0	0	b	c

Then S has only two maximal S-subsets $K_{1}=\{0, a, b\}$ and $K_{2}=\{0, b, c\}$.
(1) Set $f=\lambda_{a}$ and $\zeta=\zeta_{f}$. Then $\zeta(a S)=\{0\}, \zeta(b S)=\{0, a\}$ and $\zeta(c S)=\{0, a\}$.
(i) Since $\zeta^{2}(S)=\{0\} \subseteq K_{1} \cap K_{2}, K_{1}$ and K_{2} are of ζ-type 1 by Proposition 2.8 and so S is ζ-monolithic.
(ii) Since $\left(K_{2}\right)_{\zeta}=\{0\}, S$ is ζ-primitive and $\zeta^{2}(S)=\{0\}$ (cf. Theorem 3.9).
(iii) Since $\Phi_{\zeta}(S)=\left(K_{1} \cap K_{2}\right)_{\zeta}=\{0\}, S=\operatorname{Soc}_{\zeta}(S) \vee \Phi_{d_{\zeta}}(S)$ (cf. Theorem 3.11). In fact, $\operatorname{Soc}_{\zeta}(S)=\{0, a\}$ and $\Phi_{d_{\zeta}}(S)=K_{2}$.
(2) Set $f=\lambda_{c}$ and $\zeta=\zeta_{f}$. Then $\zeta(a S)=\{0\}, \zeta(b S)=\{0, b\}$ and $\zeta(c S)=\{0, b, c\}$.
(i) Since $\zeta(S)=\zeta^{2}(S)=\{0, b, c\}$ and $\zeta\left(K_{1}\right)=\{0, b\}, \zeta(S) \nsubseteq K_{1}$ and $\zeta\left(K_{1}\right) \subseteq K_{1}$. Thus K_{1} is of ζ-type 2 by Proposition 2.9. Moreover, $\zeta^{2}(S) \subseteq K_{2}$ and so K_{2} is of ζ-type 1 by Proposition 2.8. Hence S is ζ-monolithic.
(ii) Since $K_{1}, K_{2} \in \Gamma_{\zeta}(S), S$ is not ζ-primitive. Furthermore, $\zeta^{2}(S) \neq\{0\}$ (cf. Theorem 3.9).
(iii) Since $\operatorname{Soc}_{\zeta}(S)=a S \cup b S=K_{1}$ and $\Phi_{d_{\zeta}}(S)=K_{2}, \operatorname{Soc}_{\zeta}(S) \cap \Phi_{d_{\zeta}}(S)=\{0, b\} \neq\{0\}$. In this case, $\Phi_{\zeta}(S)=\{0, b\} \neq\{0\}$ (cf. Theorem 3.11).
(3) Let $f: S \rightarrow S$ be an S-endomorphism defined by $f(0)=0, f(a)=b, f(b)=a$ and $f(c)=a$. Set $\zeta=\zeta_{f}$. Then $\zeta(a S)=\{0, b\}, \zeta(b S)=\{0, a\}$ and $\zeta(c S)=\{0, a\}$.
(i) Since $\zeta^{2}(S)=K_{1}, K_{1}$ is of ζ-type 1 by Proposition 2.8. Since $\zeta^{2}(S) \nsubseteq K_{2}$ and $\zeta\left(K_{2}\right)=$ $\{0, a\} \nsubseteq K_{2}, K_{2}$ is of ζ-type 3 by Proposiiton 2.10 and so S is not ζ-monolithic.
(ii) Since $\left(K_{2}\right)_{\zeta}=\{0\}, S$ is ζ-primitive. However, $\zeta^{2}(S)=\{0, a, b\} \neq\{0\}$ (cf. Theorem 3.9).
(iii) Since $\operatorname{Soc}_{\zeta}(S)=K_{1}$ and $\Phi_{d_{\zeta}}(S)=K_{2}, \operatorname{Soc}_{\zeta}(S) \cap \Phi_{d_{\zeta}}(S)=\{0, b\} \neq\{0\}$. However, $\Phi_{\zeta}(S)=\{0\}$ (cf. Theorem 3.11).

Example 3.15. Let $S=\{0, a, b, c, d\}$ be a simigroup with the multiplication table:

	0	a	b	c	d
0	0	0	0	0	0
a	0	0	a	0	0
b	0	0	b	0	0
c	0	0	0	0	c
d	0	0	0	0	d

Then S has only four maximal S-subsets $K_{1}=\{0, a, b, c\}, K_{2}=\{0, a, b, d\}, K_{3}=\{0, a, c, d\}$, and $K_{4}=\{0, b, c, d\}$.

Let $f: S \rightarrow S$ be an S-endomorphism defined by $f(0)=0, f(a)=b, f(b)=a, f(c)=d$ and $f(d)=c$. Set $\zeta=\zeta_{f}$. Then $\zeta(a S)=\{0, b\}, \zeta(b S)=\{0, a\}, \zeta(c S)=\{0, d\}$ and $\zeta(d S)=$ $\{0, c\}$.
(i) Since $\zeta\left(K_{i}\right) \nsubseteq K_{i}$ and $\zeta^{2}(S)=S \nsubseteq K_{i}, K_{i}$ is of ζ-type $3(i=1,2,3,4)$ and so S is not ζ-monolithic.
(ii) Now, $\left(K_{1}\right)_{\zeta}=\left(K_{2}\right)_{\zeta}=\{0, a, b\}$. However, $K_{1} \neq K_{2}$ (cf. Corollary 3.10).
(iii) Since $\operatorname{Soc}_{\zeta}(S)=\{0, a, b\} \cup\{0, c, d\}=S$ and $\Phi_{d_{\zeta}}(S)=\cap\left\{K_{i} \mid i=1,2,3,4\right\}=\{0\}, S=$ $\operatorname{Soc}_{\zeta}(S) \vee \Phi_{d_{\zeta}}(S)$. Moreover, $\Phi_{\zeta}(S)=\{0\}$. On the other hand, S is not ζ-monolithic. This shows that the inverse of Theorem 3.11 does not necessary hold.

References

[1] A. Ballester-Bolinches, \mathfrak{h}-normalizers and local definitions of saturated formations of finite groups, Isr. J. Math. 67 (1989), 312-326.
[2] Z. Goseki, The ρ-socle of an S-set, Math. Japonica 51 (2000), 313-319.
[3] Z. Goseki, ζ-primitive S-sets, Semigroup Forum 61 (2000), 405-413.
[4] Y. Wang, C-normality of groups and its properties, J. Algebra 180(1996), 954-965.
[5] H. J. Weinert, S-sets and semigroups of quotients, Semigroup Forum 19(1980), 1-78.

[^0]: 2000 Mathematics Subject Classification. 20M99.
 Key words and phrases, conjugate map, ζ-socle, ζ-monolithic S-set.

