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ON THREE (-TYPES OF MAXIMAL S-SUBSETS OF AN S-SET.
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ABSTRACT. Let I'(M) be the set of S-subsets of a centered S-set M with a zero,
where S is a semigroup. In general, minimal (-subsets of an S-set M fall into three
types, where ( is a conjugate map on I'(M). Now, for the (-core K¢ of a maximal
S-subset K of an S-set M, the (-socle of M/K, consists of the only minimal (-subset
of M/K¢ , where ¢ is a conjugate map on I'(M/K¢) naturally induced by ¢. Here we
use this fact to introduce the three (-types of maximal S-subsets of M and we give a
characterization of a maximal S-subset of M of (-type (¢ = 1,2,3). Now, it is known
that a finite group G is solvable if and only if every maximal subgroup of GG is ¢-normal
in (. On the other hand, a concept of a ¢¢-subset of an S-set, is analogous to that of a
c-normal subgroup of a group and here we show that for any maximal S-subset K of
an S-set M, K is a c¢-subset of M if and only if K is either of (-type 1 or of (-type
2. Continuously, we give some properties about an S-set whose maximal S-subset is
always a c¢-subset.

1 Introduction. Throughout this paper, let M be a centered (right) S-set, where S is
a semigroup with a zero. We denote by I'(M) and I'yax (M) the set of S-subsets of M and
the set of maximal S-subsets of M, respectively. Let ¢ be a conjugate map on I'(M). If
K € Tpax(M), then M/K¢ is a (-primtive S-set and so Socs(M/K¢) is a minimal (-subset
of M/K¢, where K is the (-core of K and ( is a conjugate map on T'(M/K;) naturally
induced by (. In general, minimal {-subsets of an S-set M fall into three different types (cf.
[2, Lemma 4.1]). Thereby, we say that a maximal S-subset K of M is of (-type i( = 1,2, 3)
if Socf(AI/KC) is of type i(i = 1,2,3) as a minimal (-subset of M/K;. In Section 2, we give
a chracterization to the three (-types of maximal S-subsets of an S-set.

In [3], we introduced a concept of a c¢-subset of an S-set, which is analogous to that of
a c-normal subgroup of a group. In Section 3, we show that for any maximal S-subset K of
M, K is a c¢-subset of M if and only if K is either of (-type 1 or of (-type 2. Furthermore,
we define an S-set M to be (-monolithic if each maximal S-subset of M is a ¢¢-subset of
M. On the other hand, it is well known that a finite group G is solvable if and only if
every maximal subgroup of G is ¢-normal in G([4, Theorem 3]). This fact motivates us
to take an interest in a (-monolithic S-set and we give some properties with respect to a
(-monolithic S-set. One is relevant to a heredity on the (-monolithics of an S-set and the
other is relevant to the nilpotency of (.

2 Three (-types of maximal S-subsets. In this paper, S will denote a semigroup with
a zero 0. Each (right) S-set M is assumed to be centered, that is, M contains an element
0 = 6s = m0 for all m € M and s € S. This element 6 will be called the zero of M. Unless

otherwise noted terminology and notations will be as found in [3] and [5]. Hence I'(M)
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always denotes the set of S-subsets of M. Furthermore, I'yax(M) also denotes the set of
maximal S-subsets of M. Now, we list some definitions with respect to a conjugate map on

T'(M).
Definition 2.1. A map ¢ : I'(M) — T'(M) is said to be a conjugate map on I'(M) if for
any L e (M), ((L)=U {C(uSl) | uwe L} and (%(L) C L, that is, ((¢(L)) C L.

In the rest of this paper, ( denotes always a conjugate map on I'(M).
Definition 2.2. An S-subset L of M is said to be a (-subset of M if ((L) C L. We denote
by I'¢(M) the set of (-subsets of M.

Definition 2.3. For any L € T'(M), the (-core of L in M is defined to be
Le=U{aS" | a € L with ((aS') C L}.
We note that L¢ is the greatest (-subset of M contained in L (cf. [3, Lemma3.1]).

Definition 2.4. For the Rees factor S-set M /L with L € T'¢(M) and for conjugate map
¢ on T(M), the map (1, : T(M/L) — T(M/L) is defined by (r.(K') = «({(¢7Y(K")) for all
K'" € T(M/L), where ¢ is the natural map from M to M/L.

We note that (7 is a conjugate map on I'(M/L) (cf. [2, Proposition 3.2]).
Definition 2.5. An S-set M is said to be (-primitive if there is a I{ € I'yax (M) such that
I(C = {9}

Definition 2.6. The (-socle Soce (M) of M is defined to be the union of minimal (-subsets
of M, with the stipulation that Soce (M) = {6} if there are no minimal (-subsets of M.

Here, we recall that, for a K € T'ymax(M), M/K¢isa (k. -primitive S-set and SOCCKC (M/K¢)
consists of the only minimal (g, -subset of M/K¢(cf. [3, Remark A and Lemma 3.3]).
In general, a minimal (-subset N of an S-set M is of one of the folowing types (cf. [2,
Lemma 4.1]):
(1) N is a simple S-subset of M and ((N) = {6};
(2) N is a simple S-subset of M and ((N) = N;

(3) there is a simple S-subset L of M such that N = LU((L), LN((L) = {0}, L = ¢*(L)
and (L) is also a simple S-subset of M.

Definition 2.7. Let I € T, (M). If SO(TCK[ (M/K¢) is a minimal (g -subset of M /K of
type i,i € {1,2,3}, then K is said to be of C-type i.

In the rest of this section, we give a characterization to maximal S-subsets of an S-set in
connection with the (-types. Let K € Tmax(M). Set s(K) = aS?! for an a € M with a ¢ K.
Since aSTUK = M, s(K) is independent of the choice of such a. Set m¢(K) = s(K)U((s(K))
and de(K) = me(IK) N K¢. Then me(K), de(K) € T'¢(M). Furthermore, we abbreviate
me(K) and de(K) to m(K) and d(K) respectively, if there is no danger of confusion.

Proposition 2.8. Let K € I'y,(M). Then the following conditions are equivalent:
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(1) K is of C-type 1;
(2) ¢3(M) C K;

(3) ((m¢(K)) € de (K.

Proof. Set ( = (r, and denote by 6 the zero of M/ K.

(1) ¢ (2) (i) Suppose that M /K¢ is a simple S-set. Then K = K. Furthermore, ((M/K.) =
EQ(.M/KC). Thus K is of (-type 1 if and only if EZ(NI/I(C) = {6}, that is, (*(M) C K. Hence
our assertion holds.

(ii) Suppose that M/K¢ is a nonsimple S-set. Then Socz(M/K¢) = UK/K: )V ZZ(K/KC)
by [3. Lemma 3.3]. Hence K is of (-type 1 if and only if EE(K/KC) = {6}. On the other
hand, M/K; = K/K:V {(K/K¢) by [3, Lemma 3.2]. Hence g (K/K¢) = {0} if and only if
Ez(JW/KC) = {6}, that is, (}(M) C K because (}(M) € T¢(M). Thus our assertion holds.
(2) = (3) Let ((m(K)) € K. Then s(K) C ((m(K)) and so ((s(K)) C (*(m(K)) C K.
Thus ((m(K)) = ((s(K)) U (*(s(K)) C K, a contradiction. Hence ((m(K)) C K. Since

C(m(K)) € Te(M), ((m(K)) Cm(K)N K =d(K)
( ) (2) Since m(K )UK = M, (*(M) = ¢*(m(K))UC*(K). On the other hand, (*(m(K)) C
(d(K)) Cd(K)C K and CZ(A) C K. Thus ¢*(M) C K.

Proposition 2.9. Let K € T'nax(M). Then the following conditions are equivalent:

1) K 1is of (-type 2;
2) ((K)C K and (M) € K;

3) {(K)C K and (*(M) ¢ K;

(
(2)
(3) C(K

(4) C(s(K)) = s(XK).

Proof. Set ( = (K-
(1) & (2) < (3) Suppose that Socx (M/ng) is a simple S-subset of A/[/AC and M/K¢ is a

nonsimple S-set. Then, by [3, Lemma 3.3], Soc= (/W/Ixc = {(K/K¢) and C (K/K;) = {6}.
In this case, K is of (-type 1. On the other hand if K is of (-type 2, then Socc(ﬂ/[/fx )isa
simple S-subset of M /K. Hence, if I is of (-type 2, then M /K is a simple S-set. Thus K
is of (-type 2 if and only if M /K is a simple S-set and ((M/K;) = M /K¢, that is, K = K¢
and ((M) ¢ K. In this case, we can substitute EQ(AJ/KC) = M/K. for ((M/K¢) = M/K,
that is, (*(M) ¢ K. Hence our assertion holds.

(2) ( ) Since M = s(K) U K,((M) = ((s(K))U((K) € K, and ((K) C K. Hence
((s(K)) € K. Therefore s(K) C C( (K)) C*(s(K)) C ( ), that i is, s(K) = ((s(K)).
(4) (2) Assume that ((K) € K. Then s(K) C ((K)andsos(K) = ((s(K)) C (*(K) C K,
a contradiction. Hence ((K) C K. Furthermore, since ((s(K)) =s(K) € K, (M) L K

Proposition 2.10. Let K € T ax(M). Then the following conditions are equivalent:

(1) K is of (-type 3;
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(2) ¢((K) € K and (*(M) € K;
(3) C(m¢(K)) € de(K) and ((s(K)) # s(K).

Proof. Since K is of (-type 3 if and only if K is neither of (-type 1 nor of (-type 2, our
assertion follows at once from Proposition 2.8 and 2.9.

Throrem 2.11. Let K € Tnax(M). Then m¢(K)/d¢(K) is a minimal (g (x)-subset of
M/d¢(K). Furthermore, m¢(K)/d:(K) is of type i as a minimal (g, ()-subset of M/d;(K)
if and only if K is of (-type i(i = 1,2,3).

Proof. Let x € m(K) with @ ¢ d(K). Then = ¢ K. Hence, if 2 € K, then ((2S') € K
and so s(K) C ((xS'). In this case, m(K) = s(K) U ((s(K)) C ¢(zS") U *(2S") C
(xS U ST C ((m(K))Um(K) = m(K). Hence S' U {(2S') = m(K). On the other
hand, if + ¢ K then 25" U {(2S') = m(K) is clear. This shows that m(K)/d(K) is a
minimal (-subset of M/d(K), where { = Ca(x)-

Now, a minimal {-subset m(K)/d(K) of M/d(K) is of type 1 if and only if ((m(K)/d(K))
{6}, that is, K is of (-type 1 by Proposition 2.8, where 8 is the zero of M/d(K). Next, a
minimal (-subset m(K)/d(K) of M/d(K) is of type 2 if and only if m(K)/d(K) is a simple
S-subset of M/d(K) and ((m(K)/d(K)) = m(K)/d(K). In this case, s(K)Ud(K) = m(K)
and ((s(K)) Ud(K) = s(K) Ud(K). Hence s(K) C ((s(K)) C ¢*(s(K)) C s(K), that
is, s(K) = ((s(K)). Thus K is of (-type 2 by Proposition 2.9. Conversely, assume that
K is of (-type 2. By Proposition 2.9, s(K) = ((s(K)) = m(K). Let * € m(K) and
x ¢ d(K). Assume that € K. Since z ¢ K¢,((2S") € K and so s(K) C ((zS'). Hence
s(K) = ((s(K)) C ¢*(xS') C xS! C K, a contradiction. Thus z ¢ K and so 25! = s(K).
Hence m(K)/d(K) is a simple S-subset of M/d(K) and {(m(K)/d(K)) = m(K)/d(K).
Hence a minimal (-subset m(K)/d(K) of M/d(K) is of type 2. At the same time, we know
that a minimal (-subset m(K)/d(K) of M/d(K) is of type 3 if and only if K is of (-type 3.

Corollary 2.12. Let K € T'nax(M). Then d:(K) = {8} if and only if m¢(K) is a minimal
(-subset of M.

Proof. ‘Only if’ part. This follows from Theorem 2.11.
‘If” part. Let d(K) # {6}. Since d(K) C m(K) and m(L) is a minimal (-subset of
M,d(K) =m(K). Hence m(K) C K¢, a contradiction. Hence d(K) = {6}.

3. (-monolithic S-sets. It is well known that a finite group G is solvable if and only if
every maximal subgroup of G is ¢-normal in G(cf. [4, Theorem 3.1]). On the other hand,
we introduced a concept of a c¢-subset of an S-set which is analogous to that of a c-normal
subgroup of a group (cf. [3]). From this point of view we take an interest in an S-set M
such that each maximal S-subset of M is a c¢-subset of M.

Definition 3.1. (cf. [1, Definition 3.1]) An S-set M is said to be (-monolithic if T max(M) #

? and each maximal S-subset of M is a ce-subset of M.

Theorem 3.2. Let K € I'max(M). Then I is a ce-subset of M if and only if I is either
of C-type 1 or of (-type 2.

Proof. ‘Ounly if’ part. Sincce I is a c¢¢- subset of M, we have m(K) N K C K. Assume
that K is of (-type 3. Then ((s(K)) # s(K) by Proposition 2.10. If s(K) C ((s(K)), then
((s(K)) C (*(s(K)) C s(K). a contradiction. Hence s(K) € ((s(K)). Thus ((s(K)) C K.
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Since m(K)NK C K¢, ((s(K)) C K. Thus (*(M) = (*(s(K)UK) = (*(s(K))UC*(K) C K,
a contradiction to Proposition 2.10. Hence K is either of (-type 1 or of (-type 2.

‘If” part. Assume that K is of (-type 1. By Proposition 2.8, ((m(K)) C K. Thus ((m(K)U
K) C K and so m(K)NK C K¢, that is, I is a ¢¢ subset of M. Next, assume that I is of
(-type 2. Then K € T'¢(M) by Proposition 2.9. Hence K is a c¢-subset of M.

Without reference to Theorem 3.2, we shall hereinafter use this result. First, we inves-
tigate a heredity on the { monolithics of an S-set.

Definition 3.3. For any L € I'(M) and any conjugate map ¢ on I'(M), the map (|z :
I'(L) = T(L) is defined by ¢|z(H) = LN {(H) for all H € T'(L).

It L € Te(M), then (|(H) = ((H) for all H € I'(L) and so, in this case, we use the

notation ¢ for {|z.

Proposition 3.4. Let ( be a conjugate map on I'(M) and let L € T'(M). Then (|1 is a
conjugate map on I'(L).

Proof. Let H € I'(L). Then C|L2(H) =(|L(LN¢(H))=LN¢LN((H)) CC*H)C H and
(le(H)=LNn¢(H)=Ln{u{¢(aS")]a e H}} = U{LN{(aS")|a € H} = U{(| (aS")]a €
H}. Hence (| is a conjugate map on I'(M).

An S-subset L of M is said to be mazimal sensitive in M if T'yyax(L) # 0 and, for any
H € Thax(L), there is a K € T'yax (M) such that H = LN K.

Theorem 3.5. Let an S-set M be (-monolithic.

(1) For any L € T(M), if L 1is mazimal sensitive in M, then L is also (|r-monolithic.

(2) For any L € T'¢(M), of Tmax(M/L) £ 0, then M/L is also (1,-monolithic.

Proof. (1) Let H € Tyax(L). Then there is a K € Ty (M) such that H = L N K. Since
M is (-monolithic, there is an N € I'¢(M) such that K UN = M and K NN C K. Then
L=LNn(KUN)=(LNK)U(LNN)=HU(LnN N). Furthermore, it is clear that
LNN €T, (L). Since HN(LNN) CKNN=K:NNecT(M),HN(LNN)C H,.
Therefore H is a c¢|, -subset of L and so L is (|r-monolithic.

(2) This follows at once from Proposition 2.8 and 2.9.

Theorem 3.6. For any L € T'¢(M), if L is (-monolithic and M /L 1s (1-monolithic, then
M 1s (-monolithic.

Proof. Let K € I'max(M). If L C K, then K/L is a ¢¢, -subset of M/L and so K is a
ce-subset of M by Proposition 2.8 and 2.9. Let L g_ K. Then LN K € Tyax(L). Hence
there is an N € T'¢(L) such that NU(LNK) =L and NN(LNK) C (LN K)¢. Then
N C K implies L C K, a contradition. Hence N ¢ K and so N UK = M. Furthermore,
NNK=(NNL)NK =NN(LNK) C(LNK): C K. Thus K is a ¢¢-subset of M. Hence
M is (-monolithic.

Corollary 3.7. Let K € T'max(M) NT¢(M) which is mazimal sensitive in M. Then M is
C-monolithic if and only if K is (-monolithic.

Proof. ‘Only if’ part. This follows from Theorem 3.5.
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‘If* part. In this case, K = K. Hence M/K; is a simple S-set and so M/K; is (g, -
monolithic.Moreover, K is (-monolithic by the assumption. Hence M is (-monolithic by
Theorem 3.6.

Next, we investigate a connection between the nilpotency of a conjugate map ¢ on I'(M)
and the (-monolithics on M. We recall that for any L € T'(M), a cojugate map ¢ on I'(M)
is said to be nilpotent on L if ("(L) = {6} for some positive integer n.

Now, for any A C Tiax(M), we define ®(A) = N{K|K € A} if A # (: otherwise, we
let ®(A) = M. Let T'1, (M) be the set of maximal S-subsets of M of (-type 1 and set
Dy, (M) =®(T,(M)). Furthermore, let T'y 5 (M) be the set of maximal S-subsets of M,
which are either of (-type 2 or of (-type 3 and set ®o 3 (M) = ®(I'z 5 ¢(M)). Finally, set
Drax(M) = B(Tax (M)). The subscript ¢ in those notations is deleted if there is no danger
of confusion.

Theorem 3.8. Let ¢ be a cojugate map on I'(M). Then the following properties hold:

(1) ¢ 1s nilpotent on M if and only if ¢ is nilpotent on Puax(M) and all mazimal S-subsets
of M are of (-type 1.

(2) ¢ is nilpotent on ®pmax(M) if and only if ¢ is nilpotent on ®q5 (M). In this case,
Dy 3.c(M) is the greatest S-subset of M in the set of S-subsets of M on which ( is
nilpotent. Furthermore, @35 (M) € T'¢(M).

Proof. (1) If ( is nilpotent on M, then for each K € I'max(M),(x, is nilpotent on
SOCCKC (M/K¢). Hence K is of (-type 1. It is clear that ¢ is nilpotent on ®max(M). The

converse is a direct consequence of Proposition 2.8.

(2) ‘Only if” part. If Ty 3(M) = 0, then ¢ is nilpotent on M by (
By Proposition 2.8, (*(®23(M)) C ®(M). Hence (*(Po5(M)) C
Ok (M). Thus ¢ is nilpotent on $, 3(M).

1 Let rz‘g(lﬁ\/[) # @

).
& (M) N By 5(M)

‘If” part. This is clear.

Proceeding to the last assertion of our theorem, let H € I'(M) on which ¢ is nilpotent.
We will show that H C @, 3(M). Suppose that H ¢ ®5 3(M). Then there is a K € 'y 5(M)
with H ¢ K. Now HUK = M and m(K) C HU((H). Since ( is nilpotent on HU((H),( is
nilpotent on m(K). Thus ((m(K)) C d(K) because m(I)/d(K) is a minimal (4(5)-subset
of M/d(K) by Theorem 2.11. Hence K is of (-type 1 by Proposition 2.8, a contradiction.
Thus H C &, 5(M). Therefore, @, 3(M) is the greatest S-subset of M in the set of S-subset
of M on which ¢ is nilpotent. Furthermore, ¢ is nilpotent on ®4 3(M) U (P2 3(M)) and so
it equals @, 3(M). Hence @y 35(M) € T'¢(M).

Theorem 3.9. Let M be a (-primitive S-set. Then M is (-monolithic if and only if there
is o mazimal S-subset K of M such that K¢ = {0} and ( is nilpotent on K.

In this case, if M is a nonsimple S-set, then (*(M) = {6}.

Proof. If M is a simple S-set, then {6} is the only maximal S-subset of M and so our
assertion holds clearly. Suppose that M is a nonsimple S-set.

‘Only if” part. Assume that M is (-monolithic. Now, thereis a K € T'pay (M) with K # {6}
and K¢ = {0}. Hence ((K) ¢ K. On the other hand, K is either of (-type 1 or of (-type
2. Hence K is of (-type 1 by Proposition 2.9. Thus (?(M) C K by Proposition 2.8. Since
(H(M) e T¢(M),*(M) = {6} folows from K, = {6}.
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‘If” part. Let K € I'max(M) such that K. = {#} and ( is nilpotent on K. Since M =
((K)V K by [3, Lemma 3.2],  is nilpotent on M. Hence M is (-monolithic by Theorem
3.8.

Cprpllary 3.10. Let an S-set M be (-monolithic and let L, K € T'yax(M) with L = Ke.
Then L = K.

Proof. Set H = L¢ = K¢. If H = L, then L = K¢ C K, that is, L = K. Without loss
of generality, we assume that H # L and H # K. Then M/H is (y-primitive and (p-
monolithic by Theorem 3.5. Hence (g is nilpotent on M/H by Theorem 3.9. Moreover,
(L/H)¢, = (K/H), = {8}, where 8 is the zero of M/H. Hence we have L/H = K/H by
[3, Corollary 3.5]. Thus L = K.

If ¢ is nilpotent on M, then M is (-monolithic by Theorem 3.8. Hence Corollary 3.10 is
an extension of [3, Corollary 3.5].

Now, set T (M) = {K|K € Tpax(M) with de(K) = {8}} and ®,, (M) = (T4 (M)).
Furthermore, we denote by ®¢(M) the (-core of ®max(M).

Theorem 3.11. (1) For any S-set M, ®4, (M) is the smallest S-subset of M in the set of
S-subsets H of M such that Soce (M) U H = M.

(2) (For) any S-set M such that ®(M) = {6}, if M is (-monolithic, then M = Soc¢(M) V
g, (M).

Proof. (1) If Soc¢(M) = {6}, then T'y (M) = 0 by Corollary 2.12, that is , ®4, (M) = M.
Thus our assertion holds. Suppose that Soc¢ (M) # {6}. Let H € T'(M) such that Soc¢ (M)U
H = M. If Soc¢(M) C H, then H = M and so ®4,(M) C H. Assume that Soc¢ (M) g_ H.
Let © be the set of simple S-subsets L of M satisfying the following conditions:

(i) L is a simple S-subset of M such that L ¢ H;
(ii) LU (L) is a minimal (-subset of M.

Then  # 0. Let L € Q and set L™ = H U {U{A|A € Q with A # L}}. Then L" U
L = HUSoc¢(M) = M and L" N L = {#}. Hence L™ € Ty (M) and so @4, (M) C L".
On the other hand, H = N{L"|L € Q}. Hence ®4, (M) C H. Next, we shall show that
Soce(M)U Dy, (M)=M.T1f Dy, (M) = M, then it is clear. Assume that PR (M) # M, that
is, g (M) # 0. Let K € T'q,(M). Then m(K) is a minimal (-subset of M by Corollary
2.12 and m(K) U K = M. Hence Socs(M) U K = M. Therefore Soc:(M) U {N{K|K €
T4 (M)}} = M, that is, Soce(M) U ®q, (M) = M.

(2) If Soce (M) = {6}, then Ty, (M) = 0, that is @4, (M) = M. Thus our assertion holds. Let
Soc¢(M) # {6} and let L be a minimal (-subset of M. Since ®¢(M) = {6}, L ¢ ®;(M) and
so there is a K € T'pax (M) with L g_ K. Then L = m(K) and so K € Tyq, (M) by Corollary
2.12. If K is of (-type 1, then ((m(K)) = {8} by Proposition 2.8 and so m(K) = s(K). If
K is of (-type 2, then m(K) = s(I) by Proposition 2.9. Therefore L = s(K) is a simple S-
subset of M. Thus LNK = {#} and so LN®y, (M) = {#}. Hence Socc(M)N®4, (M) = {6}.
Thus Soc¢ (M) V &4, (M) = M by (1).

Here, we handle examples with respect to a decision of (-types of maximal S-subsets of
an S-set (cf. Proposition 2.8, 2.9 and 2.10), a nilpotency of a conjugate map (cf. Theorem
3.9) and a decomposition of a (-monolithic S-set (cf. Theorem 3.11).
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Let f be an S-endomorphism of M. The map ¢y : T(M) — T'(M) is defined by
(L) = U{f(uSY) N fH(uS) | w € L} for all L € T(M). Then (s is a conjugate map on
I'(M). Here, any semigroup S is considered a (right) S-set by its multiplication. For any
a € S, the S-endomorphism A, : S — S is defined by Ay (z) = az for all z € S.

Example 3.12. Let S be a band with a zero such that T'pay(S) # 0. For an a € S, set
¢ =0, Let uw e Sandz € A\(uS) N A (uS). Then there are s,t € S such that » =
aus and ar = ut. In this case, v =aus = a?us = ar = ut. Thus ((uS) C uS. Hence each
S-subset of S is always a (-subset of S. This shows by Proposition 2.10 that S itself is a
¢-monolithic S-set.

Example 3.13. Let S be a commutative semigroup with a zero such that Tyax(S) # 0.
For an a € S, set ( = (),. By the same way as Example 3.12, we know that S 1‘r<elf s a
¢-monolithic S-set.

Example 3.14. Let S = {0,a,b, ¢} be a semigroup with the multiplication table:

o ot O

o O o Colo
(e Ren il en B an] e
oo O
o ot OoOn

Then S has only two maximal S-subsets K; = {0,a,b} and Ky = {0,b, c}.

(1) Set f =Xq and ¢ = (. Then ((aS) = {0}, ((bS) = {0, a} and {(cS) = {0, a}.
(i) Since (?(S) = {0} C K1 N K3, K; and K, are of (-type 1 by Proposition 2.8 and so S is
(-monolithic.

(ii) Since (K3)¢ = {0}, S is (-primitive and ((S) = {0} (cf. Theorem 3.9).

(iii) Since ®¢(S) = (K1 N Ky)¢ = {0}, 5 = Soc¢(S) V @4, (S) (cf. Theorem 3.11). In fact,
Soc¢(S) = {0,a} and ®4,(S5) = K.

(2) Set f = Ac and ¢ = (5. Then ((aS) = {0},((bS) = {0,b} and ((cS) = {0,b, c}.

(i) Since ¢(S) = ¢*(S) = {0,b,¢} and ((K;) = {0,0},¢(S) € K, and C(le) C K. Thus
Ky is of (-type 2 by Propos1t10n 2.9. Moreover, (3(S) C K, and so K is of (-type 1 by
Proposition 2.8. Hence S is (-monolithic.

(ii) Since Ky, K, € T'¢(9),S is not (-primitive. Furthermore, (%(S) # {0} (cf. Theorem
3.9).

(iii) Since Soc¢(S) = aSUbS = Ky and @4, (S) = K, Soc(S) N @4, (S5) = {0,b} # {0}. In
this case, ®¢(5) = {0,b} # {0} (cf. Theorem 3.11).

(3) Let f: S — S be an S-endomorphism defined by f(0) =0, f(a) = b, f(b) = a and
fle) = a. Set ¢ = (¢. Then ((aS) = {0,b},((bS) = {0,a} and ((cS) = {0, a}.
(i) Since ¢*(S) = K;., K, is of (-type 1 by Proposition 2.8. Since (*(S) € K, and ((K;) =
{0,a} € Ky, K, is of (-type 3 by Proposiiton 2.10 and so S is not (-monolithic.

(ii) Since (Kz)¢ = {0}, S is (-primitive. However, (*(S) = {0,a,b} # {0} (¢f. Theorem
3.9).
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(iii) Since Soc¢(S) = Ky and @4, (S) = K, Soce(S) N @4.(S) = {0,b} # {0}. However,
®:(S) = {0} (cf. Theorem 3.11).

Example 3.15. Let S = {0,a,b,¢,d} be a simigroup with the multiplication table:

QL0 o o
co oo oo
co oo oa
oo e O
oo o D0
S R R [~

Then S has only four maximal S-subsets K1 = {0,a,b,c}, K2 ={0,a,b,d}, K3 = {0,a,c,d},
and Ky = {0,0,¢,d}.

Let f:S — S be an S-endomorphism defined by f(0) =0, f(a) = b, f(b) = a, f(c) =d
and f(d) = c. Set ( = (¢. Then ((aS) = {0,b},((bS) = {0,a},((cS) ={0,d} and ((dS) =
{0,c}.

(i) Since ((K;) € K; and ¢(*(S) =S € K;, K; is of (-type 3 (i = 1,2,3,4) and so S is not
(-monolithic.
(ii) Now, (K7)¢ = (K3)¢ = {0,a,b}. However, K| # K;(cf. Corollary 3.10).

(iii) Since Soc¢(S) ={0,a,b} U{0,¢,d} = S and @4.(S) = {K; | i =1,2,3,4} = {0}, 5 =
Soc¢(S) V @4, (5). Moreover, ®:(S) = {0}. On the other hand, S is not (-monolithic. This

shows that the inverse of Theorem 3.11 does not necessary hold.
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