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SEQUENTIAL ESTIMATIONS OF SOME VECTOR IN LINEAR
REGRESSION MODEL UNDER A LINEX LOSS
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ABSTRACT. We consider two sequential problems: minimum risk problem and bounded

risk problem under linex loss function. We shall show that the least square estimate

in linear regression model is improved by another estimator asymptotically.
1. Introduction

In this paper, we consider the problem of estimating sequentially under LINEX loss func-

tion, the vector of regression parameters in a linear regression model in which the errors
are assumed to be independent and identically distributed as normal with mean 0 and un-
known variance. The LINEX loss function was first proposed by Varian (1975) who showed
that it is asymptotically equivalent to the squared loss function and thus provides a more
general loss function. Also Zellner (1986) has considered the problem under the asymmetric
loss function. Recently Takada and Nagao (2001) considered the problem of estimating the
mean vector of a multivariate normal distribution under LINEX loss function when the
covariance is unknown. In this paper, we obtain the results for regression parameters. It is
shown that the least square estimate of the vector of regression parameters under LINEX
loss function is not asymptotically admissible by providing an improved estimator. It may
be noted that this problem differs from obtaining sequentially fixed radius confidence in-
tervals for the mean vector and vector of regression parameters considered by Srivastava

(1967, 1971) and Nagao and Srivastava (2001).

2. Linear regression model

We consider the model y; = 25+ ¢;, where known z; and unknown 8 = (8y,--- ,5,) are
p x 1 vectors and ¢; (1 = 1,2,---) are i.i.d. random variables having a normal distribution
with mean zero and variance o2, We assume that the rank of X,, = (21, ,2,) is p (< n).

Here we use the following loss function when we have sample size n.

L(d™, B) Zb {exp(al™(d\™ = B)) — a\™ (@™ = ;) — 1},

where a{") = a;/(nwii o)/ (i = 1, ,p) with (X,X,)™! = (wij) and b > 0 and a; # 0

are known values. Also d(™ = (dgn)7 e ,dl(gn))’ is estimate of § based on sample size n.
When o2 is known, we consider the estimate d(™ = ,én — /Zn, = (X/X,)"'X!Y,
n
with Yy, = (y1,- -+ ,yn) and \,, = o*(ay (17,11)]17,2:)1/2, _ 7(],p(77,’11)pp‘n)1/2:)/. Here we note that
a?o?

,Bn is a least square estimator of 3. Then we have EL(d(”)7/3) =3P b
~ agg'z
other hand, EL(8,,8) = >.¥_, bi{exp( 72
n

. On the

) — 1}. Since EL(d™, ) < EL(@n,ﬁ), B is
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An
not admissible. We consider the case that ¢% is unknown. Let Bn = B ~ 5, where
n

S\n =62(a (nu;llm)l/Z, e ,(J,p(‘n,‘wpp’n)l/z)' with 62 =

[
=~ N
[

BL(B5) = S, B{epl o (0 — 52) +

2 2 2 2 2 2
_ P bife a; o 1 a; o —(n=p)/2 a; o 1.
2= bilexpl 2n )1+ n(n *P)) + 2n }
a2o? a2o?
Since (1 —|— L) < (14 )"t for v > 0, we have
nv 2n
R . p l;
EL(f,,3) — EL(G,,8) > ; biﬁ{exp(ﬂi) —l;—1}>0
a’o?
with /; = ; . Thus Bn i1s not admissible.
n

3. Sequential estimators
We shall show that the least square estimate is asymptotically improved by another
estimate even if we are in considering the estimate problem of [ in sequential situations.
At first we consider the problem of finding the sample size such that R,, = EL(d™, 3)+ ¢en
minimizes where positive number ¢ is a cost of one sample. We call this problem a minimum
2 2

risk problem in this paper. Then we have R, = >*_, b; 0122

+ ¢n. The minimum sample

1/2
2 P
o A
sizeisn, = | — E b;a? = ()24, where A = SF_ bja?. Then we have R,,. = 2¢n..
(26 o 1,> (26) 3 Zz_l 7 e
Unfortunately 2 is unknown. So we define the stopping time

T.=inf{n>m|n>t, (A)UQAn},
2¢

é A A n
where m > pand {,, = 1+ — +o(n~ ). When T. = n, we estimate 8 by 3, = 3, — o Let
n n

Rr, = E{L(éTc, B8)+cT.}. We evaluate the regret Ry, — R, in the later. Next we consider
another problem. Let W > 0 be a known positive number. We want that E(d("),3) < W,
then ny = ——o02. Also this problem is called a bounded risk problem. Thus we define

i 2W
with m > p

Tw f{n > >l

—inf{n = m | 0> Lot
The following two lemmas were used by Albert(1966) and Srivastava (1967, 1971) for

sequentially obtaining fixed radius confidence intervals for the mean vector and the vector

of regression parameters. They have extended Chow and Robbins (1965) to the linear re-

gression parameters.
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k

~ . . 1
Lemma 3.A. (3, and {62,,- - ,62} are independent for m > p, where 67 = ; Z(yi —
v P4

:cg/ék)E with ,[;’k = (X XK1 XY

An outline of proof. Since (y; — _T;/(}kv... Yk — ngék), — (Ih — X3(X,X1)~ X1 )Y, then
3 - X / \=1 v/

Conn (1 — Xe(X X)X, 013 = 001y (T SO0 gy

_ vy —1 v/ N
X, = ( A ) , then X/, ( T = XX X)X, ) = (X5 Xop)

Xk 0
_ Sy =1 v R
T Xk()&ok)&k) Xk > = X,’C —X,/c = 0. Thus 3, and (3',26 (k =m,- -+ ,n) are indepen-

dent.

Lemma 3.B. Let 62 = (n — p)62, then we have 62 = Uy + -+ + U,—p, where U; (i =

1,--- ,n —p) are independent and identically distributed random variables and each distri-

bution is ¢? times chi-square distribution with one degree of freedom.

An outline of proof. Let C}, = (X,’ch)_l, then wehave C,, = C,,_1—
1

where A,, = 2/, C,,_17,. Then ,(;’n = Bn_l + mcn_lmn

!
Cn71$n~rncn71:

14+ A,

X (yn — x;[;’n_l). Then we have

1 . 9 1 g
+7_(yn71 - Ilrzfl/BTL*Z) ++ m@pﬂ - f’f;o+15p) .

1 A
Since ﬁ(yk — x;ﬂk_l) is a normal distribition with mean zero and variance o2, we
+ Ay
have desired result by Hogg-Craig’s theorem (1958) or Craig’s (1943) theorem. Also see,
e.g. Srivastava and Khatri (1979, p.67).

Thus we define

te =inf{n >m —p | ZU,‘ < an®L(n)},
=1

L
where L(n) = 14+ =0 +o(n™"). Stopping time of this kind has been introduced by Woodroofe

n
(1977).
Let N, =t,+ p. Then N, =T, or N, = Tw,

- 2C . - f/‘. 1/2 -

for T, a= Lo=2(p—0), n,,—(2c) 4(72, a=3,

2W y
and for Ty, a = R Lo :2pf€, Ng = (%) a=2

1 .
Let v = ] and n, = ((T—)N F(z) =Pr(U; <2) < Bz/? for x > 0. From Woodroofe
— a

(1977), we have the following lemmas.

N, — .
Lemma 3.1. When a — 0, we have e — 1, Ha T Ra — N(O,Q’yz).

Ng VMg
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Lemma 3.2. For 0 < € < 1, we have Pr(N, < en,) = O(n;(m p)/(zﬂ’/)).

1 Ny —ng
Lemma 3.3. If 5(m —p) > 7, then we have (———

5 N )? is uniformly integrable.

(Na — na)2 2
N,
Let R, = at®L(t,) — 3.i%, U, the R, converges in law to H and v = E(H) =
9 oo
~o

5 [(a—1)>+2] - Z n'E((S, — nao®)T), where S, = >1_, Us.

Z

1
Lemma 3.4. If §(m —p) > 2, then we have lim,_q E{

n=1
1
Lemma 3.5. If 5(m —p) > 7, we have

E(tq) = na +yv — yLo — ay* + o(1).

From the Lemma 3.A, we have

N » a5 .o _a?&?w
EL(BN,B) =221, biE{eXp(gN(a —oN)+ OIN b a1
(3.1)
a? . alz R AO’Z
=i biE{eXP(gN(Uz — %)) + 2N(U2N —0%) — 1+ E( 2N )

1
Proposition 3.1. If g(m — p) > 24, we have

Z

2
Ac 9

EL(Bn, ) = E( o )+ o(n;?).

Proof. From (3.1), we shall show that

2 . a2 _
(03 = %)) + 5= (6% —0*) = 1} = o0 ?).

2N

E{exp(

Let C'={N > en,} N {|63 — ?| < 8} for 0 < e < 1,6 > 0. C stands for the complement

of C. Pr(C) < Pr(N < eny) + Pr(sup,s., |67 — 0| > §). Since {|57 — 0|7} is a reverse
submartingale for ¢ > 1, then

. . 1
Pr( sup [62 — 0% > §) < —E(62 — 0?)™ = O(n; ")
n>€eng 624

for any number ¢ > 1. By Lemma 3.2, Pr(C) = O(n;(mfp)/(h)).
a? 2

27;'(&2\’ - ()'2)) + ;&r(&?\f — 0-2) — 1 and E(f) = ]+ []7 where | = /f(]P
- . c

and I] = / fdP. Then we have
JC

Let f = exp(—

1 [a? (6% —o?) 2 a; Pa 3 ar(s2 2)2
I S (T exp(Ay)dP = (8n3) (==)*N(63% —0?)? exp(An)dP,
c ‘ o JC
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i ?]

52 _ 25 .
where |An| < % < (ZJ;n . (%)3N(&if — 0%)? exp(Ay) is uniformly
integrable on C' and converges in law to 204}([21}. Therefore I = O(n;?). For I1,

o), iloy — o
II= fdP < {exp : +dP
]\7 2m
z

a g
< exp(4—)

By Hoélder’s inequality , we have for 1/r +1/s =1 with r, s > 0,
[ 16 = 0P < K Pr( Oy,

where K = E|6%, — 0?|" < oo for r > 1. Then we have IT = O(n _(m_p)/(%s)). From the
assumption, there exists s > 1 such that (m — p)/(2vs) > 2. Thus IT = o(n;?).

1
Proposition 3.2. If s(m — p) > 2y, we have

Z

3 1\~ 4 o —2
EL(ﬁN/B) = g(; a; b,jO' ) + E( IN ) + O(na )
2 2
Proof. Let Y; = @0 , then
2N
L3 ZbE{ (Vi) —1} = ZbE{ ~Y; — 1}—|—E(A—U2)
N exp( = exp(Y; SN
We show )
E{exp(V;) - Y; — 1} = ga?04n;2 + o(n;?). (3.2)
‘ 1.9 . atot Ng 2 a?o?
The Lh.s. of (3.2):E{7Yi exp(Aly)} = LE{(=)? exp(A'y)}, where [A| <V; < +—.

8n?2
Since E{( ) exp(Ay)} = I + II, where

[:/ (E)2 exp(A’y)dP and [I:/ (~2)* exp(AlN)dP,
N<en N N>en N

then we have

aleZ

)Pr(N < en,) = n20(n, (mP/CD) = o(1).

m Zm

In {N > en,}, (?\—‘;)2 exp(A'y) is uniformly integrable and converges to 1 in probability.
Thus IT =1+ o(1).
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4, Minimum risk problem and bounded risk problem

A
For minimum risk problem, we have a = —c, Lo=2(p—10), n. = (—)1/20,

) A 2c
a=3and v= .

Theorem 4.1. If mn > p + 2, we have

1 3
E(T;) =n.+ e + 0 — 1 + o(1),

3 = _ ‘
3~ Z n lE(Sn — 3n)+) and S, = X{Zn}.
n=1

From Proposition 3.1, if m > p + 2, we have

where v; = o?(

. 32
Ry — R, =E{L(Bn,,0) + cT. —2cn.} = cE (%) +o(c) = = + o(c).

Theorem 4.2. If m > p 4 2, we have

Ry — R, 1

C

7. stands for the risk when we use 31,. Then we have

P

z Tc - c 2
Ry, — Ry, = j(Z ajbio?) + cE (%) + o(c).

=1

Theorem 4.3. If m > p+ 2, then

P

1 4; 2
+ E(Zaibla )+ o(1).

=1

o
N =

From the above results, BNQ is not asymptotically admissible.

2w

Finally we consider the bounded risk problem. Then we have a = R Lo=p—1¢,

Aoc?
nwy = (70/), a=2 and v=1.

Theorem 4.4. If m > p + 4, we have

E(Tw)=nw+vs +{—2+0(1),

where vy = 02{§ — Z n'E(S, —2n)t} and S, = X[zn]-

n=1
Theorem 4.5. If m > p + 4, we have

22
Ao?

EL(B7y,08) =W + (4 — vy — 1) + o(W?).

Corollary 4.1. If m > p+4 and { > 4, we have

EL(B1y ,3) <W + o(W?).
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Theorem 4.6. If m > p + 4, we have

w2 LS

7 =W+ — — _ 9 47 72
EL(fry.8) =W+ J5{2(4—m -0+ 2A(Z} ath;)} + o(W?).
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