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SEQUENTIAL ESTIMATIONS OF SOME VECTOR IN LINEAR

REGRESSION MODEL UNDER A LINEX LOSS

Hisao Nagao

Received September 28, 2001; revised February 12, 2002

Abstract. We consider two sequential problems: minimum risk problem and bounded

risk problem under linex loss function. We shall show that the least square estimate

in linear regression model is improved by another estimator asymptotically.

1. Introduction

In this paper, we consider the problem of estimating sequentially under LINEX loss func-

tion, the vector of regression parameters in a linear regression model in which the errors

are assumed to be independent and identically distributed as normal with mean 0 and un-

known variance. The LINEX loss function was �rst proposed by Varian (1975) who showed

that it is asymptotically equivalent to the squared loss function and thus provides a more

general loss function. Also Zellner (1986) has considered the problem under the asymmetric

loss function. Recently Takada and Nagao (2001) considered the problem of estimating the

mean vector of a multivariate normal distribution under LINEX loss function when the

covariance is unknown. In this paper, we obtain the results for regression parameters. It is

shown that the least square estimate of the vector of regression parameters under LINEX

loss function is not asymptotically admissible by providing an improved estimator. It may

be noted that this problem di�ers from obtaining sequentially �xed radius con�dence in-

tervals for the mean vector and vector of regression parameters considered by Srivastava

(1967, 1971) and Nagao and Srivastava (2001).

2. Linear regression model

We consider the model yi = x
0
i�+�i, where known xi and unknown � = (�1; � � � ; �p)0 are

p � 1 vectors and �i (i = 1; 2; � � � ) are i.i.d. random variables having a normal distribution

with mean zero and variance �2: We assume that the rank of Xn = (x1; � � � ; xn)0 is p (� n):

Here we use the following loss function when we have sample size n.

L(d(n); �) =

pX
i=1

bifexp(a
(n)
i (d

(n)
i � �i)) � a

(n)
i (d

(n)
i � �i)� 1g;

where a
(n)
i = ai=(nwii;n)

1=2 (i = 1; � � � ; p) with (X 0nXn)
�1 = (wij;n) and bi > 0 and ai 6= 0

are known values. Also d
(n) = (d

(n)
1 ; � � � ; d(n)p )0 is estimate of � based on sample size n.

When �
2 is known, we consider the estimate d(n) = �̂n �

�n

2n
; where �̂n = (X 0nXn)

�1
X
0
nYn

with Yn = (y1; � � � ; yn)0 and �n = �
2(a1(nw11;n)

1=2
; � � � ; ap(nwpp;n)

1=2)0: Here we note that

�̂n is a least square estimator of �. Then we have EL(d(n); �) =
Pp

i=1 bi
a
2
i �

2

2n
: On the

other hand, EL(�̂n; �) =
Pp

i=1 bifexp(
a
2
i �

2

2n
) � 1g: Since EL(d(n); �) < EL(�̂n; �); �̂n is
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not admissible. We consider the case that �2 is unknown. Let ~�n = �̂n �
�̂n

2n
; where

�̂n = �̂
2
n(a1(nw11;n)

1=2
; � � � ; ap(nwpp;n)

1=2)0 with �̂
2
n =

1

n� p

nX
i=1

(yi � x
0
i�̂n)

2
:

EL( ~�n; �) =
Pp

i=1 biEfexp(
a
2
i

2n
(�2 � �̂

2
n)) +

a
2
i �

2

2n
� 1g

=
Pp

i=1 bifexp(
a
2
i �

2

2n
)(1 +

a
2
i �

2

n(n � p)
)�(n�p)=2 +

a
2
i �

2

2n
� 1g:

Since (1 +
a
2
i�

2

2n�
)�� � (1 +

a
2
i�

2

2n
)�1 for � > 0; we have

EL(�̂n; �) � EL( ~�n; �) �
pX
i=1

bi
`i

1 + `i
fexp(`i)� `i � 1g � 0

with `i =
a
2
i�

2

2n
: Thus �̂n is not admissible.

3. Sequential estimators

We shall show that the least square estimate is asymptotically improved by another

estimate even if we are in considering the estimate problem of � in sequential situations.

At �rst we consider the problem of �nding the sample size such that Rn = EL(d(n); �)+ cn

minimizes where positive number c is a cost of one sample. We call this problem a minimum

risk problem in this paper. Then we have Rn =
Pp

i=1 bi
a
2
i�

2

2n
+ cn: The minimum sample

size is nc =

 
�
2

2c

pX
i=1

bia
2
i

!1=2

= (
A

2c
)1=2�; where A =

Pp
i=1 bia

2
i : Then we have Rnc = 2cnc:

Unfortunately �2 is unknown. So we de�ne the stopping time

Tc = inffn � m j n � `n(
A

2c
)1=2�̂ng;

where m > p and `n = 1+
`

n
+ o(n�1): When Tc = n, we estimate � by ~�n = �̂n�

�̂n

2n
: Let

RTc = EfL( ~�Tc ; �)+ cTcg. We evaluate the regret RTc�Rnc in the later. Next we consider

another problem. Let W > 0 be a known positive number. We want that E(d(n); �) � W;

then nW =
A

2W
�
2
: Also this problem is called a bounded risk problem. Thus we de�ne

with m > p

TW = inffn � m j n � `n
A

2W
�̂
2
ng

The following two lemmas were used by Albert(1966) and Srivastava (1967, 1971) for

sequentially obtaining �xed radius con�dence intervals for the mean vector and the vector

of regression parameters. They have extended Chow and Robbins (1965) to the linear re-

gression parameters.



SEQUENTIAL ESTIMATIONS UNDER A LINEX LOSS 309

Lemma 3.A. �̂n and f�̂2m; � � � ; �̂2ng are independent for m > p; where �̂2k =
1

k � p

kX
i=1

(yi �

x
0
i�̂k)

2 with �̂k = (X 0kXk)
�1
X
0
kYk:

An outline of proof. Since (y1 � x
0
1�̂k; � � � ; yk � x

0
k�̂k)

0 = (Ik �Xk(X
0
kXk)

�1
X
0
k)Yk, then

Cov(�̂n; (Ik � Xk(X
0
kXk)

�1
X
0
k; 0)Yn) = �

2(X 0nXn)
�1
X
0
n

�
Ik �Xk(X

0
kXk)

�1
X
0
k

0

�
: Let

Xn =

�
Xk

~Xn�k

�
; then X

0
n

�
Ik �Xk(X

0
kXk)

�1
X
0
k

0

�
= (X 0k;

~X 0n�k)

�
�

Ik �Xk(X
0
kXk)

�1
X
0
k

0

�
= X

0
k �X

0
k = 0: Thus �̂n and �̂2k (k =m; � � � ; n) are indepen-

dent.

Lemma 3.B. Let ~�2n = (n � p)�̂2n; then we have ~�2n = U1 + � � � + Un�p, where Ui (i =

1; � � � ; n� p) are independent and identically distributed random variables and each distri-

bution is �2 times chi-square distribution with one degree of freedom.

An outline of proof. Let Ck = (X 0kXk)
�1, then we haveCn = Cn�1�

1

1 +�n

Cn�1xnx
0
nCn�1;

where �n = x
0
nCn�1xn: Then �̂n = �̂n�1 +

1

1 +�n
Cn�1xn

� (yn � x
0
n�̂n�1). Then we have

~�2n = (n� p)�̂2n = ~�2n�1 +
1

1 +�n
(yn � x

0
n�̂n�1)

2 =
1

1 +�n
(yn � x

0
n�̂n�1)

2

+
1

1 +�n�1
(yn�1 � x

0
n�1�̂n�2)

2 + � � � +
1

1 +�p+1

(yp+1 � x
0
p+1�̂p)

2
:

Since
1p

(1 + �k)
(yk�x

0
k�̂k�1) is a normal distribition with mean zero and variance �2, we

have desired result by Hogg-Craig's theorem (1958) or Craig's (1943) theorem. Also see,

e.g. Srivastava and Khatri (1979, p.67).

Thus we de�ne

ta = inffn � m� p j
nX
i=1

Ui < an
�
L(n)g;

where L(n) = 1+
L0

n
+o(n�1): Stopping time of this kind has been introduced by Woodroofe

(1977).

Let Na = ta + p. Then Na = Tc or Na = TW ;

for Tc, a =
2c

A
; L0 = 2(p� `); na = (

A

2c
)1=2�; � = 3;

and for TW ; a =
2W

A
; L0 = p� `; na = (

A�
2

2W
); � = 2:

Let 
 =
1

1� �
and na = (

�
2

a
)
 : F (x) = Pr(U1 � x) � Bx

1=2 for x � 0: From Woodroofe

(1977), we have the following lemmas.

Lemma 3.1. When a! 0; we have
Na

na
! 1;

Na � nap
na

! N(0; 2
2).
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Lemma 3.2. For 0 < � < 1; we have Pr(Na � �na) = O(n
�(m�p)=(2
)
a ):

Lemma 3.3. If
1

2
(m � p) > 
; then we have (

Na � nap
na

)2 is uniformly integrable.

Lemma 3.4. If
1

2
(m � p) > 2
; then we have lima!0Ef

(Na � na)
2

Na
g = 2
2:

Let Ra = at
�
aL(ta) �

Pta
i=1Ui; the Ra converges in law to H and � = E(H) =


�
2

2
[(� � 1)2 + 2]�

1X
n=1

n
�1E((Sn � n��

2)+); where Sn =
Pn

k=1Uk:

Lemma 3.5. If
1

2
(m � p) > 
; we have

E(ta) = na + 
� � 
L0 � �

2 + o(1):

From the Lemma 3.A, we have

EL( ~�N ; �) =
Pp

i=1 biEfexp(
a
2
i

2N
(�2 � �̂

2
N )) +

a
2
i �̂

2
N

2N
� 1g

=
Pp

i=1 biEfexp(
a
2
i

2N
(�2 � �̂

2
N )) +

a
2
i

2N
(�̂2N � �

2)� 1g+ E(
A�

2

2N
):

(3:1)

Proposition 3.1. If
1

2
(m� p) > 2
; we have

EL( ~�N ; �) = E(
A�

2

2N
) + o(n�2a ):

Proof. From (3.1), we shall show that

Efexp(
a
2
i

2N
(�2 � �̂

2
N )) +

a
2
i

2N
(�̂2N � �

2)� 1g = o(n�2a ):

Let C = fN > �nag \ fj�̂2N � �
2j � Æg for 0 < � < 1; Æ > 0: �C stands for the complement

of C. Pr( �C) � Pr(N � �na) + Pr(supn��na j�̂
2
n � �

2j > Æ). Since fj�̂2n � �
2jqg is a reverse

submartingale for q > 1; then

Pr( sup
n��na

j�̂2n � �
2j > Æ) �

1

Æ2q
E(�̂2n � �

2)2q = O(n�qa )

for any number q > 1: By Lemma 3.2, Pr( �C) = O(n
�(m�p)=(2
)
a ):

Let f = exp(�
a
2
i

2N
(�̂2N � �

2)) +
a
2
i

2N
(�̂2N � �

2) � 1 and E(f) = I + II; where I =

Z
C

fdP

and II =

Z
�C

fdP: Then we have

I =

Z
C

1

2

�
a
2
i (�̂

2
N � �

2)

2N

�2

exp(�N )dP = (
a
4
i

8n3a
)

Z
C

(
na

N
)3N(�̂2N � �

2)2 exp(�N )dP;
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where j�N j �
a
2
i j�̂

2
N � �

2j
2N

�
a
2
i Æ

2m
on C. Also (

na

N
)3N(�̂2N � �

2)2 exp(�N) is uniformly

integrable on C and converges in law to 2�4�2
[1]
: Therefore I = O(n�3a ): For II,

II =

Z
�C

fdP �
Z
�C

fexp(
a
2
i �

2

2N
) +

a
2
i j�̂2N � �

2j
2m

gdP

� exp(
a
2
i �

2

2m
)Pr( �C) +

a
2
i

2m

Z
�C

j�̂2N � �
2jdP:

By H�older's inequality , we have for 1=r + 1=s = 1 with r; s > 0;Z
�C

j�̂2N � �
2jdP � K

1=rfPr( �C)g1=s;

where K = Ej�̂2N � �
2jr < 1 for r > 1: Then we have II = O(n

�(m�p)=(2
s)
a ). From the

assumption, there exists s > 1 such that (m� p)=(2
s) > 2. Thus II = o(n�2a ):

Proposition 3.2. If
1

2
(m� p) > 2
; we have

EL(�̂N ; �) =
1

8
(

pX
i=1

a
4
i bi�

4)n�2a +E(
A�

2

2N
) + o(n�2a ):

Proof. Let Yi =
a
2
i �

2

2N
, then

EL(�̂N ; �) =

pX
i=1

biEfexp(Yi) � 1g =
pX
i=1

biEfexp(Yi)� Yi � 1g+ E(
A�

2

2N
):

We show

Efexp(Yi)� Yi � 1g =
1

8
a
4
i�

4
n
�2
a + o(n�2a ): (3:2)

The l.h.s. of (3.2)=Ef
1

2
Y

2
i exp(�0N )g =

a
4
i�

4

8n2a
Ef(

na

N
)2 exp(�0N )g; where j�0N j � Yi �

a
2
i �

2

2m
:

Since Ef(
na

N
)2 exp(�0N)g = I + II; where

I =

Z
N<�na

(
na

N
)2 exp(�0N )dP and II =

Z
N��na

(
na

N
)2 exp(�0N )dP;

then we have

I � (
na

m
)2 exp(

a
2
i �

2

2m
)Pr(N < �na) = n

2
aO(n

�(m�p)=(2
)
a ) = o(1):

In fN � �nag; (
na

N
)2 exp(�0N ) is uniformly integrable and converges to 1 in probability.

Thus II = 1 + o(1):
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4. Minimum risk problem and bounded risk problem

For minimum risk problem, we have a =
2c

A
; L0 = 2(p� `); nc = (

A

2c
)1=2�;

� = 3 and 
 =
1

2
:

Theorem 4.1. If m > p+ 2, we have

E(Tc) = nc +
1

2
�1 + `�

3

4
+ o(1);

where �1 = �
2(
3

2
�

1X
n=1

n
�1E(Sn � 3n)+) and Sn = �

2
[n].

From Proposition 3.1, if m > p+ 2; we have

RTc �Rnc = EfL( ~�Nc ; �) + cTc � 2cncg = cE

�
(Tc � nc)

2

Tc

�
+ o(c) =

c

2
+ o(c):

Theorem 4.2. If m > p+ 2; we have

RTc �Rnc

c
=

1

2
+ o(1):

R
0
Tc

stands for the risk when we use �̂Tc : Then we have

R
0
Tc
�Rnc =

c

4A
(

pX
i=1

a
4
i bi�

2) + cE

�
(Tc � nc)

2

Tc

�
+ o(c):

Theorem 4.3. If m > p+ 2; then

R
0
Tc
�Rnc

c
=

1

2
+

1

4A
(

pX
i=1

a
4
i bi�

2) + o(1):

From the above results, �̂Nc is not asymptotically admissible.

Finally we consider the bounded risk problem. Then we have a =
2W

A
; L0 = p� `;

nW = (
A�

2

2W
); � = 2 and 
 = 1:

Theorem 4.4. If m > p + 4, we have

E(TW ) = nW + �2 + `� 2 + o(1);

where �2 = �
2f
3

2
�

1X
n=1

n
�1E(Sn � 2n)+g and Sn = �

2
[n].

Theorem 4.5. If m > p + 4; we have

EL( ~�TW ; �) =W +
2W 2

A�2
(4� �2 � `) + o(W 2):

Corollary 4.1. If m > p + 4 and ` � 4; we have

EL( ~�TW ; �) �W + o(W 2):
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Theorem 4.6. If m > p+ 4, we have

EL(�̂TW ; �) =W +
W

2

A�2
f2(4� �2 � `) +

�
2

2A
(

pX
i=1

a
4
i bi)g + o(W 2):
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