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EQULIBRIUM IN NO-INFORMATION BEST-CHOICE GAMES PLAYED

BY EQUALLY WEIGHTED PLAYERS
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�
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Abstract. Two players observe a stochastic stream of o�ers. They arrive via

continuous-time simple Markov process in the time interval [0; 1] and their arrival

becomes less probable as time passes. At each arrival, players must decide either ac-

cept (A) or reject (R), immediately and independently. Players have equal weights, so

if both players want to accept a same o�er, a lottery is used to the e�ect that each

player can get it with equal probability 1/2. If one player accepts an o�er and the

other doesn't the game goes on as one-person game for the latter. A player wins if he

accepts the latest o�er arriving before time 1. Each player aims to �nd his strategy

that maximizes his probability of winning. The normal form of the game is formulated

and the structural form of the solution to this game is found to calculate the Nash

equilibrium. Another best-choice games where each player aims to accept an o�er later

than the opponent is also discussed.

1. Introduction and Formulation of the Problem.

This paper deals with some problems of optimal stopping games over continuous-time

simple Markov process. The problem considered is related to the No-Information best-choice

problem (or, so-called, secretary problem). First we state the problem.

(1Æ) Two players I and II observe a continuous-time 0-1 valued stochastic process x(t); 0 �
t � 1; which is simple Markov with transition density

Pr:fx(� ) = 0;8� 2 (t; s) and x(s +4s)� x(s) = 1 j x(t) = 1g = ts
�24s

for 0 < t < s < 1; and hence

Pr:fx(� ) = 0;8� 2 (t; 1] j x(t) = 1g = 1�
Z 1

t

ts
�2
ds = t:

(2Æ) We call the event x(t) = 1; as \an o�er arrives at time t:" At each arrival of an o�er,

both players choose, simultaniously and independently, either to accept (A) or to reject (R)

the o�er. If I-II choice-pair is A-R(R-A) then I(II) accepts the o�er and drops out hereafter

from the game, and his opponent continuous his one-person game. If I-II choice is A-A

then a lottery (A-R, R-A; 1/2, 1/2) is used to the e�ect that A-R or R-A is enforced to the

players with probability 1/2 each. If I-II choice is R-R, then the o�er is rejected and the

players face the next arrival of an o�er.

(3Æ) A player wins if he accepts the latest o�er arriving in the period 0 � t � 1: Each player

aims to �nd his strategy by following which he maximizes his probability of winning.

Suppose two job-searchers seek for a job opportunity. Employer o�ers jobs sequentially

one-by-one. The arriving o�ers are competed to accept by them, with the aim of obtaining

the absolutely best o�er. Suppose the total number N of the o�ers is �xed and known,
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and the n-th o�er arrived is relatively best (i.e., best among those seen so far). Then

the probabilistic manner of the ratio t = n
N
2 [0; 1] is described assymptotically (i.e.,

n;N !1) by the equations in (1Æ).

De�ne state ((t)) to mean that both players remain in the game and an o�er has just

arrived at time t: Also de�ne state (t) to mean that one player has just dropped out from

the game at time t.

Let U(t) be the optimal probability of winning for the remaining player in state (t).

Then it satis�es the integral equation

(1:1) U(t) =

Z 1

t

(t=s2)(s _ U(s))ds (0 < t � 1; U(1) = 0)

Considering symmetry in the players role in the game, let V (t) be the equilibrium

probability of winning for each player in state ((t)).

Then we have the Optimality Equation

(1:2) (V (t); V (t)) = Eq:Val: M(t; V (t); V (t)) (0 < t � 1; V (1) = 1=2)

where

(1:3) M(t; V (t); V (t)) =

R

A

R A

TV (t); TV (t) U(t); t

t; U(t) 1
2
(t+ U(t)); 1

2
(t + U(t))

and

TV (t) = t

Z 1

t

s
�2
V (s)ds;

i.e., T is a transition operator. As to the interpretation of Eq.Val. in (1.2), see Remark 4

in Section 4.

Optimal stopping games have various phases according to the various essentials of (1Æ)

zero-sum or nonzero-sum, (2Æ) information pattern under which players choose their deci-

sion, and (3Æ) the objectives that players attempt. The problem we consider in this paper

belongs to a class of no-information best-choice problem combined with continuous-time

sequential games. Recent works related to this aeria of problems are [2, 3, 5, 6, 7]. Ref.[2,

3, 7] discusse discrete-time sequential games. Ref.[5, 6] analyse continuous-time sequential

games where o�ers arrive in a Poison manner. Also a recent look for the optimal stopping

games in various phases can be found in Ref.[4].

2. Selecting Latest O�er.

Lemma 1.1 The solution to (1.1) is

(2:1) U(t) =

8<
:

e
�1
; if 0 < t < e

�1

�t log t; if e
�1

< t � 1:

The optimal strategy in state (t) is : Accept the earliest o�er (if any) arriving after time

e
�1
:
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Proof. By letting u(t) = t
�1
U(t); (1.1) becomes

u(t) =

Z 1

t

s
�1(1 _ u(s))ds

and hence

(2:2) u
0(t) = �t�1(1 _ u(t)); with u(1) = U(1) = 0:

Integration of u0(t) = �t�1; for t1 < t � 1; with u(1) = 0; gives t1 = e
�1 and u(t) =

� log t; t1 < t � 1: Since u(t) is decreasing in t from (2.2),

u
0(t) = �t�1u(t); 0 < t < t1; with u(t1) = 1;

and we get u(t) = e
�1
t
�1
: Thus

u(t) =

8<
:

e
�1
t
�1
; if 0 < t < e

�1

� log t; if e
�1

< t � 1:

which gives (2.1). 2

Let U0(t) be the optimal probability (in the one-person game) of selecting the latest

o�er, when an o�er has just arrived at time t: Then we have the Optimality Equation

U0(t) = t _ TU0(t); 0 < t � 1; U0(1) = 1;

which gives

(2:3) U0(t) = t _ e�1;

a well-known result in the secretary problem. (Ref.[3]). Note that U0(t) is related to U(t);

by the equality TU0(t) = U(t); 0 < t � 1:

Now the relations V (t) � 1=2 and TV (t) � U(t) are evident. The second inequality is

based on the de�nitions of V (t) and U(t) and our common sense. Consider the following

three cases.

Case 1. U(t) < t; i :e:; e�1 < t < 1;

Case 2. TV (t) < t < e
�1(� t1);

Case 3. 0 < t < TV (t):

Lemma 1.2 The common equilibrium value of the bimatrix game M(t; V (t); V (t)) is equal

to ;

1

2
(t� t log t); in Case 1;

1

2
(t + t1)�

1

4
(t� t1)2

�
1

2
(t+ t1) � TV (t)

�
�1

; in Case 2;

TV (t); in Case 3;

Equilibrium in the state ((t)) is in A-A. Mix-Mix, and R-R in Cases 1,2 and 3, re-

spectively. Here Mix means the mixed-strategy that randomize R and A with probability

(t � TV (t))=
�
1
2
(t+ t1)� TV (t)

	
; for A:
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Proof. Cases 1 and 3 are evident. So we prove Case 2 only. In Case 2, the two pure-strategy

pairs A-R and R-A and one mixed- strategy pair are in equilibrium. ( See Remark 4 in

Section 4.) The latter is derived from

'TV (t) + 't1 = 't+ '
1

2
(t+ t1) = Eq: Payo� to II;

 TV (t) +  t1 =  t+  
1

2
(t+ t1) = Eq: Payo� to I;

where < ';' > and <  ; > represent the mixed-strategy for I and II, respectively. Thus

we obtain

(2:4) '
� =  

� =
t� TV (t)

1
2
(t + t1) � TV (t)

;

and the common eq. payo�

'
�

t+ '
�
1

2
(t+ t1) =

�
tt1 �

1

2
(t+ t1)TV (t)

�.�1

2
(t+ t1)� TV (t)

�

=
1

2
(t+ t1)�

1

4
(t� t1)2

�
1

2
(t+ t1) � TV (t)

�
�1

: 2

Applying Lemma 1.1 and 1.2 to (1.2), we get

Theorem 1. The common eq. value V (t); for our problem (1.1) � (1.3) is as follows :

Determine t2 2 (0; t1) by the equation

(2:5) V (t2) = t2;

where V (t); t2 < t < t1 satis�es the integral equation

(2:6) TV (t) =
1

2
(t + t1)�

1

4
(t� t1)2

�
1

2
(t+ t1) � V (t)

�
�1

;

with V (t1) = t1 and TV (t1) = (3=4)t1:

Then

(2:7) V (t) =

8<
:

1
2
(t� t log t); for t1 < t � 1;

t2; for 0 < t < t2:

Common eq. strategy is:

Condition Common eq. strategy

0 < t < t2 Choose R

t2 < t < t1 Randomize R and A with prob.

'(t) = 2(V (t) � t)=(t1 � t); for A:

t1 < t < 1 Choose A
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in state ((t)); and the optimal strategy in state (t) is : Accept the earliest o�er, if any, that

arrives after time t _ e�1;
Proof. In Case 1, V (t) = 1

2
(t � t log t); which is concavely increasing in t1 < t � 1; with

values t1 at t = t1 and 1/2 at t = 1: Also

(2:8) TV (t) = t

Z 1

t

s
�2
V (s)ds =

1

2
(�t log t) + 1

4
t(log t)2

is concavely decreasing with values (3/4)t1 at t = t1 and 0 at t = 1:

In Case 2, we have

V (t) =
1

2
(t + t1)� 1

4
(t� t1)2

�
1

2
(t+ t1) � TV (t)

�
�1

which, after a rearrangement, becomes the integral equation (2.6). This shows that V (t)

and TV (t) are interchangeable. Substituting (2.6) into (2.4) we easily �nd that

(2:40) '
� =  

� =
t� TV (t)

1
2
(t+ t1) � TV (t)

=
2(V (t) � t)
t1 � t

:

This function of t; t2 < t < t1; satis�es '
�(t2) = 0 and '

�(t1) = limt!t1 2(1 � V
0(t)) =

2
�
1 + 1

2
log t1

�
= 1:

The condition required by t2 is TV (t2) = t2; which by using (2.6) gives V (t2) = t2; i.e.,

(2.5). Finally

V (t) = TV (t); for 0 < t < t2

becomes, by taking v(t) = t
�1
V (t); v(t) =

R 1
t
s
�1
v(s)ds: Hence v0(t)=v(t) = �t�1; and, by

integration over (t; t2); v(t) = t2v(t2)t
�1
: Therefore V (t) = const., that is V (t) = V (t2) = t2

by (2.5). 2

Remark 1. Comparing the two-person game with the corresponding one-person game we

note that U0(0+) = e
�1

> t2 = V (0+); from (2.3) and (2.7).

Remark 2. In order to �nd the value of t2: We must derive the solution of (2.6) explicitly.

See Remark 3 in Section 3 and Figure 1(a) in Section 4.

3. Selecting the Latest O�er or an O�er Later Than the Opponent.

We consider in this section the game where the rule is : (1Æ) and (2Æ) are the same as

in Section 1, but (3Æ) is replaced by

(3+) A player wins if he gets the latest o�er or if he gets an o�er later than his opponent.

Each player aims to maximize his probability of winning.

The analysis of the game is mostly the same as in Section 2. The Optimality Equation

is

(3:1) (V (t); V (t)) = Eq:Val: (K(t; V (t); V (t)); (0 < t � 1; V (1) = 1=2)

where

(1:3) K(t; V (t); V (t)) =

R

A

R A

TV (t); TV (t) t; t

t; t 1=2; 1=2
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since Pr.f an o�er arrives after time tj state (t)g = t
R 1

t
s
�2
ds = 1� t:

The relations V (t) � 1=2 and TV (t) � t are evident. The latter inequality is based on

our common sense.

Lemma 2.1 The common eq. value of K(t; V (t); V (t)) is equal to :

8>>>><
>>>>:

1=2; if 1
2
< t < 1; (A�A is in eq:);

1
2
� � 1

4
� tt

� �
1
2
� TV (t)��1 ; if TV (t) < t <

1
2
; (Mix�Mix is in eq:);

TV (t); if 0 < t < TV (t); (R�R is in eq:):

Here Mix for each player means randomization between R and A with probability

(3:3) '(t) =

�
1

2
� t

��
1

2
� TV (t)

�
�1

; for R:

Proof. Consider the three cases

Case 1. TV (t) � t <
1
2
< t:

Case 2. TV (t) � t <
1
2
< t:

Case 3. t < 1
2
^ TV (t) = TV (t):(* V (t) � 1

2
givesTV (t) � 1

2
t):

The proof is made similarly as in Lemma 1.2. 2

Theorem 2. The common eq. value V (t); for our problem (3.1)-(3.2) is as follows:

Determine t2 2
�
0; 1

2

�
by the equation

(3:4) V (t2) = t2;

where V (t); t2 < t < 1=2 satis�es the integral equation

(3:5) TV (t) =
1

2
�
�
1

4
� tt

��
1

2
� V (t)

�
�1

; with V (1=2) = 1=2:

Then for t 2 (0; t2) [ (1=2; 1]

(3:6) V (t) =

8<
:

1=2; for 1=2 < t � 1

t2; for 0 < t < t2:

Common eq.strategy is:

Condition 0 < t < t2 Choose R

t2 < t < 1=2 Randomize R and A with prob.

'(t) =
1=2�V (t)

1=2�t
; forR:

1=2 < t < 1 Choose A
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in state ((t)); and the optimal strategy in state (t) is: Accept the earliest o�er which arrives

after time t:

Proof. For 1
2
< t � 1; we have V (t) = 1

2
; and so TV = t=2: For t such that TV < t <

1
2
; we

have

(3:7) V (t) =
1

2
�
�
1

4
� tt

��
1

2
� TV (t)

�
�1

which, after a rearrangement, becomes the di�erential equation (3.5). So, V (t) and TV (t)

are again interchangeable.

Substituting (3.5) into (3.3) we easily �nd that

(3:30) ' =
1=2� t

1=2� TV (t) =
1=2� V (t)
1=2� t :

This function of t; for t2 < t < 1=2; satis�es

'(t2) = 1 and '

�
1

2
+ 0

�
= V

0

�
1

2
+ 0

�
= 0:

The condition required by t2 is TV (t2) = t2; which, by using (3.5), gives V (t2) = t2; i.e.,

(3.4). The rest of the proof is the same as in Theorem 1. 2

Corollary 2.1. The solution to the integral equation (3.5) is

(3:8) V (t) =
1

2
�
�
1

2
� t

�2 ��
13

4
� 2 log(2t)

�
t
2 � 2t+

1

4

�
�1=2

or equivalently

TV (t) =
1

2
�
��

13

4
� 2 log(2t)

�
t
2 � 2t+

1

4

�1=2
: (t2 � t � 1=2; V (1=2) = 1=2)

and t2 ; 0:3151 is a unique root in (0; 1=2) of the equation

(3:9) �t log t = 1

2
�
�
9

8
� log 2

�
t;

Proof. Let, for t2 < t < 1=2;

w(t) �
Z 1=2

t

(s�2V (s) � s�1)ds =
Z 1=2

t

s
�2
V (s)ds + log(2t):

Then, since

V (t) = t� t2w0(t) and TV (t) = t fw(t) � log(2t) + 1=2g ;
Eq.(3.5) becomes the di�erential equation

(3:10) log(2e�1=2) +
1

2t
+ log t� w(t) = t

�3(1=2� t)2
(2t2)�1 � t�1 + w0(t)

i.e.,

�1
2

d

dt

"�
log(2e�1=2) +

1

2t
+ log t� w(t)

�2
#
= t

�3(1=2� t)2
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Integrating both sides with respect to t 2 (t2; 1=2); we obtain

log(2e�1=2) +
1

2t
+ log t� w(t) =

�
13

4
� 2 log(2t) � 2t�1 +

1

4
t
�2

�1=2
:

Di�erentation and using V (t) = t� t2w0(t); �nally give (3.8).

Substitute (3.4) into (3.8), then it follows that

�
1

2
� t

�2

=

�
13

4
� 2 log(2t)

�
t
2 � 2t+

1

4
;

which becomes (3.9). It is easy to assertain that the inside of [ � � � ] in (3.8) is positive

for t2 < t < 1=2: This completes the proof. 2

The solution is numerically derived for some values of t 2 (t1; t2) from (3.8) and (3.3').

V (t) TV (t) '�(y); i.e., prob.for R

t = 0:3151 0.3151 0.3151 1

0.35 0.3806 0.3116 0.796

0.40 0.4509 0.2965 0.491

0.45 0.4889 0.2746 0.222

0.5 0.5 0.25 0

Remark 3. Unfortunately we could not �nd an explicit solution to the integral equation

(2.6) by taking along the same way as in Corollary 2.1. The di�erential equation corre-

sponding to (3.10), in this case, is

(4t)�1(t1=t� 1)2

(2t)�1(t1=t� 1) +w0(t)
= 3=4 + t1=(2t) + log t �w(t) (t2 < t < t1;w(t1) = 0)

where w(t) � R t1
t
(s�2V (s) � s�1)ds: This equation becomes another simpler one

tz
0 =
p
z � 1

2
(t1=t� 1)2 (t2 < t < t1; z(t1) = 1=16);

if we consider

z(t) �
�
3

4
+
t1

2t
+ log t� w(t)

�2
=

�
�1
4
+
t1

2t
�
Z t1

t

s
�2
V (s)ds

�2
:

4. Final Remarks.

Remark 4. For the bimatrix game (1.3) in Lemma 1.2. and (3.2) in Lemma 2.1. (i) two

pure-strategy pairs and one mixed-strategy pair are in eq. when TV (t) < t < t1:We assume

that we take (ii) in order to make eq. strategies and eq. values continuous in t 2 (0; 1]:

Thus Eq. Val. in Optimality Equations (1.2) and (3.1) is well-de�ned in this sense.

Remark 5. The condition that '�; given by (2.4)-(2.4') in Theorem 1 (given by (3.3)-(3.3')

in Theorem 2), satis�es 0 � '
� � 1; is equivalent to the relation TV (t) < t < V (t): Proof is

easy and omitted. Common eq. values V (t) in the two games in Section 2 and 3 are shown

by Figure 1(a)-1(b). Whether t2 <
3
4
e
�1 in (a) is true or not is unknown, although the fact

that t2 ; 0:3151 in (b) is greater than t2 in (a), is evident.
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Figure 1. Common eq. values V (t) in the two games.

(a) In Theorem 1. (b) In Theorem 2.

-

6

TV (t)

1

1
2

(3
4
)t1

t2 t1(= e
�1)

t2

0 1

j j j j�R-R�  � A-A �!

�
�
�
�
�
�
�
�
�
�
�
�

1

-

6

TV (t)

1

1
2

1
4

t2 t1(= 1=2)

V (t)

?

t2

0 1

j j j j�R-R�  A-A !

�
�
�
�
�
�
�
�
�
�
�
�

1

The eq. strategy pairs in state ((t)) are also mentioned. In the interval (t2; t1); they are

Mix-Mix, given in Theorems 1 and 2. The broken curve in (a) is one which is supposed to

be.
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